Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 3/2013

01.03.2013 | Symposium: Environmental Damage in Structural Materials Under Static/Dynamic Loads at Ambient Temperature

Modified Kitagawa Diagram and Transition from Crack Nucleation to Crack Propagation

verfasst von: K. Sadananda, S. Sarkar

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Kitagawa-Takahashi diagram combines the endurance limit of a smooth specimen and the crack propagation threshold in a fracture mechanics specimen into single diagram thus providing the connection between the stress or strain-life and damage tolerance approaches. The diagram is modified by considering that (a) fatigue requires two independent load-parameters for unambiguous description, (b) long crack growth behavior defines the material resistance under constant stress amplitudes along with the associated R-ratio effects, (c) remote applied stresses and localized plasticity-effects can be combined to provide the total mechanical force opposing the material resistance leading to crack initiation, growth and failure describable in the diagram, (d) localized plasticity contributes to internal stresses that either augment or retard the remote stresses, and finally (e) the magnitude and gradient of these internal stresses determine the condition for propagation and/or non-propagation of the incipient cracks that form either at pre-existing stress concentrations or in situ formed stress concentrations due to localized plasticity. Localized plasticity forms the basis for the additional crack tip driving forces in either accelerating or decelerating crack growth kinetics thereby providing conditions for either crack arrest with resulting non-propagating cracks or for continuous uninterrupted crack growth. Internal stresses are generated during fatigue damage in the form of dislocation pile-ups, intrusions and extrusions. The analysis shows that critical magnitude and gradient of the internal stresses are required for an incipient crack to grow continuously, failing which crack arrest can occur. The methodology is based on separating the mechanically introduced crack tip driving forces vs the material resistance; the later can be extracted from long-crack growth data under constant amplitudes. Analysis of incipient short cracks growing under the elastic-plastic notch tip stress fields are analyzed systematically for various elastic stress concentrations, K t, and notch-tip radii, ρ. A general formulation is developed based on the calculations that can be incorporated into the unified life predication model that is being developed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat SAE Fatigue Design Approach, 3rd ed., SAE International, Warrendale, PA, 1997. SAE Fatigue Design Approach, 3rd ed., SAE International, Warrendale, PA, 1997.
2.
Zurück zum Zitat Damage Tolerant Design DTD Handbook, The DOD Joint Service Specification Guide—JSSG-2006—Aircraft Structures. Damage Tolerant Design DTD Handbook, The DOD Joint Service Specification Guide—JSSG-2006—Aircraft Structures.
3.
Zurück zum Zitat “Fatigue, Fail-Safe, and Damage Tolerance Evaluation of Metallic Structure for Normal, Utility, Acrobatic, and Commuter Category Airplanes”, AC 23-13A, FAA, US Department of Transportation, September 29, 2005. “Fatigue, Fail-Safe, and Damage Tolerance Evaluation of Metallic Structure for Normal, Utility, Acrobatic, and Commuter Category Airplanes”, AC 23-13A, FAA, US Department of Transportation, September 29, 2005.
4.
Zurück zum Zitat H. Kitagawa and S. Takahashi: in Proceedings of the Second International Conference on Mechanical Behavior of Materials, ASM, Metals Park, OH, 1976, vol. 956, pp. 627–31. H. Kitagawa and S. Takahashi: in Proceedings of the Second International Conference on Mechanical Behavior of Materials, ASM, Metals Park, OH, 1976, vol. 956, pp. 627–31.
5.
Zurück zum Zitat A.K. Vasudevan and K. Sadananda: Mater. Sci. Eng., 1994, vol. A188, pp. 1–22. A.K. Vasudevan and K. Sadananda: Mater. Sci. Eng., 1994, vol. A188, pp. 1–22.
6.
Zurück zum Zitat A.K. Vasudevan and K. Sadananda: Metall. Mater. Trans., 1995, vol. 26A, pp. 1221–34.CrossRef A.K. Vasudevan and K. Sadananda: Metall. Mater. Trans., 1995, vol. 26A, pp. 1221–34.CrossRef
7.
Zurück zum Zitat K. Sadananda and A.K. Vasudevan: Int. J. Fatigue, 1997, vol. 19, pp. S99–S109.CrossRef K. Sadananda and A.K. Vasudevan: Int. J. Fatigue, 1997, vol. 19, pp. S99–S109.CrossRef
8.
Zurück zum Zitat K. Sadananda and A.K. Vasudevan: Int. J. Fatigue, 2003, vol. 25, pp. 899–914.CrossRef K. Sadananda and A.K. Vasudevan: Int. J. Fatigue, 2003, vol. 25, pp. 899–914.CrossRef
9.
Zurück zum Zitat J. Goodman: Mechanics Applied to Engineering, Longmans Green, London, 1899, p. 934. J. Goodman: Mechanics Applied to Engineering, Longmans Green, London, 1899, p. 934.
10.
Zurück zum Zitat N.E. Dowling: Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture and Fatigue, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 1999. N.E. Dowling: Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture and Fatigue, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 1999.
11.
Zurück zum Zitat R.G. Forman, V.E. Kearney, and R.M. Engle: J. Basic Eng., 1987, vol. 89, pp. 459–64.CrossRef R.G. Forman, V.E. Kearney, and R.M. Engle: J. Basic Eng., 1987, vol. 89, pp. 459–64.CrossRef
12.
Zurück zum Zitat P.C. Paris and F. Erdogan: Trans. ASME J. Basic Eng., 1963, vol. 85, pp. 528–34.CrossRef P.C. Paris and F. Erdogan: Trans. ASME J. Basic Eng., 1963, vol. 85, pp. 528–34.CrossRef
13.
Zurück zum Zitat S. Suresh and R. Ritchie: Int. Met. Rev., 1984, vol. 29, pp. 445–76. S. Suresh and R. Ritchie: Int. Met. Rev., 1984, vol. 29, pp. 445–76.
14.
Zurück zum Zitat N. Lout, K. Sadananda, M. Duesbery, and A.K. Vasudevan: Metall. Trans. A, 1993, vol. 24A, pp. 2225–32. N. Lout, K. Sadananda, M. Duesbery, and A.K. Vasudevan: Metall. Trans. A, 1993, vol. 24A, pp. 2225–32.
15.
Zurück zum Zitat A.K. Vasudevan: “Unified Fatigue Damage Analysis: The Uni-Grow Model”, ONR-Briefing for the Condition-Based Maintenance Plus Action Group, March 2, 2011. A.K. Vasudevan: “Unified Fatigue Damage Analysis: The Uni-Grow Model”, ONR-Briefing for the Condition-Based Maintenance Plus Action Group, March 2, 2011.
16.
Zurück zum Zitat J. Lagrange: Méchanique Analytique, IVth ed., Gauthier-Villars, Paris, 1788, p. 226. J. Lagrange: Méchanique Analytique, IVth ed., Gauthier-Villars, Paris, 1788, p. 226.
17.
Zurück zum Zitat K. Sadananda, S. Sarkar, D. Kujawski, and A.K. Vasudevan: Int. J. Fatigue, 2009, vol. 31, pp. 1648–59.CrossRef K. Sadananda, S. Sarkar, D. Kujawski, and A.K. Vasudevan: Int. J. Fatigue, 2009, vol. 31, pp. 1648–59.CrossRef
18.
Zurück zum Zitat K. Sadananda, A.K. Vasudevan, and N. Phan: Int. J. fatigue, 2007, vol. 29, pp. 2060–71.CrossRef K. Sadananda, A.K. Vasudevan, and N. Phan: Int. J. fatigue, 2007, vol. 29, pp. 2060–71.CrossRef
19.
Zurück zum Zitat M.H. El-Haddad, T.H. Topper, and K.N. Smith: Eng. Fract. Mech., 1979, vol. 11, pp. 573–84.CrossRef M.H. El-Haddad, T.H. Topper, and K.N. Smith: Eng. Fract. Mech., 1979, vol. 11, pp. 573–84.CrossRef
20.
Zurück zum Zitat K. Tanaka, Y. Nakai, and M. Yamashita: Int. J. Fatigue, 1981, vol. 17, pp. 519–33. K. Tanaka, Y. Nakai, and M. Yamashita: Int. J. Fatigue, 1981, vol. 17, pp. 519–33.
21.
Zurück zum Zitat R. Pippan, M. Berger, and H.P. Stüwe: Metall. Trans., 1987, vol. 18A, p. 429. R. Pippan, M. Berger, and H.P. Stüwe: Metall. Trans., 1987, vol. 18A, p. 429.
22.
Zurück zum Zitat A. Pineau: Short Fatigue Crack Behavior in Relation to Three-Dimensional Aspects and Crack Closure Effect, in Proceedings: Small Fatigue Cracks, R.O. Ritchie and J. Lankford, eds., AIME, 1986, pp. 191–212. A. Pineau: Short Fatigue Crack Behavior in Relation to Three-Dimensional Aspects and Crack Closure Effect, in Proceedings: Small Fatigue Cracks, R.O. Ritchie and J. Lankford, eds., AIME, 1986, pp. 191–212.
23.
Zurück zum Zitat D.O. Sprowls, M.B. Shumaker, J.D. Walsh, and J.W. Coursen: “Evaluation of Stress Corrosion Cracking Susceptibility Using Fracture Mechanics Techniques”, Final Report of Govt. Contract, NAS 8-21487, Part I, May 31, 1973. D.O. Sprowls, M.B. Shumaker, J.D. Walsh, and J.W. Coursen: “Evaluation of Stress Corrosion Cracking Susceptibility Using Fracture Mechanics Techniques”, Final Report of Govt. Contract, NAS 8-21487, Part I, May 31, 1973.
24.
Zurück zum Zitat A. Navarro and E.R. de los Rios: Philos. Mag, 1988, vol. 57, pp. 15–36. A. Navarro and E.R. de los Rios: Philos. Mag, 1988, vol. 57, pp. 15–36.
25.
Zurück zum Zitat M.S. Bruzzi and P.E. McHugh: Int. J. Fatigue, 2002, vol. 24, pp. 1071–78.CrossRef M.S. Bruzzi and P.E. McHugh: Int. J. Fatigue, 2002, vol. 24, pp. 1071–78.CrossRef
26.
28.
Zurück zum Zitat D. Taylor: Fatigue Fract. Eng. Mater. Struct., 2001, vol. 24, pp. 215–24.CrossRef D. Taylor: Fatigue Fract. Eng. Mater. Struct., 2001, vol. 24, pp. 215–24.CrossRef
29.
Zurück zum Zitat S. Usami: in Small Fatigue Cracks, R.O. Ritchie and J. Lankford, eds., AIME, Warrendale, PA, 1986, pp. 559–86. S. Usami: in Small Fatigue Cracks, R.O. Ritchie and J. Lankford, eds., AIME, Warrendale, PA, 1986, pp. 559–86.
30.
Zurück zum Zitat E. Orowan: Fracture and Strength of Solids. Reports on Progress in Physics XII, 1948, pp. 185–232. E. Orowan: Fracture and Strength of Solids. Reports on Progress in Physics XII, 1948, pp. 185–232.
31.
Zurück zum Zitat G.R. Irwin: J. Appl. Mech., 1957, vol. 24, pp. 361–64. G.R. Irwin: J. Appl. Mech., 1957, vol. 24, pp. 361–64.
32.
Zurück zum Zitat J.R. Rice: An Examination of the Fracture Mechanics Energy Balance from the Point of View of Continuum Mechanics, in Proc. 1st Inter. Con. Fracture, Sendai, 1965, T. Yokobori, T. Kawasaki, and J. L. Swedlow, eds., vol. 1, Japanese Society for Strength and Fracture of Materials, Tokyo, 1966, pp. 309–40. J.R. Rice: An Examination of the Fracture Mechanics Energy Balance from the Point of View of Continuum Mechanics, in Proc. 1st Inter. Con. Fracture, Sendai, 1965, T. Yokobori, T. Kawasaki, and J. L. Swedlow, eds., vol. 1, Japanese Society for Strength and Fracture of Materials, Tokyo, 1966, pp. 309–40.
33.
Zurück zum Zitat N.E. Fleck, C.S. Shin, and R.A. Smith: Eng. Fract. Mech., 1985, vol. 21, pp. 173–85.CrossRef N.E. Fleck, C.S. Shin, and R.A. Smith: Eng. Fract. Mech., 1985, vol. 21, pp. 173–85.CrossRef
34.
Zurück zum Zitat S. Suresh: Eng. Fract. Mech., 1985, vol. 21, pp. 452–63. S. Suresh: Eng. Fract. Mech., 1985, vol. 21, pp. 452–63.
35.
Zurück zum Zitat R. Pippan: Fatigue Fract. Eng. Mater. Struct., 1987, vol. 9, pp. 319–28.CrossRef R. Pippan: Fatigue Fract. Eng. Mater. Struct., 1987, vol. 9, pp. 319–28.CrossRef
36.
Zurück zum Zitat J.C. Newman, Jr. and Y. Yamada: Int. J. Fatigue, 2010, vol. 32, pp. 879–85.CrossRef J.C. Newman, Jr. and Y. Yamada: Int. J. Fatigue, 2010, vol. 32, pp. 879–85.CrossRef
37.
Zurück zum Zitat S. Suresh: Fatigue of Materials, 2nd ed., Cambridge University Press, Cambridge, 1998.CrossRef S. Suresh: Fatigue of Materials, 2nd ed., Cambridge University Press, Cambridge, 1998.CrossRef
38.
39.
Zurück zum Zitat J.C. Newman, Jr.: Private Communication, 2009. J.C. Newman, Jr.: Private Communication, 2009.
40.
Zurück zum Zitat G. Shen and G. Glinka: Theor. Appl. Fract. Mech., 1991, vol. 15, pp. 247–55.CrossRef G. Shen and G. Glinka: Theor. Appl. Fract. Mech., 1991, vol. 15, pp. 247–55.CrossRef
41.
Zurück zum Zitat Air Force Report: “Improved High Cycle Fatigue (HCF) Life Prediction”, UDRI Industry Team, UDR-TR-1999-00079, 2001. Air Force Report: “Improved High Cycle Fatigue (HCF) Life Prediction”, UDRI Industry Team, UDR-TR-1999-00079, 2001.
42.
Zurück zum Zitat J.B. Barson and R.C. McNicol: “Effect of Stress Concentration on Fatigue-Crack Initiation in HY-130 Steel”, ASTM-STP # 559, 1973, pp. 183–204. J.B. Barson and R.C. McNicol: “Effect of Stress Concentration on Fatigue-Crack Initiation in HY-130 Steel”, ASTM-STP # 559, 1973, pp. 183–204.
43.
Zurück zum Zitat M. Creager and P.C. Paris: Eng. Fract. Mech., 1967, vol. 3, pp. 247–52. M. Creager and P.C. Paris: Eng. Fract. Mech., 1967, vol. 3, pp. 247–52.
44.
Zurück zum Zitat K. Endo, K. Komai, and I. Yamamoto: Bull. MSME, 1981, vol. 24, pp. 1326–32.CrossRef K. Endo, K. Komai, and I. Yamamoto: Bull. MSME, 1981, vol. 24, pp. 1326–32.CrossRef
Metadaten
Titel
Modified Kitagawa Diagram and Transition from Crack Nucleation to Crack Propagation
verfasst von
K. Sadananda
S. Sarkar
Publikationsdatum
01.03.2013
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 3/2013
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-012-1416-x

Weitere Artikel der Ausgabe 3/2013

Metallurgical and Materials Transactions A 3/2013 Zur Ausgabe

Symposium: Environmental Damage in Structural Materials under Static/Dynamic Loads at Ambient Temperature

Water Penetration—Its Effect on the Strength and Toughness of Silica Glass

Symposium: Environmental Damage in Structural Materials under Static/Dynamic Loads at Ambient Temperature

Failure Diagram and Chemical Driving Forces for Subcritical Crack Growth

Symposium: Environmental Damage in Structural Materials under Static/Dynamic Loads at Ambient Temperature

Atomistic Investigation of the Role of Grain Boundary Structure on Hydrogen Segregation and Embrittlement in α-Fe

Symposium: Environmental Damage in Structural Materials under Static/Dynamic Loads at Ambient Temperature

Mechanisms and Kinetics of Environmentally Assisted Cracking: Current Status, Issues, and Suggestions for Further Work

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.