Skip to main content
Erschienen in: Microsystem Technologies 8/2018

21.12.2017 | Technical Paper

Numerical simulation and experimental validation of novel hyperelastic micro-motion manipulator for water conserving device

verfasst von: Yi-Cheng Huang, Huan-Chu Hsu

Erschienen in: Microsystem Technologies | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this study was to evaluate a novel water-conserving micro-motion manipulator (manipulator) for application in the fluid flow rate regulator of a faucet through numerical simulation and experimental validation. The manipulator was analyzed with various diameters of the water channel. When the channel is narrow, the water flow rate decreases, and the water channel becomes narrower as the inlet water pressure increases. Moreover, the water channel returns to the rest position and provides the required minimum flow rate when the inlet water pressure is minimum. The behavior of the manipulator was simulated using the fluid–structure interaction model of COMSOL multiphysics. The Mooney–Rivlin two-parameter model was used for the simulation. This study employed two methods to obtain the coefficients C10 and C01. The first method was performed according to Gent’s relation, a relation between the ASTM D2240 Shore hardness and Young’s modulus. The second method was employed to validate the coefficients during the simulation on the basis of tensile tests performed according to ASTM 412-C. Through the simulations and laboratory testing, the manipulator complies with the requirements of the California Energy Commission (CEC) and U.S. Environmental Protection Agency (EPA). The results show that the physical samples of the manipulator installed in the water-conserving regulators complied with the CEC and EPA standards. The experimental validation results confirmed the suitability of the numerical simulation in predicting the water-conserving performance of the manipulator with respect to the inlet water pressure by using a hyperelastic silicone rubber material.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Azmi NN et al (2014) Testing standards assessment for silicone rubber. In: IEEE International symposium on technology management and emerging technologies Azmi NN et al (2014) Testing standards assessment for silicone rubber. In: IEEE International symposium on technology management and emerging technologies
Zurück zum Zitat Brown R (1999) Handbook of polymer testing. CRC Press, New York Brown R (1999) Handbook of polymer testing. CRC Press, New York
Zurück zum Zitat Brown R (2006) Physical testing of rubber. Springer US, New York Brown R (2006) Physical testing of rubber. Springer US, New York
Zurück zum Zitat Charlton DJ et al (1994) A review of methods to characterize rubber elastic behavior for use in finite element analysis. Rubber Chem Technol 67:481–503CrossRef Charlton DJ et al (1994) A review of methods to characterize rubber elastic behavior for use in finite element analysis. Rubber Chem Technol 67:481–503CrossRef
Zurück zum Zitat COMSOL Inc. (2016a) COMSOL multiphysics 5.2a. Software licensed by COMSOL Inc. Pitotech, Changhua COMSOL Inc. (2016a) COMSOL multiphysics 5.2a. Software licensed by COMSOL Inc. Pitotech, Changhua
Zurück zum Zitat COMSOL Inc. (2016c) Introduction to optimization module, Optimization Module Functionality; Tutorial Example—Curve Fitting. COMSOL multiphysics 5.2a, pp 15–27 COMSOL Inc. (2016c) Introduction to optimization module, Optimization Module Functionality; Tutorial Example—Curve Fitting. COMSOL multiphysics 5.2a, pp 15–27
Zurück zum Zitat COMSOL Inc. (2016d) Structural Mechanics Module, User’s Guide, Structural Mechanics Theory; Solid Mechanics. COMSOL multiphysics 5.2a, pp 179–512 COMSOL Inc. (2016d) Structural Mechanics Module, User’s Guide, Structural Mechanics Theory; Solid Mechanics. COMSOL multiphysics 5.2a, pp 179–512
Zurück zum Zitat Marty Garry R et al (1986) Pressure responsive aerator. US Patent 4,562,960 Marty Garry R et al (1986) Pressure responsive aerator. US Patent 4,562,960
Zurück zum Zitat Gent AN (1958) On the relation between indentation hardness and Young’s modulus. Rubber Chem Technol 31:896–906CrossRef Gent AN (1958) On the relation between indentation hardness and Young’s modulus. Rubber Chem Technol 31:896–906CrossRef
Zurück zum Zitat Hirai Y et al (2001) Study of the resist deformation in nanoimprint lithography. J Vaccum Sci Technol B 19:2811–28152001CrossRef Hirai Y et al (2001) Study of the resist deformation in nanoimprint lithography. J Vaccum Sci Technol B 19:2811–28152001CrossRef
Zurück zum Zitat Hocheng H, Nien CC (2006) Numerical analysis of effects of mold features and contact friction on cavity filling in the nanoimprinting process. J Microlithogr Microfabr Microsyst 5(1):011004 Hocheng H, Nien CC (2006) Numerical analysis of effects of mold features and contact friction on cavity filling in the nanoimprinting process. J Microlithogr Microfabr Microsyst 5(1):011004
Zurück zum Zitat Keppel W-D (1974) Fluid flow regulators. US Patent 3,847,178 Keppel W-D (1974) Fluid flow regulators. US Patent 3,847,178
Zurück zum Zitat Korochkina TV et al (2008) Experimental and numerical investigation into nonlinear deformation of silicone rubber pads during ink transfer process. Polym Test 27:778–791CrossRef Korochkina TV et al (2008) Experimental and numerical investigation into nonlinear deformation of silicone rubber pads during ink transfer process. Polym Test 27:778–791CrossRef
Zurück zum Zitat Li J et al (2012) Hyperelastic property measurements of heat-cured silicone adhesives by cyclic uniaxial tensile test. J Electron Mater 41(9):2613–2620CrossRef Li J et al (2012) Hyperelastic property measurements of heat-cured silicone adhesives by cyclic uniaxial tensile test. J Electron Mater 41(9):2613–2620CrossRef
Zurück zum Zitat Sochtig M (2004) Flow regulator. US Patent 6,695,011 Sochtig M (2004) Flow regulator. US Patent 6,695,011
Zurück zum Zitat Ucar H, Basdogan I (2017) Dynamic characterization and modeling of rubber shock absorbers: a comprehensive case study. J Low Freq Noise Vib Active Control 1–10 Ucar H, Basdogan I (2017) Dynamic characterization and modeling of rubber shock absorbers: a comprehensive case study. J Low Freq Noise Vib Active Control 1–10
Zurück zum Zitat Wu F (2017) Flow-control faucet aerator. US Patent US2017/0022693 A1 Wu F (2017) Flow-control faucet aerator. US Patent US2017/0022693 A1
Metadaten
Titel
Numerical simulation and experimental validation of novel hyperelastic micro-motion manipulator for water conserving device
verfasst von
Yi-Cheng Huang
Huan-Chu Hsu
Publikationsdatum
21.12.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 8/2018
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-017-3680-6

Weitere Artikel der Ausgabe 8/2018

Microsystem Technologies 8/2018 Zur Ausgabe

Neuer Inhalt