Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2024

31.03.2023 | Technical Article

Parameter Optimization and Mechanism of Synchronous Wire-Powder Arc Melting Deposition of Aluminum Alloy

verfasst von: Yunfei Meng, Zeyu Li, Ming Gao, Hui Chen, Chen Zhang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Because of the great sensitivity of arc burning to airflow and wind direction, wire arc melting deposition of aluminum alloy focuses on indoor conditions, and cannot meet the needs of on-site manufacturing. The synchronous wire-powder feeding was proposed to improve the wind resistance of arc melting deposition. The parameters optimization was first carried out in a windless environment, and then the effects of powder formula on the bead formation in a windy environment and the related stabilization mechanism were studied. It was found that wire arc melting deposition showed obvious process instability when the ambient wind speed exceeded 1 m/s, and completely unable to form at wind speed of 3 m/s, while the wind resistance of synchronous wire-powder arc melting deposition was improved to 3.5 m/s through the optimized powder formula of 90 Mg-5TiO2-5NaF (wt.%). The stabilization mechanism of powder formula was concluded that the Mg promoted the arc ionization and enhanced its stability, the TiO2 and NaF improved the wetting and spreadability of liquid metal by reducing its melt viscosity and formed a slag layer to protect the molten pool from the excessive interference of external wind.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Dong, Y. Zhao, Q. Li, Y. Fei, T. Zhao, F. Wang, and A. Wu, Microstructure Evolution and Mechanical Property Anisotropy of Wire and Arc-Additive-Manufactured Wall Structure Using ER2319 Welding Wires, J. Mater. Eng. Perform., 2021, 30, p 258–268.CrossRef M. Dong, Y. Zhao, Q. Li, Y. Fei, T. Zhao, F. Wang, and A. Wu, Microstructure Evolution and Mechanical Property Anisotropy of Wire and Arc-Additive-Manufactured Wall Structure Using ER2319 Welding Wires, J. Mater. Eng. Perform., 2021, 30, p 258–268.CrossRef
2.
Zurück zum Zitat X. Yu, J. Xue, Q. Shen, Z. Zheng, N. Ou, and W. Wu, Dual-Wire Plasma Arc Additively Manufactured SS 316L-Inconel 625 Functionally Graded Material: Microstructure Evolution and Mechanical Properties, J. Mater. Eng. Perform., 2023, 32, p 1412–1422.CrossRef X. Yu, J. Xue, Q. Shen, Z. Zheng, N. Ou, and W. Wu, Dual-Wire Plasma Arc Additively Manufactured SS 316L-Inconel 625 Functionally Graded Material: Microstructure Evolution and Mechanical Properties, J. Mater. Eng. Perform., 2023, 32, p 1412–1422.CrossRef
3.
Zurück zum Zitat Z. Yang, J. Li, S. Hou, J. Cao, G. Wang, S. Lang, and P. Ding, Microstructural Characteristics and Mechanical Properties of Ti-6Al-2Nb-2Zr-0.4B Alloy Welded Joint Using Tungsten Inert Gas Welding, J. Mater. Res. Technol., 2022, 21, p 3129–3139.CrossRef Z. Yang, J. Li, S. Hou, J. Cao, G. Wang, S. Lang, and P. Ding, Microstructural Characteristics and Mechanical Properties of Ti-6Al-2Nb-2Zr-0.4B Alloy Welded Joint Using Tungsten Inert Gas Welding, J. Mater. Res. Technol., 2022, 21, p 3129–3139.CrossRef
4.
Zurück zum Zitat J. Kulkarni, S. Goka, P. Parchuri, H. Yamamoto, Ito Kazuhiro, and S. Simhambhatla, Microstructure Evolution Along Build Direction for Thin-Wall Components Fabricated with Wire-Direct Energy Deposition, Rapid Prototyp. J., 2021, 27(7), p 1289–1301.CrossRef J. Kulkarni, S. Goka, P. Parchuri, H. Yamamoto, Ito Kazuhiro, and S. Simhambhatla, Microstructure Evolution Along Build Direction for Thin-Wall Components Fabricated with Wire-Direct Energy Deposition, Rapid Prototyp. J., 2021, 27(7), p 1289–1301.CrossRef
5.
Zurück zum Zitat I. Tabernero, A. Paskual, P. Álvarez, and A. Suárez, Study on Arc Welding Processes for High Deposition Rate Additive Manufacturing, Procedia CIRP, 2018, 68, p 358–362.CrossRef I. Tabernero, A. Paskual, P. Álvarez, and A. Suárez, Study on Arc Welding Processes for High Deposition Rate Additive Manufacturing, Procedia CIRP, 2018, 68, p 358–362.CrossRef
6.
Zurück zum Zitat C. Wang, W. Suder, J. Ding, and S. Williams, The Effect of Wire Size on High Deposition Rate Wire and Plasma Arc Additive Manufacture of Ti-6Al-4V, J. Mater. Process. Technol., 2021, 288, p 116842.CrossRef C. Wang, W. Suder, J. Ding, and S. Williams, The Effect of Wire Size on High Deposition Rate Wire and Plasma Arc Additive Manufacture of Ti-6Al-4V, J. Mater. Process. Technol., 2021, 288, p 116842.CrossRef
7.
Zurück zum Zitat T. Lee, D. Kam, J. Oh, and C. Kim, Ti-6Al-4V Alloy Deposition Characteristics at Electrode-Negative Polarity in the Cold Metal Transfer-Gas Metal Arc Process, J. Market. Res., 2022, 19, p 685–696. T. Lee, D. Kam, J. Oh, and C. Kim, Ti-6Al-4V Alloy Deposition Characteristics at Electrode-Negative Polarity in the Cold Metal Transfer-Gas Metal Arc Process, J. Market. Res., 2022, 19, p 685–696.
8.
Zurück zum Zitat L. Liu, S. Yu, G. Song, and C. Hu, Analysis of Arc Stability and Bead Forming with High-Speed TW-GIA Welding, J. Manuf. Process., 2019, 46, p 67–76.CrossRef L. Liu, S. Yu, G. Song, and C. Hu, Analysis of Arc Stability and Bead Forming with High-Speed TW-GIA Welding, J. Manuf. Process., 2019, 46, p 67–76.CrossRef
9.
Zurück zum Zitat Y. Miao, Z. Wang, J. Liu, Y. Wu, Y. Zhao, and C. Li, Effects of Bypass-Current and Outer Plasma Current on the Arc Stability and Melt Pool Behaviors During Plasma-MIG Hybrid Arc Welding, J. Manuf. Process., 2022, 82, p 415–424.CrossRef Y. Miao, Z. Wang, J. Liu, Y. Wu, Y. Zhao, and C. Li, Effects of Bypass-Current and Outer Plasma Current on the Arc Stability and Melt Pool Behaviors During Plasma-MIG Hybrid Arc Welding, J. Manuf. Process., 2022, 82, p 415–424.CrossRef
10.
Zurück zum Zitat S. Moinuddin and A. Sharma, Arc Stability and its Impact on Weld Properties and Microstructure in Anti-Phase Synchronised Synergic-Pulsed Twin-Wire Gas Metal Arc Welding, Mater. Des., 2015, 67, p 293–302.CrossRef S. Moinuddin and A. Sharma, Arc Stability and its Impact on Weld Properties and Microstructure in Anti-Phase Synchronised Synergic-Pulsed Twin-Wire Gas Metal Arc Welding, Mater. Des., 2015, 67, p 293–302.CrossRef
11.
Zurück zum Zitat L. Wang, J. Qiao, L. Zhu, and J. Chen, Effects of Flux Bands on Arc Stability in Flux Bands Constricting Arc Welding, J. Manuf. Process., 2020, 54, p 190–200.CrossRef L. Wang, J. Qiao, L. Zhu, and J. Chen, Effects of Flux Bands on Arc Stability in Flux Bands Constricting Arc Welding, J. Manuf. Process., 2020, 54, p 190–200.CrossRef
12.
Zurück zum Zitat A. Cardoso, E. Assunção, and I. Pires, Study of a Hardfacing Flux-Cored Wire for Arc Directed Energy Deposition Applications, Int. J. Adv. Manuf. Technol., 2022, 118, p 3431–3442.CrossRef A. Cardoso, E. Assunção, and I. Pires, Study of a Hardfacing Flux-Cored Wire for Arc Directed Energy Deposition Applications, Int. J. Adv. Manuf. Technol., 2022, 118, p 3431–3442.CrossRef
13.
Zurück zum Zitat V. Golovko, O. Kotelchuk, S. Naumeiko, and A. Golykevich, Development of Self-Shielded Flux-Cored Wires for Arc Welding of Low-Alloy Steels, Defect Diffus. Forum, 2022, 416, p 103–114.CrossRef V. Golovko, O. Kotelchuk, S. Naumeiko, and A. Golykevich, Development of Self-Shielded Flux-Cored Wires for Arc Welding of Low-Alloy Steels, Defect Diffus. Forum, 2022, 416, p 103–114.CrossRef
14.
Zurück zum Zitat E. Yamamoto, K. Yamazaki, K. Suzuki, and F. Koshiishi, Effect of Flux Ratio in Flux-Cored Wire on Wire Melting Behaviour and Fume Emission Rate, Weld. World, 2010, 54, p R154–R159.CrossRef E. Yamamoto, K. Yamazaki, K. Suzuki, and F. Koshiishi, Effect of Flux Ratio in Flux-Cored Wire on Wire Melting Behaviour and Fume Emission Rate, Weld. World, 2010, 54, p R154–R159.CrossRef
15.
Zurück zum Zitat H. Li, D. Liu, Y. Yan, N. Guo, and J. Feng, Microstructural Characteristics and Mechanical Properties of Underwater Wet Flux-Cored Wire Welded 316L Stainless Steel Joints, J. Mater. Process. Technol., 2016, 238, p 423–430.CrossRef H. Li, D. Liu, Y. Yan, N. Guo, and J. Feng, Microstructural Characteristics and Mechanical Properties of Underwater Wet Flux-Cored Wire Welded 316L Stainless Steel Joints, J. Mater. Process. Technol., 2016, 238, p 423–430.CrossRef
16.
Zurück zum Zitat K. Wang, Q. Lu, Z. Jiang, Y. Yi, J. Yi, B. Niu, J. Ma, and H. Hu, Effect of Rare-Earth Elements on the Corrosion Resistance of Flux-Cored Arc-Welded Metal with 10CrNi3MoV Steel, Int. J. Corros., 2018, 2018, p 4071352.CrossRef K. Wang, Q. Lu, Z. Jiang, Y. Yi, J. Yi, B. Niu, J. Ma, and H. Hu, Effect of Rare-Earth Elements on the Corrosion Resistance of Flux-Cored Arc-Welded Metal with 10CrNi3MoV Steel, Int. J. Corros., 2018, 2018, p 4071352.CrossRef
17.
Zurück zum Zitat Y. Zhang, S. Wu, and F. Cheng, A Specially-Designed Super Duplex Stainless Steel with Balanced Ferrite: Austenite Ratio Fabricated via Flux-Cored Wire Arc Additive Manufacturing: Microstructure Evolution, Mechanical Properties and Corrosion Resistance, Mater. Sci. Eng., A, 2022, 854, p 143809.CrossRef Y. Zhang, S. Wu, and F. Cheng, A Specially-Designed Super Duplex Stainless Steel with Balanced Ferrite: Austenite Ratio Fabricated via Flux-Cored Wire Arc Additive Manufacturing: Microstructure Evolution, Mechanical Properties and Corrosion Resistance, Mater. Sci. Eng., A, 2022, 854, p 143809.CrossRef
18.
Zurück zum Zitat M. Zhang, S. Xu, Q. Chu, B. Wang, L. Zhang, X. He, X. Tong, and L. Zhang, Flux-Cored Wire for Arc Additive Manufacturing of Alloy Steel: Effect of Inclusion Particles on Microstructure and Properties, J. Mater. Eng. Perform., 2022, 31, p 8955–8966.CrossRef M. Zhang, S. Xu, Q. Chu, B. Wang, L. Zhang, X. He, X. Tong, and L. Zhang, Flux-Cored Wire for Arc Additive Manufacturing of Alloy Steel: Effect of Inclusion Particles on Microstructure and Properties, J. Mater. Eng. Perform., 2022, 31, p 8955–8966.CrossRef
19.
Zurück zum Zitat B. Trembach, A. Grin, N. Makarenko, S. Zharikov, I. Trembach, and O. Markov, Influence of the Core Filler Composition on the Recovery of Alloying Elements During the Self-Shielded Flux-Cored Arc Welding, J. Market. Res., 2020, 9(5), p 10520–10528. B. Trembach, A. Grin, N. Makarenko, S. Zharikov, I. Trembach, and O. Markov, Influence of the Core Filler Composition on the Recovery of Alloying Elements During the Self-Shielded Flux-Cored Arc Welding, J. Market. Res., 2020, 9(5), p 10520–10528.
20.
Zurück zum Zitat H. Zeng, C. Wang, X. Yang, X. Wang, and R. Liu, Automatic Welding Technologies for Long-Distance Pipelines by Use of All-Position Self-Shielded Flux Cored Wires, Natl. Gas Ind. B., 2014, 1(1), p 113–118.CrossRef H. Zeng, C. Wang, X. Yang, X. Wang, and R. Liu, Automatic Welding Technologies for Long-Distance Pipelines by Use of All-Position Self-Shielded Flux Cored Wires, Natl. Gas Ind. B., 2014, 1(1), p 113–118.CrossRef
21.
Zurück zum Zitat Q. Ma, H. Li, S. Liu, D. Liu, P. Wang, Q. Zhu, and Y. Lei, Comparative Evaluation of Self-Shielded Flux-Cored Wires Designed for High Strength Low Alloy Steel in Underwater Wet Welding: Arc Stability, Slag Characteristics, and Joints’ Quality, J. Mater. Eng. Perform., 2022, 31, p 5231–5244.CrossRef Q. Ma, H. Li, S. Liu, D. Liu, P. Wang, Q. Zhu, and Y. Lei, Comparative Evaluation of Self-Shielded Flux-Cored Wires Designed for High Strength Low Alloy Steel in Underwater Wet Welding: Arc Stability, Slag Characteristics, and Joints’ Quality, J. Mater. Eng. Perform., 2022, 31, p 5231–5244.CrossRef
22.
Zurück zum Zitat D. Liu, P. Wei, W. Long, Y. Wu, and W. Huang, Narrow Gap Space Contributes to Chemical Metallurgy of Self-Shielded Arc Welding, China Weld. (Eng. Ed.), 2021, 30(3), p 12–19. D. Liu, P. Wei, W. Long, Y. Wu, and W. Huang, Narrow Gap Space Contributes to Chemical Metallurgy of Self-Shielded Arc Welding, China Weld. (Eng. Ed.), 2021, 30(3), p 12–19.
23.
Zurück zum Zitat Y. Meng, M. Gong, S. Zhang, Y. Zhang, and M. Gao, Effects of Oscillating Laser Offset on Microstructure and Properties of Dissimilar Al/Steel Butt-Joint, Opt. Lasers Eng., 2020, 128, p 106037.CrossRef Y. Meng, M. Gong, S. Zhang, Y. Zhang, and M. Gao, Effects of Oscillating Laser Offset on Microstructure and Properties of Dissimilar Al/Steel Butt-Joint, Opt. Lasers Eng., 2020, 128, p 106037.CrossRef
24.
Zurück zum Zitat C. Chen, Y. Xiang, and M. Gao, Weld Formation Mechanism of Fiber Laser Oscillating Welding of Dissimilar Aluminum Alloys, J. Manuf. Process., 2020, 60, p 180–187.CrossRef C. Chen, Y. Xiang, and M. Gao, Weld Formation Mechanism of Fiber Laser Oscillating Welding of Dissimilar Aluminum Alloys, J. Manuf. Process., 2020, 60, p 180–187.CrossRef
25.
Zurück zum Zitat D. Raj, R. Singari, and M. Vipin, Study and Analyses of Arc Length Correction and Mechanical Properties on Weld Bead Geometry for AA6061T6 by CMT Process, Mater. Today Proc., 2022, 56(6), p 3475–3483.CrossRef D. Raj, R. Singari, and M. Vipin, Study and Analyses of Arc Length Correction and Mechanical Properties on Weld Bead Geometry for AA6061T6 by CMT Process, Mater. Today Proc., 2022, 56(6), p 3475–3483.CrossRef
26.
Zurück zum Zitat T. Lee, M. Kang, J. Oh, and D. Kam, Deposition Quality and Efficiency Improvement Method for Additive Manufacturing of Ti-6Al-4V Using Gas Metal Arc with CMT, J. Mater. Proc. Technol., 2022, 308, p 117720.CrossRef T. Lee, M. Kang, J. Oh, and D. Kam, Deposition Quality and Efficiency Improvement Method for Additive Manufacturing of Ti-6Al-4V Using Gas Metal Arc with CMT, J. Mater. Proc. Technol., 2022, 308, p 117720.CrossRef
27.
Zurück zum Zitat S. Zhou, H. Xie, J. Ni, G. Yang, L. Qin, and X. Guo, Metal transfer behavior during CMT-based Wire Arc Additive Manufacturing of Ti-6Al-4V alloy, J. Mater. Process. Technol., 2022, 82, p 159–173. S. Zhou, H. Xie, J. Ni, G. Yang, L. Qin, and X. Guo, Metal transfer behavior during CMT-based Wire Arc Additive Manufacturing of Ti-6Al-4V alloy, J. Mater. Process. Technol., 2022, 82, p 159–173.
28.
Zurück zum Zitat B. Li, Z. Lei, S. Wu, Y. Chen, Y. Che, and Y. Xiong, Effect of Powder Feeding Mode on the Stability and Nitrogen Distribution of High Nitrogen Steel Welding Process, J. Mater. Process. Technol., 2020, 291, p 117002.CrossRef B. Li, Z. Lei, S. Wu, Y. Chen, Y. Che, and Y. Xiong, Effect of Powder Feeding Mode on the Stability and Nitrogen Distribution of High Nitrogen Steel Welding Process, J. Mater. Process. Technol., 2020, 291, p 117002.CrossRef
29.
Zurück zum Zitat X. Hao and G. Song, Spectral Analysis of the Plasma in Low-Power Laser/Arc Hybrid Welding of Magnesium Alloy, IEEE Trans. Plasma Sci., 2009, 37(1), p 76–82.ADSCrossRef X. Hao and G. Song, Spectral Analysis of the Plasma in Low-Power Laser/Arc Hybrid Welding of Magnesium Alloy, IEEE Trans. Plasma Sci., 2009, 37(1), p 76–82.ADSCrossRef
30.
Zurück zum Zitat C. Zhang, M. Gao, C. Chen, and X. Zeng, Spectral Diagnosis of Wire Arc Additive Manufacturing of Al Alloys, Addit. Manuf., 2019, 30, p 100869. C. Zhang, M. Gao, C. Chen, and X. Zeng, Spectral Diagnosis of Wire Arc Additive Manufacturing of Al Alloys, Addit. Manuf., 2019, 30, p 100869.
31.
Zurück zum Zitat L. Wang, J. Shen, and N. Xu, Effects of TiO2 Coating on the Microstructures and Mechanical Properties of Tungsten Inert Gas Welded AZ31 Magnesium Alloy Joints, Mater. Sci. Eng. A, 2011, 528(24), p 7276–7284.CrossRef L. Wang, J. Shen, and N. Xu, Effects of TiO2 Coating on the Microstructures and Mechanical Properties of Tungsten Inert Gas Welded AZ31 Magnesium Alloy Joints, Mater. Sci. Eng. A, 2011, 528(24), p 7276–7284.CrossRef
32.
Zurück zum Zitat J. Zhang, T. Coetsee, H. Dong, and C. Wang, Element Transfer Behaviors of Fused CaF2-TiO2 Fluxes in EH36 Shipbuilding Steel During High Heat Input Submerged Arc Welding, Metall. and Mater. Trans. B., 2020, 51, p 1953–1957.ADSCrossRef J. Zhang, T. Coetsee, H. Dong, and C. Wang, Element Transfer Behaviors of Fused CaF2-TiO2 Fluxes in EH36 Shipbuilding Steel During High Heat Input Submerged Arc Welding, Metall. and Mater. Trans. B., 2020, 51, p 1953–1957.ADSCrossRef
33.
Zurück zum Zitat S. Chung and I. Sohn, Fundamentals of Hydrogen Dissolution in Novel Calcium-Aluminate Welding Fluxes Containing FeOt and NaF for Advanced High Strength Steels, Int. J. Hydrog. Energy, 2014, 39(32), p 18490–18497.CrossRef S. Chung and I. Sohn, Fundamentals of Hydrogen Dissolution in Novel Calcium-Aluminate Welding Fluxes Containing FeOt and NaF for Advanced High Strength Steels, Int. J. Hydrog. Energy, 2014, 39(32), p 18490–18497.CrossRef
34.
Zurück zum Zitat D. Yan, L. Mei, P. Li, Z. Lei, S. Xie, W. Yin, and Z. Wang, Effects of Different Active Fluxes on the Molten Pool Behaviors of Laser-Welded Thick Stainless Steel Plates, J. Laser Appl., 2021, 33, p 022019.ADSCrossRef D. Yan, L. Mei, P. Li, Z. Lei, S. Xie, W. Yin, and Z. Wang, Effects of Different Active Fluxes on the Molten Pool Behaviors of Laser-Welded Thick Stainless Steel Plates, J. Laser Appl., 2021, 33, p 022019.ADSCrossRef
35.
Zurück zum Zitat G. Li, C. Zhang, M. Gao, and X. Zeng, Role of Arc Mode in Laser-Metal Active Gas Arc Hybrid Welding of Mild Steel, Mater. Des., 2014, 61, p 239–250.CrossRef G. Li, C. Zhang, M. Gao, and X. Zeng, Role of Arc Mode in Laser-Metal Active Gas Arc Hybrid Welding of Mild Steel, Mater. Des., 2014, 61, p 239–250.CrossRef
36.
Zurück zum Zitat M. Gao, Y. Zhang, and Y. Meng, Interface Homogenization and its Relationship with Tensile Properties of Laser-Arc Hybrid Welded Al/Steel Butt-Joint via Beam Oscillation, J. Mater. Sci., 2021, 56, p 14126–14138.ADSCrossRef M. Gao, Y. Zhang, and Y. Meng, Interface Homogenization and its Relationship with Tensile Properties of Laser-Arc Hybrid Welded Al/Steel Butt-Joint via Beam Oscillation, J. Mater. Sci., 2021, 56, p 14126–14138.ADSCrossRef
37.
Zurück zum Zitat Y. Meng, G. Li, M. Gao, C. Zhang, and X. Zeng, Formation and Suppression Mechanism of Lack of Fusion in Narrow Gap Laser-Arc Hybrid Welding, Int. J. Adv. Manuf. Technol., 2019, 100, p 2299–2309.CrossRef Y. Meng, G. Li, M. Gao, C. Zhang, and X. Zeng, Formation and Suppression Mechanism of Lack of Fusion in Narrow Gap Laser-Arc Hybrid Welding, Int. J. Adv. Manuf. Technol., 2019, 100, p 2299–2309.CrossRef
Metadaten
Titel
Parameter Optimization and Mechanism of Synchronous Wire-Powder Arc Melting Deposition of Aluminum Alloy
verfasst von
Yunfei Meng
Zeyu Li
Ming Gao
Hui Chen
Chen Zhang
Publikationsdatum
31.03.2023
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2024
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08138-3

Weitere Artikel der Ausgabe 5/2024

Journal of Materials Engineering and Performance 5/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.