Skip to main content
Erschienen in: Microsystem Technologies 5/2018

11.01.2017 | Technical Paper

Piezoelectric energy harvester using impact-driven flexible side-walls for human-limb motion

verfasst von: Miah Abdul Halim, Jae Yeong Park

Erschienen in: Microsystem Technologies | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a human-limb driven piezoelectric energy harvester using two mass-loaded unimorph piezoelectric beams clamped on two flexible sidewalls. Since vibration generated by human-limb motion has low-frequency and high amplitude characteristics, the energy harvester has been designed to up-convert the low-frequency human-limb vibration by mechanical impact of a spring less spherical metallic ball. However, instead of direct mechanical impact on the power generating elements (unimorph piezoelectric beams), the ball impacts on the bases (flexible sidewalls) of each beam to avoid mechanical wear of the piezo-materials. While excited by human-limb motion, the ball impacts consecutively on the flexible sidewalls which transfer impulsive forces to the loaded mass of the respective unimorph beam. The beam vibrates at its own resonant frequency and causes voltage generation by virtue of piezoelectric effect. A proof-of-concept prototype has been fabricated and tested. At optimum load condition, each unimorph piezoelectric generator generates 96 µW average power while excited at 4.96 Hz frequency and ~2g acceleration. The device with series connected generators is capable of generating maximum 175 µW average power. Improved design and further optimization would be able to increase its power generation capability (as well as power density) to be used in wearable devices applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1–R21CrossRef Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1–R21CrossRef
Zurück zum Zitat Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:R175–R195CrossRef Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:R175–R195CrossRef
Zurück zum Zitat Cartmell M (1990) Introduction to linear, parametric and nonlinear vibrations. Chapman and Hall, LondonMATH Cartmell M (1990) Introduction to linear, parametric and nonlinear vibrations. Chapman and Hall, LondonMATH
Zurück zum Zitat Galchev T, Kim H, Najafi K (2011) Micro power generator for harvesting low-frequency and nonperiodic vibrations. J Microelectromech Syst 20:852–866 Galchev T, Kim H, Najafi K (2011) Micro power generator for harvesting low-frequency and nonperiodic vibrations. J Microelectromech Syst 20:852–866
Zurück zum Zitat Gu L, Livermore C (2011) Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation. Smart Mater Struct 20:045004CrossRef Gu L, Livermore C (2011) Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation. Smart Mater Struct 20:045004CrossRef
Zurück zum Zitat Halim MA, Park JY (2014a) Theoretical modeling and analysis of mechanical impact driven and frequency up-converted piezoelectric energy harvester for low-frequency and wide-bandwidth operation. Sens Actuators A 208:56–65CrossRef Halim MA, Park JY (2014a) Theoretical modeling and analysis of mechanical impact driven and frequency up-converted piezoelectric energy harvester for low-frequency and wide-bandwidth operation. Sens Actuators A 208:56–65CrossRef
Zurück zum Zitat Halim MA, Park JY (2014b) A non-resonant, frequency up-converted electromagnetic energy harvester from human-body-induced vibration for hand-held smart system applications. J Appl Phys 115:094901CrossRef Halim MA, Park JY (2014b) A non-resonant, frequency up-converted electromagnetic energy harvester from human-body-induced vibration for hand-held smart system applications. J Appl Phys 115:094901CrossRef
Zurück zum Zitat Halim MA, Park JY (2015) Modeling and experiment of a handy motion driven, frequency up-converting electromagnetic energy harvester using transverse impact by spherical ball. Sens Actuators A 229:50–58CrossRef Halim MA, Park JY (2015) Modeling and experiment of a handy motion driven, frequency up-converting electromagnetic energy harvester using transverse impact by spherical ball. Sens Actuators A 229:50–58CrossRef
Zurück zum Zitat Halim MA, Cho HO, Park JY (2014) A handy-motion driven, frequency up-converted hybrid vibration energy harvester using PZT bimorph and non-magnetic ball. J Phys Conf Ser 557:012042CrossRef Halim MA, Cho HO, Park JY (2014) A handy-motion driven, frequency up-converted hybrid vibration energy harvester using PZT bimorph and non-magnetic ball. J Phys Conf Ser 557:012042CrossRef
Zurück zum Zitat Halim MA, Cho H, Park JY (2015) Design and experiment of a human-limb driven, frequency up-converted electromagnetic energy harvester. Energy Convers Manag 106:393–404CrossRef Halim MA, Cho H, Park JY (2015) Design and experiment of a human-limb driven, frequency up-converted electromagnetic energy harvester. Energy Convers Manag 106:393–404CrossRef
Zurück zum Zitat Harne RL, Wang KW (2013) A review of the recent research on vibration energy harvesting via bi-stable systems. Smart Mater Struct 22:023001CrossRef Harne RL, Wang KW (2013) A review of the recent research on vibration energy harvesting via bi-stable systems. Smart Mater Struct 22:023001CrossRef
Zurück zum Zitat Ju S, Chae SH, Choi Y, Lee S, Lee HW, Ji C-H (2013) A low frequency vibration energy harvester using magnetoelectric laminate composite. Smart Mater Struct 22:115037CrossRef Ju S, Chae SH, Choi Y, Lee S, Lee HW, Ji C-H (2013) A low frequency vibration energy harvester using magnetoelectric laminate composite. Smart Mater Struct 22:115037CrossRef
Zurück zum Zitat Jung S-M, Yun K-S (2010) Energy-harvesting device with mechanical frequency up-conversion mechanism for increased power efficiency and wideband operation. Appl Phys Lett 96:111906CrossRef Jung S-M, Yun K-S (2010) Energy-harvesting device with mechanical frequency up-conversion mechanism for increased power efficiency and wideband operation. Appl Phys Lett 96:111906CrossRef
Zurück zum Zitat Kulah H, Najafi K (2008) Energy scavenging from low frequency vibrations by using frequency up-conversion for wireless sensor applications. IEEE Sens J 8:261–268CrossRef Kulah H, Najafi K (2008) Energy scavenging from low frequency vibrations by using frequency up-conversion for wireless sensor applications. IEEE Sens J 8:261–268CrossRef
Zurück zum Zitat Mitcheson PD, Yeatman EM, Rao GK, Holmes AS, Green TC (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96:1457–1486CrossRef Mitcheson PD, Yeatman EM, Rao GK, Holmes AS, Green TC (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96:1457–1486CrossRef
Zurück zum Zitat Pillatsch P, Yeatman EM, Holmes AS (2014) A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications. Sens Actuators A 206:178–185CrossRef Pillatsch P, Yeatman EM, Holmes AS (2014) A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications. Sens Actuators A 206:178–185CrossRef
Zurück zum Zitat Pozzi M, Zhu M (2011) Plucked piezoelectric bimorphs for knee-joint energy harvesting: modeling and experimental validation. Smart Mater Struct 20:055007CrossRef Pozzi M, Zhu M (2011) Plucked piezoelectric bimorphs for knee-joint energy harvesting: modeling and experimental validation. Smart Mater Struct 20:055007CrossRef
Zurück zum Zitat Pozzi M, Aung MSH, Zhu M, Jones RK, Goulermas JY (2012) The pizzicato knee-joint energy harvester: characterization with biomechanical data and the effect of backpack load. Smart Mater Struct 21:075023CrossRef Pozzi M, Aung MSH, Zhu M, Jones RK, Goulermas JY (2012) The pizzicato knee-joint energy harvester: characterization with biomechanical data and the effect of backpack load. Smart Mater Struct 21:075023CrossRef
Zurück zum Zitat Renaud M, Fiorini P, Schaijk R, Hoof C (2009) Harvesting energy from the motion of human limbs: the design and analysis of an impact based piezoelectric generator. Smart Mater Struct 18:035001CrossRef Renaud M, Fiorini P, Schaijk R, Hoof C (2009) Harvesting energy from the motion of human limbs: the design and analysis of an impact based piezoelectric generator. Smart Mater Struct 18:035001CrossRef
Zurück zum Zitat Saadon S, Sidek O (2011) A review of vibration based MEMS piezoelectric energy harvesters. Energy Convers Manag 52:500–504CrossRef Saadon S, Sidek O (2011) A review of vibration based MEMS piezoelectric energy harvesters. Energy Convers Manag 52:500–504CrossRef
Zurück zum Zitat Saha CR, O’Donnell T, Wang N, McCloskey P (2008) Electro-magnetic generator for harvesting energy from human motion. Sens Actuators A 147:248–253CrossRef Saha CR, O’Donnell T, Wang N, McCloskey P (2008) Electro-magnetic generator for harvesting energy from human motion. Sens Actuators A 147:248–253CrossRef
Zurück zum Zitat Thomson W (1998) Theory of vibration with applications. Prentice-Hall, New Jersey Thomson W (1998) Theory of vibration with applications. Prentice-Hall, New Jersey
Zurück zum Zitat Wei S, Hu H, He S (2013) Modeling and experimental investigation of an impact-driven piezoelectric energy harvester from human motion. Smart Mater Struct 22:105020CrossRef Wei S, Hu H, He S (2013) Modeling and experimental investigation of an impact-driven piezoelectric energy harvester from human motion. Smart Mater Struct 22:105020CrossRef
Zurück zum Zitat Williams CB, Yates RB (1996) Analysis of a micro-electric generator for microsystems. Sens Actuators A 52:8–11CrossRef Williams CB, Yates RB (1996) Analysis of a micro-electric generator for microsystems. Sens Actuators A 52:8–11CrossRef
Zurück zum Zitat Xie L, Cai M (2014) Increased piezoelectric energy harvesting from human footstep motion by using an amplification mechanism. Appl Phys Lett 105:143901CrossRef Xie L, Cai M (2014) Increased piezoelectric energy harvesting from human footstep motion by using an amplification mechanism. Appl Phys Lett 105:143901CrossRef
Zurück zum Zitat Ylli K, Hoffmann D, Willmann A, Becker P, Folkmer B, Manoli Y (2015) Energy harvesting from human motion: exploiting swing and shock excitations. Smart Mater Struct 24:025029CrossRef Ylli K, Hoffmann D, Willmann A, Becker P, Folkmer B, Manoli Y (2015) Energy harvesting from human motion: exploiting swing and shock excitations. Smart Mater Struct 24:025029CrossRef
Zurück zum Zitat Zorlu O, Topal ET, Kulah H (2011) A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. IEEE Sens J 11:481–488CrossRef Zorlu O, Topal ET, Kulah H (2011) A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. IEEE Sens J 11:481–488CrossRef
Metadaten
Titel
Piezoelectric energy harvester using impact-driven flexible side-walls for human-limb motion
verfasst von
Miah Abdul Halim
Jae Yeong Park
Publikationsdatum
11.01.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 5/2018
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-3268-6

Weitere Artikel der Ausgabe 5/2018

Microsystem Technologies 5/2018 Zur Ausgabe

Neuer Inhalt