Skip to main content
Erschienen in: Microsystem Technologies 5/2018

20.12.2017 | Technical Paper

Sensitivity analysis of an in-plane MEMS vibratory gyroscope

verfasst von: P. Krishna Menon, Jagannath Nayak, Rudra Pratap

Erschienen in: Microsystem Technologies | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper aims to put forward a detailed sensitivity analysis of an in-plane MEMS gyroscope with respect to various performance criteria that are very critical for use of the sensor in different applications ranging from platform stabilization to micro UAVs. Sensitivity analysis involves selecting key design parameters and critical performance criteria and studying the effect of variation of each design parameter on each of the performance criteria. The five key design parameters of the MEMS gyro are the drive stiffness k d , sense stiffness k s , drive mass m d , sense mass m s and the sense damping coefficient C s . The four critical gyro performance criteria selected are scale factor, bandwidth, resolution and dynamic range. The influence of variations in different geometric dimensions of the structure on the design parameters of the gyro is also established. The critical geometric dimensions are identified that are then suitably modified allowing faster convergence of the design to meet the desired performance specifications. This study is relevant on two counts (1) the fine tuning of the design to meet all the desired performance criteria with minimum variation in geometric dimensions and with no change in the footprint of the sensor die and (2) the influence of geometric dimensional variations induced during the fabrication of the MEMS gyro structure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Acar C, Shkel AM (2005) An approach for increasing drive-mode bandwidth of MEMS vibratory gyroscopes. JMEMS 14(3):520–528 Acar C, Shkel AM (2005) An approach for increasing drive-mode bandwidth of MEMS vibratory gyroscopes. JMEMS 14(3):520–528
Zurück zum Zitat Acar C, Shkel A (2009) MEMS vibratory gyroscopes—structural approaches to improve robustness. Springer, ISBN 978-0-387-09535-6 Acar C, Shkel A (2009) MEMS vibratory gyroscopes—structural approaches to improve robustness. Springer, ISBN 978-0-387-09535-6
Zurück zum Zitat Adamst S, Grovest J, Shawt K, Davist T, Cardareli D, Carroll R, Walsh J, Fontanella M (1999) A single-crystal silicon gyroscope with decoupled drive and sense. SPIE 3876:74–83 Adamst S, Grovest J, Shawt K, Davist T, Cardareli D, Carroll R, Walsh J, Fontanella M (1999) A single-crystal silicon gyroscope with decoupled drive and sense. SPIE 3876:74–83
Zurück zum Zitat Alper SE, Azgin K, Akin T (2007) A high-performance silicon-on-insulator MEMS gyroscope operating at atmospheric pressure. Sens Actuators A 135:34–42CrossRef Alper SE, Azgin K, Akin T (2007) A high-performance silicon-on-insulator MEMS gyroscope operating at atmospheric pressure. Sens Actuators A 135:34–42CrossRef
Zurück zum Zitat Apostolyuk V (2006) Theory and design of micromechanical vibratory gyroscopes. MEMS/NEMS handbook—techniques and applications, pp 173–195 Apostolyuk V (2006) Theory and design of micromechanical vibratory gyroscopes. MEMS/NEMS handbook—techniques and applications, pp 173–195
Zurück zum Zitat Bao M-H (2000) Micromachined transducers – pressure sensors, accelerometers and gyroscopes. Handbook of sensors and actuators, p 8 Bao M-H (2000) Micromachined transducers – pressure sensors, accelerometers and gyroscopes. Handbook of sensors and actuators, p 8
Zurück zum Zitat Bernstein J, Cho S, King AT, Kourepenis A, Maciel P, Weinberg M (1993) A micromachined comb-drive tuning fork rate gyroscope. IEEE, pp 143–148 Bernstein J, Cho S, King AT, Kourepenis A, Maciel P, Weinberg M (1993) A micromachined comb-drive tuning fork rate gyroscope. IEEE, pp 143–148
Zurück zum Zitat Blom FR, Bouwstra S, Elwenspoek M, Fluitman JHJ (1992) Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry. J Vac Sci Technol 10:19–26CrossRef Blom FR, Bouwstra S, Elwenspoek M, Fluitman JHJ (1992) Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry. J Vac Sci Technol 10:19–26CrossRef
Zurück zum Zitat Chang H, Zhang Y, Xie J, Zhou Z, Yuan W (2010) Integrated behavior simulation and verification for a MEMS vibratory gyroscope using parametric model order reduction. JMEMS 19(2):282–293 Chang H, Zhang Y, Xie J, Zhou Z, Yuan W (2010) Integrated behavior simulation and verification for a MEMS vibratory gyroscope using parametric model order reduction. JMEMS 19(2):282–293
Zurück zum Zitat Coventor Inc (2015) Coventorware analyzer version 10 field solver reference Coventor Inc (2015) Coventorware analyzer version 10 field solver reference
Zurück zum Zitat Dong H, Xiong X (2009) Design and analysis of a MEMS comb vibratory gyroscope, UB-NE ASEE 2009 conference Dong H, Xiong X (2009) Design and analysis of a MEMS comb vibratory gyroscope, UB-NE ASEE 2009 conference
Zurück zum Zitat Ferguson MI, Keymeulen D, Peay C, Yee K (2005) Effect of temperature on MEMS vibratory rate gyroscope. IEEE, pp 1–6 Ferguson MI, Keymeulen D, Peay C, Yee K (2005) Effect of temperature on MEMS vibratory rate gyroscope. IEEE, pp 1–6
Zurück zum Zitat Geiger W, Folkmer B, Merz J, Sandmaier H, Lang W (1999) A new silicon rate gyroscope. Sens Actuators 73:45–51CrossRef Geiger W, Folkmer B, Merz J, Sandmaier H, Lang W (1999) A new silicon rate gyroscope. Sens Actuators 73:45–51CrossRef
Zurück zum Zitat Hopcroft MA, Nix WD, Kenny TW (2010) What is the Young’s modulus of silicon? JMEMS 19(2):229–238 Hopcroft MA, Nix WD, Kenny TW (2010) What is the Young’s modulus of silicon? JMEMS 19(2):229–238
Zurück zum Zitat Kawai H, Atsuchi K-I, Tamura M, Ohwada K (2001) High-resolution microgyroscope using vibratory motion adjustment technology. Sens Actuators A 90:153–159CrossRef Kawai H, Atsuchi K-I, Tamura M, Ohwada K (2001) High-resolution microgyroscope using vibratory motion adjustment technology. Sens Actuators A 90:153–159CrossRef
Zurück zum Zitat Mochida Y, Tamura M, Ohwada K (2000) A micromachined vibrating rate gyroscope with independent beams for the drive and detection modes. Sens Actuators 80:170–178CrossRef Mochida Y, Tamura M, Ohwada K (2000) A micromachined vibrating rate gyroscope with independent beams for the drive and detection modes. Sens Actuators 80:170–178CrossRef
Zurück zum Zitat Park KY, Lee CW, Oh YS, Cho YH (1997) Laterally oscillated and force-balanced micro vibratory rate gyroscope supported by fish hook shape springs. IEEE, pp 494–499 Park KY, Lee CW, Oh YS, Cho YH (1997) Laterally oscillated and force-balanced micro vibratory rate gyroscope supported by fish hook shape springs. IEEE, pp 494–499
Zurück zum Zitat Prikhodko IP, Zotov SA, Trusov AA, Shkel AM (2011) sub-degree-per-hour silicon MEMS rate sensor with 1 million Q-factor. IEEE, pp 2809–2812 Prikhodko IP, Zotov SA, Trusov AA, Shkel AM (2011) sub-degree-per-hour silicon MEMS rate sensor with 1 million Q-factor. IEEE, pp 2809–2812
Zurück zum Zitat Senturia SD (2001) Microsystem design. Kluwer, Boston Senturia SD (2001) Microsystem design. Kluwer, Boston
Zurück zum Zitat Sharma A, Zaman MF, Zucher M, Ayazi F (2008) A 0.1°/hr bias drift electronically matched tuning fork microgyroscope. IEEE, pp 6–9 Sharma A, Zaman MF, Zucher M, Ayazi F (2008) A 0.1°/hr bias drift electronically matched tuning fork microgyroscope. IEEE, pp 6–9
Zurück zum Zitat Tanaka K, Mochida Y, Sugimoto M, Moriya K, Hasegawa T, Atsuchi K, Ohwada K (1995) A micromachined vibrating gyroscope. Sens Actuators A 50:111–115CrossRef Tanaka K, Mochida Y, Sugimoto M, Moriya K, Hasegawa T, Atsuchi K, Ohwada K (1995) A micromachined vibrating gyroscope. Sens Actuators A 50:111–115CrossRef
Zurück zum Zitat Tatar E, Alper SE, Akin T (2012) Quadrature-error compensation and corresponding effects on the performance of fully decoupled MEMS gyroscopes. JMEMS 21(3):656–667 Tatar E, Alper SE, Akin T (2012) Quadrature-error compensation and corresponding effects on the performance of fully decoupled MEMS gyroscopes. JMEMS 21(3):656–667
Zurück zum Zitat Tatar E, Mukherjee T, Fedder GK (2014) Simulation of stress effects on mode-matched MEMS gyroscope bias and scale factor. IEEE, pp 16–20 Tatar E, Mukherjee T, Fedder GK (2014) Simulation of stress effects on mode-matched MEMS gyroscope bias and scale factor. IEEE, pp 16–20
Zurück zum Zitat Weber M, Bellrichard M, Kennedy C (2004) High angular rate and high G effects in the MEMS gyro. Coventor website (online) Weber M, Bellrichard M, Kennedy C (2004) High angular rate and high G effects in the MEMS gyro. Coventor website (online)
Zurück zum Zitat Yoon S, Park U, Rhim J, Yang SS (2015) Tactical grade MEMS vibrating ring gyroscope with high shock reliability. Microelectron Eng 142:22–29CrossRef Yoon S, Park U, Rhim J, Yang SS (2015) Tactical grade MEMS vibrating ring gyroscope with high shock reliability. Microelectron Eng 142:22–29CrossRef
Metadaten
Titel
Sensitivity analysis of an in-plane MEMS vibratory gyroscope
verfasst von
P. Krishna Menon
Jagannath Nayak
Rudra Pratap
Publikationsdatum
20.12.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 5/2018
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-017-3666-4

Weitere Artikel der Ausgabe 5/2018

Microsystem Technologies 5/2018 Zur Ausgabe