Skip to main content
Erschienen in: Polymer Bulletin 6/2020

29.07.2019 | Original Paper

Poly(N-vinylpyrrolidone)-stabilized colloidal graphene-reinforced poly(ethylene-co-methyl acrylate) to mitigate electromagnetic radiation pollution

verfasst von: Sayan Ganguly, Sabyasachi Ghosh, Poushali Das, Tushar Kanti Das, Suman Kumar Ghosh, Narayan Chandra Das

Erschienen in: Polymer Bulletin | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electrically conducting flexible polymeric nanocomposite has been fabricated through wet mixing method where conducting inclusion was acoustically exfoliated pristine graphene nanosheets. Colloidal graphene is the key component here which has been prepared by acoustic cavitation in the presence of macromolecular dispersion. The significance of the method is their green preparation strategy without using any chemical reducing agents and long self-life without drastic sedimentation rate. Thermoplastic poly(ethylene-co-methyl acrylate) was chosen as flexible phase where graphene sheets were distributed to make spatial conducting network architecture. The prepared nanocomposites showed 0.259 S/cm DC electrical conductivity and frequency-independent electroconducting character in higher concentration. The electromagnetic interference shielding effectiveness of the nanocomposites was around 30 dB in ~ 1.0 mm thickness in X-band (8.2–12.4 GHz) frequency range without affecting its mechanical toughness and flexibility. Thus, such pristine graphene-based thermoplastic matrix could be a desirable replacement of metallic shielding materials on the ground of flexible, conducting, lightweight characteristics.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen Z, Xu C, Ma C, Ren W, Cheng HM (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25(9):1296–1300PubMed Chen Z, Xu C, Ma C, Ren W, Cheng HM (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25(9):1296–1300PubMed
2.
Zurück zum Zitat Yu M, Liu P, Zhang S, Liu J, An J, Li S (2012) Preparation of graphene–Ag composites and their application for electrochemical detection of chloride. Mater Res Bull 47(11):3206–3210 Yu M, Liu P, Zhang S, Liu J, An J, Li S (2012) Preparation of graphene–Ag composites and their application for electrochemical detection of chloride. Mater Res Bull 47(11):3206–3210
3.
Zurück zum Zitat Ganguly S, Bhawal P, Ravindren R, Das NC (2018) Polymer nanocomposites for electromagnetic interference shielding: a review. J Nanosci Nanotechnol 18(11):7641–7669 Ganguly S, Bhawal P, Ravindren R, Das NC (2018) Polymer nanocomposites for electromagnetic interference shielding: a review. J Nanosci Nanotechnol 18(11):7641–7669
4.
Zurück zum Zitat Liang J, Wang Y, Huang Y, Ma Y, Liu Z, Cai J, Zhang C, Gao H, Chen Y (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47(3):922–925 Liang J, Wang Y, Huang Y, Ma Y, Liu Z, Cai J, Zhang C, Gao H, Chen Y (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47(3):922–925
5.
Zurück zum Zitat Kim H, Kim K, Lee S, Joo J, Yoon H, Cho S, Lyu S, Lee CJ (2004) Charge transport properties of composites of multiwalled carbon nanotube with metal catalyst and polymer: application to electromagnetic interference shielding. Curr Appl Phys 4(6):577–580 Kim H, Kim K, Lee S, Joo J, Yoon H, Cho S, Lyu S, Lee CJ (2004) Charge transport properties of composites of multiwalled carbon nanotube with metal catalyst and polymer: application to electromagnetic interference shielding. Curr Appl Phys 4(6):577–580
6.
Zurück zum Zitat Liu P, Huang Y, Zhang X (2015) Synthesis, characterization and excellent electromagnetic wave absorption properties of graphene@ CoFe2O4@ polyaniline nanocomposites. Synth Met 201:76–81 Liu P, Huang Y, Zhang X (2015) Synthesis, characterization and excellent electromagnetic wave absorption properties of graphene@ CoFe2O4@ polyaniline nanocomposites. Synth Met 201:76–81
7.
Zurück zum Zitat Wang Y, Huang Y, Ding J (2014) Synthesis and enhanced electromagnetic absorption properties of polypyrrole–BaFe12O19/Ni0.8Zn0.2Fe2O4 on graphene nanosheet. Synth Met 196:125–130 Wang Y, Huang Y, Ding J (2014) Synthesis and enhanced electromagnetic absorption properties of polypyrrole–BaFe12O19/Ni0.8Zn0.2Fe2O4 on graphene nanosheet. Synth Met 196:125–130
8.
Zurück zum Zitat Cao W-Q, Wang X-X, Yuan J, Wang W-Z, Cao M-S (2015) Temperature dependent microwave absorption of ultrathin graphene composites. J Mater Chem C 3(38):10017–10022 Cao W-Q, Wang X-X, Yuan J, Wang W-Z, Cao M-S (2015) Temperature dependent microwave absorption of ultrathin graphene composites. J Mater Chem C 3(38):10017–10022
9.
Zurück zum Zitat Lu M, Wang X, Cao W, Yuan J, Cao M (2015) Carbon nanotube-CdS core–shell nanowires with tunable and high-efficiency microwave absorption at elevated temperature. Nanotechnology 27(6):065702PubMed Lu M, Wang X, Cao W, Yuan J, Cao M (2015) Carbon nanotube-CdS core–shell nanowires with tunable and high-efficiency microwave absorption at elevated temperature. Nanotechnology 27(6):065702PubMed
10.
Zurück zum Zitat Ganguly S, Das NC (2019) Rheological Properties of Polymer-Carbon Composites. Carbon-Containing Polymer Composites. Springer, Singapore, pp 271–294 Ganguly S, Das NC (2019) Rheological Properties of Polymer-Carbon Composites. Carbon-Containing Polymer Composites. Springer, Singapore, pp 271–294
11.
Zurück zum Zitat Ganguly S, Das P, Banerjee S, Das NC (2019) Advancement in science and technology of carbon dot-polymer hybrid composites: a review. Funct Compos Struct 1(2):022001 Ganguly S, Das P, Banerjee S, Das NC (2019) Advancement in science and technology of carbon dot-polymer hybrid composites: a review. Funct Compos Struct 1(2):022001
12.
Zurück zum Zitat Das P, Ganguly S, Banerjee S, Das NC (2019) Graphene based emergent nanolights: a short review on the synthesis, properties and application. Res Chem Intermed 45(7):3823–3853 Das P, Ganguly S, Banerjee S, Das NC (2019) Graphene based emergent nanolights: a short review on the synthesis, properties and application. Res Chem Intermed 45(7):3823–3853
13.
Zurück zum Zitat Li P, Du D, Guo L, Guo Y, Ouyang J (2016) Stretchable and conductive polymer films for high-performance electromagnetic interference shielding. J Mater Chem C 4(27):6525–6532 Li P, Du D, Guo L, Guo Y, Ouyang J (2016) Stretchable and conductive polymer films for high-performance electromagnetic interference shielding. J Mater Chem C 4(27):6525–6532
14.
Zurück zum Zitat Ganguly S, Das NC (2016) Chlorosulphonated polyethylene and its composites for electronic applications. Flexible and Stretchable Electronic Composites. Springer, Cham, pp 229–259 Ganguly S, Das NC (2016) Chlorosulphonated polyethylene and its composites for electronic applications. Flexible and Stretchable Electronic Composites. Springer, Cham, pp 229–259
15.
Zurück zum Zitat Ghosh S, Mondal S, Ganguly S, Remanan S, Singha N, Das NC (2018) Carbon nanostructures based mechanically robust conducting cotton fabric for improved electromagnetic interference shielding. Fibers Polym 19(5):1064–1073 Ghosh S, Mondal S, Ganguly S, Remanan S, Singha N, Das NC (2018) Carbon nanostructures based mechanically robust conducting cotton fabric for improved electromagnetic interference shielding. Fibers Polym 19(5):1064–1073
16.
Zurück zum Zitat Ghosh S, Ganguly S, Remanan S, Mondal S, Jana S, Maji PK, Singha N, Das NC (2018) Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials. J Mater Sci: Mater Electron 29:10177–10189 Ghosh S, Ganguly S, Remanan S, Mondal S, Jana S, Maji PK, Singha N, Das NC (2018) Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials. J Mater Sci: Mater Electron 29:10177–10189
17.
Zurück zum Zitat Yuping D, Shunhua L, Hongtao G (2005) Investigation of electrical conductivity and electromagnetic shielding effectiveness of polyaniline composite. Sci Technol Adv Mater 6(5):513–518 Yuping D, Shunhua L, Hongtao G (2005) Investigation of electrical conductivity and electromagnetic shielding effectiveness of polyaniline composite. Sci Technol Adv Mater 6(5):513–518
18.
Zurück zum Zitat Geetha S, Kumar KKS, Trivedi DC (2005) Conducting fabric-reinforced polyaniline film using p-chlorophenol as secondary dopant for the control of electromagnetic radiations. J Compos Mater 39(7):647–658 Geetha S, Kumar KKS, Trivedi DC (2005) Conducting fabric-reinforced polyaniline film using p-chlorophenol as secondary dopant for the control of electromagnetic radiations. J Compos Mater 39(7):647–658
19.
Zurück zum Zitat Niu Y (2006) Preparation of polyaniline/polyacrylate composites and their application for electromagnetic interference shielding. Polym Compos 27(6):627–632 Niu Y (2006) Preparation of polyaniline/polyacrylate composites and their application for electromagnetic interference shielding. Polym Compos 27(6):627–632
20.
Zurück zum Zitat Thomassin J-M, Jérôme C, Pardoen T, Bailly C, Huynen I, Detrembleur C (2013) Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater Sci Eng R: Rep 74(7):211–232 Thomassin J-M, Jérôme C, Pardoen T, Bailly C, Huynen I, Detrembleur C (2013) Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater Sci Eng R: Rep 74(7):211–232
21.
Zurück zum Zitat Kim HK, Kim MS, Chun SY, Park YH, Jeon BS, Lee JY, Hong YK, Joo J, Kim SH (2003) Characteristics of electrically conducting polymer-coated textiles. Mol Cryst Liq Cryst 405(1):161–169 Kim HK, Kim MS, Chun SY, Park YH, Jeon BS, Lee JY, Hong YK, Joo J, Kim SH (2003) Characteristics of electrically conducting polymer-coated textiles. Mol Cryst Liq Cryst 405(1):161–169
22.
Zurück zum Zitat Kim M, Kim H, Byun S, Jeong S, Hong Y, Joo J, Song K, Kim J, Lee C, Lee J (2002) PET fabric/polypyrrole composite with high electrical conductivity for EMI shielding. Synth Met 126(2):233–239 Kim M, Kim H, Byun S, Jeong S, Hong Y, Joo J, Song K, Kim J, Lee C, Lee J (2002) PET fabric/polypyrrole composite with high electrical conductivity for EMI shielding. Synth Met 126(2):233–239
23.
Zurück zum Zitat Taka T (1991) EMI shielding measurements on poly (3-octyl thiophene) blends. Synth Met 41(3):1177–1180 Taka T (1991) EMI shielding measurements on poly (3-octyl thiophene) blends. Synth Met 41(3):1177–1180
24.
Zurück zum Zitat Courric S, Tran V (2000) The electromagnetic properties of blends of poly (p-phenylene-vinylene) derivatives. Polym Adv Technol 11(6):273–279 Courric S, Tran V (2000) The electromagnetic properties of blends of poly (p-phenylene-vinylene) derivatives. Polym Adv Technol 11(6):273–279
25.
Zurück zum Zitat Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett 5(11):2131–2134PubMed Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett 5(11):2131–2134PubMed
26.
Zurück zum Zitat Saini P, Choudhary V, Singh B, Mathur R, Dhawan S (2009) Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113(2):919–926 Saini P, Choudhary V, Singh B, Mathur R, Dhawan S (2009) Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113(2):919–926
27.
Zurück zum Zitat Huang H-D, Liu C-Y, Zhou D, Jiang X, Zhong G-J, Yan D-X, Li Z-M (2015) Cellulose composite aerogel for highly efficient electromagnetic interference shielding. J Mater Chem A 3(9):4983–4991 Huang H-D, Liu C-Y, Zhou D, Jiang X, Zhong G-J, Yan D-X, Li Z-M (2015) Cellulose composite aerogel for highly efficient electromagnetic interference shielding. J Mater Chem A 3(9):4983–4991
28.
Zurück zum Zitat Chen YC, Prokleška J, Xu WJ, Liu JL, Liu J, Zhang WX, Tong ML (2015) A brilliant cryogenic magnetic coolant: magnetic and magnetocaloric study of ferromagnetically coupled GdF 3. J Mater Chem C 3(47):12206–12211 Chen YC, Prokleška J, Xu WJ, Liu JL, Liu J, Zhang WX, Tong ML (2015) A brilliant cryogenic magnetic coolant: magnetic and magnetocaloric study of ferromagnetically coupled GdF 3. J Mater Chem C 3(47):12206–12211
29.
Zurück zum Zitat Hsiao S-T, Ma C-CM, Tien H-W, Liao W-H, Wang Y-S, Li S-M, Huang Y-C (2013) Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 60:57–66 Hsiao S-T, Ma C-CM, Tien H-W, Liao W-H, Wang Y-S, Li S-M, Huang Y-C (2013) Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 60:57–66
30.
Zurück zum Zitat Bhawal P, Das TK, Ganguly S, Mondal S, Das NC (2019) Selective cross-linking of carboxylated acrylonitrile butadiene rubber and study of their technological compatibility with poly (ethylene-co-methyl acrlylate) by means of mechanical, thermal, and chemical analysis. Polym Bull 76(4):1877–1897 Bhawal P, Das TK, Ganguly S, Mondal S, Das NC (2019) Selective cross-linking of carboxylated acrylonitrile butadiene rubber and study of their technological compatibility with poly (ethylene-co-methyl acrlylate) by means of mechanical, thermal, and chemical analysis. Polym Bull 76(4):1877–1897
31.
Zurück zum Zitat Bhawal P, Ganguly S, Das TK, Mondal S, Nayak L, Das NC (2019) A comparative study of physico-mechanical and electrical properties of polymer-carbon nanofiber in wet and melt mixing methods. Mater Sci Eng, B 245:95–106 Bhawal P, Ganguly S, Das TK, Mondal S, Nayak L, Das NC (2019) A comparative study of physico-mechanical and electrical properties of polymer-carbon nanofiber in wet and melt mixing methods. Mater Sci Eng, B 245:95–106
32.
Zurück zum Zitat Neto AC, Guinea F, Peres NM, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109 Neto AC, Guinea F, Peres NM, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109
33.
Zurück zum Zitat CeNeR Rao, AeK Sood, KeS Subrahmanyam, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48(42):7752–7777 CeNeR Rao, AeK Sood, KeS Subrahmanyam, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48(42):7752–7777
34.
Zurück zum Zitat Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81(14):5603–5613PubMed Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81(14):5603–5613PubMed
35.
Zurück zum Zitat Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 48(13):3825–3833 Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 48(13):3825–3833
36.
Zurück zum Zitat Verma M, Singh AP, Sambyal P, Singh BP, Dhawan S, Choudhary V (2015) Barium ferrite decorated reduced graphene oxide nanocomposite for effective electromagnetic interference shielding. Phys Chem Chem Phys 17(3):1610–1618PubMed Verma M, Singh AP, Sambyal P, Singh BP, Dhawan S, Choudhary V (2015) Barium ferrite decorated reduced graphene oxide nanocomposite for effective electromagnetic interference shielding. Phys Chem Chem Phys 17(3):1610–1618PubMed
37.
Zurück zum Zitat Liu W, Li H, Zeng Q, Duan H, Guo Y, Liu X, Sun C, Liu H (2015) Fabrication of ultralight three-dimensional graphene networks with strong electromagnetic wave absorption properties. J Mater Chem A 3(7):3739–3747 Liu W, Li H, Zeng Q, Duan H, Guo Y, Liu X, Sun C, Liu H (2015) Fabrication of ultralight three-dimensional graphene networks with strong electromagnetic wave absorption properties. J Mater Chem A 3(7):3739–3747
38.
Zurück zum Zitat Gupta TK, Singh BP, Singh VN, Teotia S, Singh AP, Elizabeth I, Dhakate SR, Dhawan S, Mathur R (2014) MnO2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties. J Mater Chem A 2(12):4256–4263 Gupta TK, Singh BP, Singh VN, Teotia S, Singh AP, Elizabeth I, Dhakate SR, Dhawan S, Mathur R (2014) MnO2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties. J Mater Chem A 2(12):4256–4263
39.
Zurück zum Zitat Arjmand M, Moud AA, Li Y, Sundararaj U (2015) Outstanding electromagnetic interference shielding of silver nanowires: comparison with carbon nanotubes. RSC Adv 5(70):56590–56598 Arjmand M, Moud AA, Li Y, Sundararaj U (2015) Outstanding electromagnetic interference shielding of silver nanowires: comparison with carbon nanotubes. RSC Adv 5(70):56590–56598
40.
Zurück zum Zitat Yu Y-H, Ma C-CM, Teng C-C, Huang Y-L, Lee S-H, Wang I, Wei M-H (2012) Electrical, morphological, and electromagnetic interference shielding properties of silver nanowires and nanoparticles conductive composites. Mater Chem Phys 136(2):334–340 Yu Y-H, Ma C-CM, Teng C-C, Huang Y-L, Lee S-H, Wang I, Wei M-H (2012) Electrical, morphological, and electromagnetic interference shielding properties of silver nanowires and nanoparticles conductive composites. Mater Chem Phys 136(2):334–340
41.
Zurück zum Zitat Yang Y, Gupta M, Dudley K (2007) Studies on electromagnetic interference shielding characteristics of metal nanoparticle-and carbon nanostructure-filled polymer composites in the Ku-band frequency. IET Micro Nano Lett 2(4):85–89 Yang Y, Gupta M, Dudley K (2007) Studies on electromagnetic interference shielding characteristics of metal nanoparticle-and carbon nanostructure-filled polymer composites in the Ku-band frequency. IET Micro Nano Lett 2(4):85–89
42.
Zurück zum Zitat Aji M, Bijaksana S, Abdullah M (2012) Electrical and magnetic properties of polymer electrolyte (PVA: LiOH) containing in situ dispersed Fe3O4 nanoparticles. ISRN Mater Sci 2012:1–7 Aji M, Bijaksana S, Abdullah M (2012) Electrical and magnetic properties of polymer electrolyte (PVA: LiOH) containing in situ dispersed Fe3O4 nanoparticles. ISRN Mater Sci 2012:1–7
43.
Zurück zum Zitat Guo Z, Zhang D, Wei S, Wang Z, Karki AB, Li Y, Bernazzani P, Young DP, Gomes J, Cocke DL (2010) Effects of iron oxide nanoparticles on polyvinyl alcohol: interfacial layer and bulk nanocomposites thin film. J Nanopart Res 12(7):2415–2426 Guo Z, Zhang D, Wei S, Wang Z, Karki AB, Li Y, Bernazzani P, Young DP, Gomes J, Cocke DL (2010) Effects of iron oxide nanoparticles on polyvinyl alcohol: interfacial layer and bulk nanocomposites thin film. J Nanopart Res 12(7):2415–2426
44.
Zurück zum Zitat Das TK, Bhawal P, Ganguly S, Mondal S, Das NC (2018) A facile green synthesis of amino acid boosted Ag decorated reduced graphene oxide nanocomposites and its catalytic activity towards 4-nitrophenol reduction. Surf Interfaces 13:79–91 Das TK, Bhawal P, Ganguly S, Mondal S, Das NC (2018) A facile green synthesis of amino acid boosted Ag decorated reduced graphene oxide nanocomposites and its catalytic activity towards 4-nitrophenol reduction. Surf Interfaces 13:79–91
45.
Zurück zum Zitat Ashori A, Ghiyasi M, Fallah A (2019) Glass fiber-reinforced epoxy composite with surface-modified graphene oxide: enhancement of interlaminar fracture toughness and thermo-mechanical performance. Polym Bull 76(1):259–270 Ashori A, Ghiyasi M, Fallah A (2019) Glass fiber-reinforced epoxy composite with surface-modified graphene oxide: enhancement of interlaminar fracture toughness and thermo-mechanical performance. Polym Bull 76(1):259–270
46.
Zurück zum Zitat Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205 Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205
47.
Zurück zum Zitat Bourlinos AB, Georgakilas V, Zboril R, Steriotis TA, Stubos AK, Trapalis C (2009) Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes. Solid State Commun 149(47):2172–2176 Bourlinos AB, Georgakilas V, Zboril R, Steriotis TA, Stubos AK, Trapalis C (2009) Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes. Solid State Commun 149(47):2172–2176
48.
Zurück zum Zitat Wei W, Lu W, Yang Q-h (2011) High-concentration graphene aqueous suspension and a membrane self-assembled at the liquid–air interface. Carbon 49(8):2879 Wei W, Lu W, Yang Q-h (2011) High-concentration graphene aqueous suspension and a membrane self-assembled at the liquid–air interface. Carbon 49(8):2879
49.
Zurück zum Zitat Sun Z, Nicolosi V, Rickard D, Bergin SD, Aherne D, Coleman JN (2008) Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: dispersion quality and its correlation with zeta potential. J Phys Chem C 112(29):10692–10699 Sun Z, Nicolosi V, Rickard D, Bergin SD, Aherne D, Coleman JN (2008) Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: dispersion quality and its correlation with zeta potential. J Phys Chem C 112(29):10692–10699
50.
Zurück zum Zitat Wajid AS, Das S, Irin F, Ahmed HT, Shelburne JL, Parviz D, Fullerton RJ, Jankowski AF, Hedden RC, Green MJ (2012) Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon 50(2):526–534 Wajid AS, Das S, Irin F, Ahmed HT, Shelburne JL, Parviz D, Fullerton RJ, Jankowski AF, Hedden RC, Green MJ (2012) Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon 50(2):526–534
51.
Zurück zum Zitat Bhawal P, Ganguly S, Chaki T, Das N (2016) Synthesis and characterization of graphene oxide filled ethylene methyl acrylate hybrid nanocomposites. RSC Adv 6(25):20781–20790 Bhawal P, Ganguly S, Chaki T, Das N (2016) Synthesis and characterization of graphene oxide filled ethylene methyl acrylate hybrid nanocomposites. RSC Adv 6(25):20781–20790
52.
Zurück zum Zitat Behabtu N, Lomeda JR, Green MJ, Higginbotham AL, Sinitskii A, Kosynkin DV, Tsentalovich D, Parra-Vasquez ANG, Schmidt J, Kesselman E, Cohen Y, Talmon Y, Tour JM, Pasquali M (2010) Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nano 5:406–411 Behabtu N, Lomeda JR, Green MJ, Higginbotham AL, Sinitskii A, Kosynkin DV, Tsentalovich D, Parra-Vasquez ANG, Schmidt J, Kesselman E, Cohen Y, Talmon Y, Tour JM, Pasquali M (2010) Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nano 5:406–411
53.
Zurück zum Zitat Ferrari A, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401PubMed Ferrari A, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401PubMed
54.
Zurück zum Zitat Ganguly S, Mondal S, Das P, Bhawal P, Das TK, Ghosh S, Remanan S, Das NC (2018) An insight into the physico-mechanical signatures of silylated graphene oxide in poly (ethylene methyl acrylate) copolymeric thermoplastic matrix. Macromol Res 27(3):268–281 Ganguly S, Mondal S, Das P, Bhawal P, Das TK, Ghosh S, Remanan S, Das NC (2018) An insight into the physico-mechanical signatures of silylated graphene oxide in poly (ethylene methyl acrylate) copolymeric thermoplastic matrix. Macromol Res 27(3):268–281
55.
Zurück zum Zitat Simon RM (1981) EMI shielding through conductive plastics. Polym Plast Technol Eng 17(1):1–10 Simon RM (1981) EMI shielding through conductive plastics. Polym Plast Technol Eng 17(1):1–10
56.
Zurück zum Zitat Ganguly S, Das P, Maity PP, Mondal S, Ghosh S, Dhara S, Das NC (2018) Green reduced graphene oxide toughened semi-IPN monolith hydrogel as dual responsive drug release system: rheological, physicomechanical, and electrical evaluations. J Phys Chem B 122(29):7201–7218PubMed Ganguly S, Das P, Maity PP, Mondal S, Ghosh S, Dhara S, Das NC (2018) Green reduced graphene oxide toughened semi-IPN monolith hydrogel as dual responsive drug release system: rheological, physicomechanical, and electrical evaluations. J Phys Chem B 122(29):7201–7218PubMed
57.
Zurück zum Zitat Polley M, Boonstra B (1957) Carbon blacks for highly conductive rubber. Rubber Chem Technol 30(1):170–179 Polley M, Boonstra B (1957) Carbon blacks for highly conductive rubber. Rubber Chem Technol 30(1):170–179
58.
Zurück zum Zitat Das TK, Bhawal P, Ganguly S, Mondal S, Remanan S, Ghosh S, Das NC (2018) Synthesis of hydroxyapatite nanorods and its use as a nanoreinforcement block for ethylene methacrylate copolymer matrix. Polym Bull 76(7):3621–3642 Das TK, Bhawal P, Ganguly S, Mondal S, Remanan S, Ghosh S, Das NC (2018) Synthesis of hydroxyapatite nanorods and its use as a nanoreinforcement block for ethylene methacrylate copolymer matrix. Polym Bull 76(7):3621–3642
59.
Zurück zum Zitat Ryvkina N, Tchmutin I, Vilčáková J, Pelíšková M, Sáha P (2005) The deformation behavior of conductivity in composites where charge carrier transport is by tunneling: theoretical modeling and experimental results. Synth Met 148(2):141–146 Ryvkina N, Tchmutin I, Vilčáková J, Pelíšková M, Sáha P (2005) The deformation behavior of conductivity in composites where charge carrier transport is by tunneling: theoretical modeling and experimental results. Synth Met 148(2):141–146
60.
Zurück zum Zitat Ghosh S, Ganguly S, Remanan S, Das NC (2019) Fabrication and investigation of 3D tuned PEG/PEDOT: PSS treated conductive and durable cotton fabric for superior electrical conductivity and flexible electromagnetic interference shielding. Compos Sci Technol 181:107682 Ghosh S, Ganguly S, Remanan S, Das NC (2019) Fabrication and investigation of 3D tuned PEG/PEDOT: PSS treated conductive and durable cotton fabric for superior electrical conductivity and flexible electromagnetic interference shielding. Compos Sci Technol 181:107682
61.
Zurück zum Zitat Ghosh S, Ganguly S, Das P, Das TK, Bose M, Singha NK, Das AK, Das NC (2019) Fabrication of reduced graphene oxide/silver nanoparticles decorated conductive cotton fabric for high performing electromagnetic interference shielding and antibacterial application. Fibers Polym 20(6):1161–1171 Ghosh S, Ganguly S, Das P, Das TK, Bose M, Singha NK, Das AK, Das NC (2019) Fabrication of reduced graphene oxide/silver nanoparticles decorated conductive cotton fabric for high performing electromagnetic interference shielding and antibacterial application. Fibers Polym 20(6):1161–1171
62.
Zurück zum Zitat Yang Y, Gupta MC, Dudley KL (2007) Towards cost-efficient EMI shielding materials using carbon nanostructure-based nanocomposites. Nanotechnology 18(34):345701 Yang Y, Gupta MC, Dudley KL (2007) Towards cost-efficient EMI shielding materials using carbon nanostructure-based nanocomposites. Nanotechnology 18(34):345701
63.
Zurück zum Zitat Afanasov I, Morozov V, Kepman A, Ionov S, Seleznev A, Van Tendeloo G, Avdeev V (2009) Preparation, electrical and thermal properties of new exfoliated graphite-based composites. Carbon 47(1):263–270 Afanasov I, Morozov V, Kepman A, Ionov S, Seleznev A, Van Tendeloo G, Avdeev V (2009) Preparation, electrical and thermal properties of new exfoliated graphite-based composites. Carbon 47(1):263–270
64.
Zurück zum Zitat Goyal R (2013) Cost-efficient high performance polyetheretherketone/expanded graphite nanocomposites with high conductivity for EMI shielding application. Mater Chem Phys 142(1):195–198 Goyal R (2013) Cost-efficient high performance polyetheretherketone/expanded graphite nanocomposites with high conductivity for EMI shielding application. Mater Chem Phys 142(1):195–198
65.
Zurück zum Zitat Al-Saleh MH (2016) Electrical and electromagnetic interference shielding characteristics of GNP/UHMWPE composites. J Phys D Appl Phys 49(19):195302 Al-Saleh MH (2016) Electrical and electromagnetic interference shielding characteristics of GNP/UHMWPE composites. J Phys D Appl Phys 49(19):195302
66.
Zurück zum Zitat Nimbalkar P, Korde A, Goyal R (2018) Electromagnetic interference shielding of polycarbonate/GNP nanocomposites in X-band. Mater Chem Phys 206:251–258 Nimbalkar P, Korde A, Goyal R (2018) Electromagnetic interference shielding of polycarbonate/GNP nanocomposites in X-band. Mater Chem Phys 206:251–258
67.
Zurück zum Zitat Bansala T, Joshi M, Mukhopadhyay S, Doong R-a, Chaudhary M (2017) Electrically conducting graphene-based polyurethane nanocomposites for microwave shielding applications in the Ku band. J Mater Sci 52(3):1546–1560 Bansala T, Joshi M, Mukhopadhyay S, Doong R-a, Chaudhary M (2017) Electrically conducting graphene-based polyurethane nanocomposites for microwave shielding applications in the Ku band. J Mater Sci 52(3):1546–1560
Metadaten
Titel
Poly(N-vinylpyrrolidone)-stabilized colloidal graphene-reinforced poly(ethylene-co-methyl acrylate) to mitigate electromagnetic radiation pollution
verfasst von
Sayan Ganguly
Sabyasachi Ghosh
Poushali Das
Tushar Kanti Das
Suman Kumar Ghosh
Narayan Chandra Das
Publikationsdatum
29.07.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 6/2020
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-019-02892-y

Weitere Artikel der Ausgabe 6/2020

Polymer Bulletin 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.