Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2024

13.04.2023 | Technical Article

Process-Controlled Domain Switching and Improved Ferroelectric Properties in Lanthanum-Modified Lead Zirconate Titanate Films

verfasst von: Anina Anju Balaraman, A. Antony Jeyaseelan, Soma Dutta

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study, the effect of processing parameters like annealing temperature, excess of lead (Pb) content, and film thickness on the crystallographic orientation, dielectric and ferroelectric properties of PLZT (Pb/La/Zr/Ti: 92/8/52/48) films are investigated. For the investigation, PLZT films were prepared on Pt/Ti/SiO2/Si substrate by chemical solution deposition method and annealed at different temperatures (600, 625, 650, 675, and 700 °C). Diverse growth orientation was observed for different annealing temperatures that gave rise to modified electrical properties in the PLZT films. Comparative studies on processing temperature exhibited improved ferroelectric properties in 650 °C annealed PLZT film, which is attributed to its crystallinity (Full width at half maximum, FWHM101 = 0.49°) and texture coefficient (γ = 0.832). Excess Pb content (3 wt.%) yielded improved ferroelectric properties in PLZT film with a ~ 10% increment in domain switching. The PLZT film with 3 wt.% Pb-excess content showed an ASTM class 5B adhesion on Pt/Ti/SiO2/Si substrate, a nano-hardness value of 7894.43 MPa, and a Young’s modulus value of 143.05 GPa. To further study the effect of process control parameters on PLZT film, variation of thicknesses (492, 768, and 1500 nm) was studied for 3 wt.% Pb-excess film. The study showed considerable domain switching (switching current = 58.10 μA at 40 kV/cm), improved dielectric constant (~ 2750), higher polarization (Pmax = 71.4 μC/cm2) at a low electric field 334 kV/cm and low leakage current for 1500 nm thick PLZT film. A total energy storage density of ~ 26 J/cm3 at 1020 kV/cm and tunability of 68.46% at ~ 200 kV/cm was achieved for PLZT film with 3 wt.% excess Pb.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Huang et al., Large Quadratic Electro-Optic Effect of the PLZT Thin Films for Optical Communication Integrated Devices, ACS Photonics, 2020, 7(11), p 3166–3176.CrossRef C. Huang et al., Large Quadratic Electro-Optic Effect of the PLZT Thin Films for Optical Communication Integrated Devices, ACS Photonics, 2020, 7(11), p 3166–3176.CrossRef
2.
Zurück zum Zitat X. Niu et al., High-Performance PZT-Based Stretchable Piezoelectric Nanogenerator, ACS Sustain. Chem. Eng., 2018, 7(1), p 979–985.CrossRef X. Niu et al., High-Performance PZT-Based Stretchable Piezoelectric Nanogenerator, ACS Sustain. Chem. Eng., 2018, 7(1), p 979–985.CrossRef
3.
Zurück zum Zitat W.Y. Pan, C.Q. Dam, Q.M. Zhang, and L.E. Cross, Large Displacement Transducers Based on Electric Field Forced Phase Transitions in the Tetragonal (Pb0.97La0.02(Ti.Zr.Sn)O3 Family of Ceramics, J. Appl. Phys., 1989, 66, p 6014–6023.CrossRef W.Y. Pan, C.Q. Dam, Q.M. Zhang, and L.E. Cross, Large Displacement Transducers Based on Electric Field Forced Phase Transitions in the Tetragonal (Pb0.97La0.02(Ti.Zr.Sn)O3 Family of Ceramics, J. Appl. Phys., 1989, 66, p 6014–6023.CrossRef
4.
Zurück zum Zitat M.D. Nguyen, E.P. Houwman, M.T. Do, and G. Rijnders, Relaxor-Ferroelectric Thin Film Heterostructure with Large Imprint for High energy-Storage Performance at Low Operating Voltage, Energy Storage Mater., 2020, 25, p 193–201.CrossRef M.D. Nguyen, E.P. Houwman, M.T. Do, and G. Rijnders, Relaxor-Ferroelectric Thin Film Heterostructure with Large Imprint for High energy-Storage Performance at Low Operating Voltage, Energy Storage Mater., 2020, 25, p 193–201.CrossRef
5.
Zurück zum Zitat M.S. Mirshekarioo, K. Yao, and T. Sirtharan, Large Strain and High Energy Storage Density in Orthorhombic Perovskite (Pb0.97La0.02) (Zr1−x−ySnxTiy)O3 Antiferroelectric Thin Films, Appl. Phys. Lett., 2010, 97, p 142902.CrossRef M.S. Mirshekarioo, K. Yao, and T. Sirtharan, Large Strain and High Energy Storage Density in Orthorhombic Perovskite (Pb0.97La0.02) (Zr1xySnxTiy)O3 Antiferroelectric Thin Films, Appl. Phys. Lett., 2010, 97, p 142902.CrossRef
6.
Zurück zum Zitat B. Peng et al., Large Energy Storage Density and High Thermal Stability in a Highly Textured (111)-Oriented Pb0.8Ba0.2ZrO3 Relaxor Thin Film with the Coexistence of Antiferroelectric and ferroelecTric Phases, ACS Appl. Mater. Interfaces, 2015, 7(24), p 13512–13517.PubMedCrossRef B. Peng et al., Large Energy Storage Density and High Thermal Stability in a Highly Textured (111)-Oriented Pb0.8Ba0.2ZrO3 Relaxor Thin Film with the Coexistence of Antiferroelectric and ferroelecTric Phases, ACS Appl. Mater. Interfaces, 2015, 7(24), p 13512–13517.PubMedCrossRef
7.
Zurück zum Zitat K. Yao et al., Nonlinear Dielectric Thin Films for High-Power Electric Storage with Energy Density Comparable with Electrochemical Supercapacitors, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2011, 58(9), p 1968–1974.PubMedCrossRef K. Yao et al., Nonlinear Dielectric Thin Films for High-Power Electric Storage with Energy Density Comparable with Electrochemical Supercapacitors, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2011, 58(9), p 1968–1974.PubMedCrossRef
8.
Zurück zum Zitat X. Hao, Y. Wang, J. Yang, S. An, and J. Xu, High Energy-Storage Performance in Pb0.91La0.09(Ti0.65Zr0.35)O3 Relaxor Ferroelectric Thin Films, J. Appl. Phys., 2012, 112(11), p 114111.CrossRef X. Hao, Y. Wang, J. Yang, S. An, and J. Xu, High Energy-Storage Performance in Pb0.91La0.09(Ti0.65Zr0.35)O3 Relaxor Ferroelectric Thin Films, J. Appl. Phys., 2012, 112(11), p 114111.CrossRef
9.
Zurück zum Zitat B.P. Bruno, A.R. Fahmy, M. Stürmer, U. Wallrabe, and M.C. Wapler, Properties of Piezoceramic Materials in High Electric Field Actuator Applications, Smart Mater. Struct., 2018, 28(1), p 015029.CrossRef B.P. Bruno, A.R. Fahmy, M. Stürmer, U. Wallrabe, and M.C. Wapler, Properties of Piezoceramic Materials in High Electric Field Actuator Applications, Smart Mater. Struct., 2018, 28(1), p 015029.CrossRef
10.
Zurück zum Zitat X. Wang, J. Shen, T. Yang, Y. Dong, and Y. Liu, High Energy-Storage Performance and Dielectric Properties of Antiferroelectric (Pb0.97La0.02)(Zr0.5Sn0.5−xTix)O3 Ceramic, J. Alloys Compd., 2016, 655, p 309–313.CrossRef X. Wang, J. Shen, T. Yang, Y. Dong, and Y. Liu, High Energy-Storage Performance and Dielectric Properties of Antiferroelectric (Pb0.97La0.02)(Zr0.5Sn0.5xTix)O3 Ceramic, J. Alloys Compd., 2016, 655, p 309–313.CrossRef
11.
Zurück zum Zitat G. Zhang et al., High-Energy Storage Performance of (Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 Antiferroelectric Ceramics Fabricated by the Hot-Press Sintering Method, J. Am. Ceram. Soc., 2015, 98, p 1175–1181.CrossRef G. Zhang et al., High-Energy Storage Performance of (Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 Antiferroelectric Ceramics Fabricated by the Hot-Press Sintering Method, J. Am. Ceram. Soc., 2015, 98, p 1175–1181.CrossRef
12.
Zurück zum Zitat X.L. Wang, L. Zhang, X.H. Hao, and S.L. An, High Energy-Storage Performance of 0.9Pb (Mg1/3Nb2/3)O3-0.1PbTiO3 Relaxor Ferroelectric Thin Films Prepared by RF Mag- Netron Sputtering, Mater. Res. Bull., 2015, 65, p 73–79.CrossRef X.L. Wang, L. Zhang, X.H. Hao, and S.L. An, High Energy-Storage Performance of 0.9Pb (Mg1/3Nb2/3)O3-0.1PbTiO3 Relaxor Ferroelectric Thin Films Prepared by RF Mag- Netron Sputtering, Mater. Res. Bull., 2015, 65, p 73–79.CrossRef
13.
Zurück zum Zitat C.T. Nguyen, H.N. Vu, and M.D. Nguyen, High-Performance Energy Storage and Breakdown Strength of Low-Temperature Laser-Deposited Relaxor PLZT Thin Films on Flexible Ti-Foils, J. Alloys Compd., 2019, 802, p 422–429.CrossRef C.T. Nguyen, H.N. Vu, and M.D. Nguyen, High-Performance Energy Storage and Breakdown Strength of Low-Temperature Laser-Deposited Relaxor PLZT Thin Films on Flexible Ti-Foils, J. Alloys Compd., 2019, 802, p 422–429.CrossRef
14.
Zurück zum Zitat H. Tang, Y. Lin, C. Andrews, and H.A. Sodano, Nanocomposites with Increased Energy Density Through High Aspect Ratio PZT Nanowires, Nanotechnology, 2011, 22, p 015702–015711.PubMedCrossRef H. Tang, Y. Lin, C. Andrews, and H.A. Sodano, Nanocomposites with Increased Energy Density Through High Aspect Ratio PZT Nanowires, Nanotechnology, 2011, 22, p 015702–015711.PubMedCrossRef
15.
Zurück zum Zitat Q. Zhang et al., High Recoverable Energy Density over a Wide Temperature Range in Sr Modified (Pb.La)(Zr.Sn.Ti)O3 Antiferroelectric Ceramics with an Orthorhombic Phase, Appl. Phys. Lett., 2016, 109, p 262901.CrossRef Q. Zhang et al., High Recoverable Energy Density over a Wide Temperature Range in Sr Modified (Pb.La)(Zr.Sn.Ti)O3 Antiferroelectric Ceramics with an Orthorhombic Phase, Appl. Phys. Lett., 2016, 109, p 262901.CrossRef
16.
Zurück zum Zitat L. Zhang, S. Jiang, B. Fan, and G. Zhang, High Energy Storage Performance in (Pb0.858Ba0.1La0.02Y0.008)(Zr0.65Sn0.3Ti0.05)O3-(Pb0.97La0.02)(Zr0.9Sn0.05Ti0.05)O3 Anti-Ferroelectric Composite Ceramics, Ceram. Int., 2015, 41(1), p 1139–1144.CrossRef L. Zhang, S. Jiang, B. Fan, and G. Zhang, High Energy Storage Performance in (Pb0.858Ba0.1La0.02Y0.008)(Zr0.65Sn0.3Ti0.05)O3-(Pb0.97La0.02)(Zr0.9Sn0.05Ti0.05)O3 Anti-Ferroelectric Composite Ceramics, Ceram. Int., 2015, 41(1), p 1139–1144.CrossRef
17.
Zurück zum Zitat Y.Z. Li, Z.J. Wang, Y. Bai, and Z.D. Zhang, High Energy Storage Performance in Ca-doped PbZrO3 Antiferroelectric Films, J. Eur. Ceram. Soc., 2020, 40(4), p 1285–1292.CrossRef Y.Z. Li, Z.J. Wang, Y. Bai, and Z.D. Zhang, High Energy Storage Performance in Ca-doped PbZrO3 Antiferroelectric Films, J. Eur. Ceram. Soc., 2020, 40(4), p 1285–1292.CrossRef
18.
Zurück zum Zitat D. Oliveira, M.A.A.V. Monteiro, and J.V. Filho, A New Structural Health Monitoring Strategy Based on PZT Sensors and Convolutional Neural Network, Sensors., 2018, 18(9), p 2955.PubMedPubMedCentralCrossRef D. Oliveira, M.A.A.V. Monteiro, and J.V. Filho, A New Structural Health Monitoring Strategy Based on PZT Sensors and Convolutional Neural Network, Sensors., 2018, 18(9), p 2955.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat J. Li et al., A Walking Type Piezoelectric Actuator Based on the Parasitic Motion of Obliquely Assembled PZT Stacks, Smart Mater. Struct., 2021, 30(8), p 085030.CrossRef J. Li et al., A Walking Type Piezoelectric Actuator Based on the Parasitic Motion of Obliquely Assembled PZT Stacks, Smart Mater. Struct., 2021, 30(8), p 085030.CrossRef
20.
Zurück zum Zitat G. Lu, Y. Li, M. Zhou, Q. Feng, and G. Song, Detecting Damage Size and Shape in a Plate Structure Using PZT Transducer Array, J. Aerosp. Eng., 2018, 31(5), p 04018075.CrossRef G. Lu, Y. Li, M. Zhou, Q. Feng, and G. Song, Detecting Damage Size and Shape in a Plate Structure Using PZT Transducer Array, J. Aerosp. Eng., 2018, 31(5), p 04018075.CrossRef
21.
Zurück zum Zitat Y. Zhang et al., Enhanced Pyroelectric and Piezoelectric Properties of PZT with Aligned Porosity for Energy Harvesting Applications, J. Mater. Chem. A, 2017, 5(14), p 6569–6580.CrossRef Y. Zhang et al., Enhanced Pyroelectric and Piezoelectric Properties of PZT with Aligned Porosity for Energy Harvesting Applications, J. Mater. Chem. A, 2017, 5(14), p 6569–6580.CrossRef
22.
Zurück zum Zitat Y. Li et al., Flexible PLZT Antiferroelectric Film Capacitor for Energy Storage in Wide Temperature Range, J. Alloys Compd., 2021, 868, p 159129.CrossRef Y. Li et al., Flexible PLZT Antiferroelectric Film Capacitor for Energy Storage in Wide Temperature Range, J. Alloys Compd., 2021, 868, p 159129.CrossRef
23.
Zurück zum Zitat P. Qiao, Y. Zhang, X. Chen, M. Zhou, G. Wang, and X. Dong, Effect of Mn-doping on Dielectric and Energy Storage Properties of (Pb0.91La0.06)(Zr0.96Ti0.04)O3 Antiferroelectric Ceramics, J. Alloys Compd., 2019, 780, p 581–587.CrossRef P. Qiao, Y. Zhang, X. Chen, M. Zhou, G. Wang, and X. Dong, Effect of Mn-doping on Dielectric and Energy Storage Properties of (Pb0.91La0.06)(Zr0.96Ti0.04)O3 Antiferroelectric Ceramics, J. Alloys Compd., 2019, 780, p 581–587.CrossRef
24.
Zurück zum Zitat H. Wu et al., Effect of Holding Time on Microstructure Ferroelectric and Energy-Storage Properties of Pb0.925La0.05Zr0.95Ti0.05O3@SiO2 Ceramics, J. Alloys Compd., 2022, 896, p 162932.CrossRef H. Wu et al., Effect of Holding Time on Microstructure Ferroelectric and Energy-Storage Properties of Pb0.925La0.05Zr0.95Ti0.05O3@SiO2 Ceramics, J. Alloys Compd., 2022, 896, p 162932.CrossRef
25.
Zurück zum Zitat X. Qin et al., Enhanced Energy-Storage Performance of Pb0.925La0.05Zr0.95Ti0.05@ x wt.%SiO2 Composite Ceramics, J. Alloys Compd., 2022, 890, p 161869.CrossRef X. Qin et al., Enhanced Energy-Storage Performance of Pb0.925La0.05Zr0.95Ti0.05@ x wt.%SiO2 Composite Ceramics, J. Alloys Compd., 2022, 890, p 161869.CrossRef
26.
Zurück zum Zitat M. Kumar, G. Sharma, S.D. Kaushik, A.K. Singh, and S. Kumar, Critical Behavior of Relaxor Pb0.91La0.09Zr0.65Ti0.35O3: Interplay Between Polar Nano Regions, Electrocaloric and Energy Storage Response, J. Alloys Compd., 2021, 884, p 161067.CrossRef M. Kumar, G. Sharma, S.D. Kaushik, A.K. Singh, and S. Kumar, Critical Behavior of Relaxor Pb0.91La0.09Zr0.65Ti0.35O3: Interplay Between Polar Nano Regions, Electrocaloric and Energy Storage Response, J. Alloys Compd., 2021, 884, p 161067.CrossRef
27.
Zurück zum Zitat J. Wang, Z.G. Wu, X.M. Yuan, S.R. Jiang, and P.X. Yan, The Effect of Heat-Treatment on the Structure and Chemical Homogeneity of Ferroelectrics PLZT Thin Films Deposited by RF Sputtering, Mater. Chem. Phys., 2004, 88(1), p 77–83.CrossRef J. Wang, Z.G. Wu, X.M. Yuan, S.R. Jiang, and P.X. Yan, The Effect of Heat-Treatment on the Structure and Chemical Homogeneity of Ferroelectrics PLZT Thin Films Deposited by RF Sputtering, Mater. Chem. Phys., 2004, 88(1), p 77–83.CrossRef
28.
Zurück zum Zitat M.D. Nguyen, C.T. Nguyen, H.N. Vu, and G. Rijnders, Controlling Microstructure and Film Growth of Relaxor-Ferroelectric Thin Films for High Break-Down Strength and Energy-Storage Performance, J. Eur. Ceramic Soc., 2018, 38(1), p 95–103.CrossRef M.D. Nguyen, C.T. Nguyen, H.N. Vu, and G. Rijnders, Controlling Microstructure and Film Growth of Relaxor-Ferroelectric Thin Films for High Break-Down Strength and Energy-Storage Performance, J. Eur. Ceramic Soc., 2018, 38(1), p 95–103.CrossRef
29.
Zurück zum Zitat A.A. Jeyaseelan and S. Dutta, Improvement in Piezoelectric Properties of PLZT Thin Film with Large Cation Doping at A-Site, J. Alloys Compd., 2020, 826, p 153956.CrossRef A.A. Jeyaseelan and S. Dutta, Improvement in Piezoelectric Properties of PLZT Thin Film with Large Cation Doping at A-Site, J. Alloys Compd., 2020, 826, p 153956.CrossRef
30.
Zurück zum Zitat G. Chen et al., Effects of the Film Thickness and Poling Electric Field on Photovoltaic Performances of (Pb.La)(Zr.Ti)O3 Ferroelectric Thin Film-Based Devices, Ceram. Int., 2020, 46(4), p 4148–4153.CrossRef G. Chen et al., Effects of the Film Thickness and Poling Electric Field on Photovoltaic Performances of (Pb.La)(Zr.Ti)O3 Ferroelectric Thin Film-Based Devices, Ceram. Int., 2020, 46(4), p 4148–4153.CrossRef
31.
Zurück zum Zitat A. Anju Balaraman and S. Dutta, Inorganic Dielectric Materials for Energy Storage Applications: A Review, J. Phys. D Appl. Phys., 2022, 55(18), p 183002.CrossRef A. Anju Balaraman and S. Dutta, Inorganic Dielectric Materials for Energy Storage Applications: A Review, J. Phys. D Appl. Phys., 2022, 55(18), p 183002.CrossRef
32.
Zurück zum Zitat B. Ma, Z. Hu, S. Liu, M. Narayanan, and U. Balachandran, Temperature Dependent Polarization Switching Properties of Ferroelectric Pb0.92La0.08Zr0.52Ti0.48Oδ Films Grown on Nickel Foils, Appl. Phys. Lett., 2013, 102(7), p 072901.CrossRef B. Ma, Z. Hu, S. Liu, M. Narayanan, and U. Balachandran, Temperature Dependent Polarization Switching Properties of Ferroelectric Pb0.92La0.08Zr0.52Ti0.48Oδ Films Grown on Nickel Foils, Appl. Phys. Lett., 2013, 102(7), p 072901.CrossRef
33.
Zurück zum Zitat S. Hong. Nanoscale phenomena in ferroelectric thin films. 2004. S. Hong. Nanoscale phenomena in ferroelectric thin films. 2004.
34.
Zurück zum Zitat G.H. Haertling, Ferroelectric Thin Films for Electronic Applications, J. Vac. Sci. Technol. A: Vac. Surfaces Films, 1991, 9(3), p 414–420.CrossRef G.H. Haertling, Ferroelectric Thin Films for Electronic Applications, J. Vac. Sci. Technol. A: Vac. Surfaces Films, 1991, 9(3), p 414–420.CrossRef
35.
Zurück zum Zitat F. Wang, D. Meng, X. Li, Z. Zhu, Z. Fu, and Y. Lu, Influence of Annealing Temperature on the Crystallization and Ferroelectricity of Perovskite CH3NH3PbI3 Film, Appl. Surface Sci., 2015, 357, p 391–396.CrossRef F. Wang, D. Meng, X. Li, Z. Zhu, Z. Fu, and Y. Lu, Influence of Annealing Temperature on the Crystallization and Ferroelectricity of Perovskite CH3NH3PbI3 Film, Appl. Surface Sci., 2015, 357, p 391–396.CrossRef
36.
Zurück zum Zitat P.D. Lomenzo, Q. Takmeel, S. Moghaddam, and T. Nishida, Annealing Behavior of Ferroelectric Si-Doped HfO2 Thin Films, Thin Solid Films., 2016, 615, p 139–144.CrossRef P.D. Lomenzo, Q. Takmeel, S. Moghaddam, and T. Nishida, Annealing Behavior of Ferroelectric Si-Doped HfO2 Thin Films, Thin Solid Films., 2016, 615, p 139–144.CrossRef
37.
Zurück zum Zitat Z. Lin, W. Cai, W. Jiang, C. Fu, C. Li, and Y. Song, Effects of Annealing Temperature on the Microstructure, Optical, Ferroelectric and Photovoltaic Properties of BiFeO3 Thin Films Prepared by Sol–Gel Method, Ceram. Int., 2013, 39(8), p 8729–8736.CrossRef Z. Lin, W. Cai, W. Jiang, C. Fu, C. Li, and Y. Song, Effects of Annealing Temperature on the Microstructure, Optical, Ferroelectric and Photovoltaic Properties of BiFeO3 Thin Films Prepared by Sol–Gel Method, Ceram. Int., 2013, 39(8), p 8729–8736.CrossRef
38.
Zurück zum Zitat E. R. Myers and A. I. Kingon Ferroelectric Thin Films, in Materials Research Society Symposium Proceedings. 1990. p. Volume 200. E. R. Myers and A. I. Kingon Ferroelectric Thin Films, in Materials Research Society Symposium Proceedings. 1990. p. Volume 200.
39.
Zurück zum Zitat E.B. Araujo et al., Processing and Structural Properties of Random Oriented Lead Lanthanum Zirconate Titanate Thin Films, Mater. Res. Bull., 2015, 61, p 26–31.CrossRef E.B. Araujo et al., Processing and Structural Properties of Random Oriented Lead Lanthanum Zirconate Titanate Thin Films, Mater. Res. Bull., 2015, 61, p 26–31.CrossRef
40.
Zurück zum Zitat G.L. Brennecka and B.A. Tuttle, Fabrication of Ultrathin Film Capacitors by Chemical Solution Deposition, J. Mater. Res., 2007, 22(10), p 2868–2874.CrossRef G.L. Brennecka and B.A. Tuttle, Fabrication of Ultrathin Film Capacitors by Chemical Solution Deposition, J. Mater. Res., 2007, 22(10), p 2868–2874.CrossRef
41.
Zurück zum Zitat A.P. Wilkinson, J.S. Speck, A.K. Cheetham, S. Natarajan, and J.M. Thomas, In Situ X-Ray Diffraction Study of Crystallization Kinetics in PbZr1−xTixO3,(PZT, x = 0, 055, 1.0), Chem. Mater., 1994, 6(6), p 750–754.CrossRef A.P. Wilkinson, J.S. Speck, A.K. Cheetham, S. Natarajan, and J.M. Thomas, In Situ X-Ray Diffraction Study of Crystallization Kinetics in PbZr1−xTixO3,(PZT, x = 0, 055, 1.0), Chem. Mater., 1994, 6(6), p 750–754.CrossRef
42.
Zurück zum Zitat A.Z. Simoes, A.H.M. Gonzalez, M.A. Zaghete, J.A. Varela, and B.D. Stojanovic, Effects of Annealing on the Crystallization and Roughness of PLZT Thin Films, Thin Solid Films., 2001, 384(1), p 132–137.CrossRef A.Z. Simoes, A.H.M. Gonzalez, M.A. Zaghete, J.A. Varela, and B.D. Stojanovic, Effects of Annealing on the Crystallization and Roughness of PLZT Thin Films, Thin Solid Films., 2001, 384(1), p 132–137.CrossRef
43.
Zurück zum Zitat S. Kandasamy et al., Heat Treatment Effects on the Formation of Lanthanum-Modified Lead Zirconate Titanate Thin Films, Mater. Lett., 2008, 62(3), p 370–373.CrossRef S. Kandasamy et al., Heat Treatment Effects on the Formation of Lanthanum-Modified Lead Zirconate Titanate Thin Films, Mater. Lett., 2008, 62(3), p 370–373.CrossRef
44.
Zurück zum Zitat G.H. Haertling, Thickness Dependent Properties of Acetate-Derived PLZT Films, Integr. Ferroelectr., 1997, 14(1–4), p 219–228.CrossRef G.H. Haertling, Thickness Dependent Properties of Acetate-Derived PLZT Films, Integr. Ferroelectr., 1997, 14(1–4), p 219–228.CrossRef
45.
Zurück zum Zitat H. Pan, Y. Zeng, Y. Shen, Y.-H. Lin, and C.-W. Nan, Thickness-Dependent Dielectric and Energy Storage Properties of (Pb0.96La0.04)(Zr0.98Ti0.02)O3 Antiferroelectric Thin Films, J. Appl. Phys., 2016, 119(12), p 124106.CrossRef H. Pan, Y. Zeng, Y. Shen, Y.-H. Lin, and C.-W. Nan, Thickness-Dependent Dielectric and Energy Storage Properties of (Pb0.96La0.04)(Zr0.98Ti0.02)O3 Antiferroelectric Thin Films, J. Appl. Phys., 2016, 119(12), p 124106.CrossRef
46.
Zurück zum Zitat C. Neusel, H. Jelitto, D. Schmidt, R. Janßen, F. Felten, and G.A. Schneider, Thickness-Dependence of the Breakdown Strength: Analysis of the Dielectric and Mechanical Failure, J. Eur. Ceram. Soc., 2015, 35(1), p 113–123.CrossRef C. Neusel, H. Jelitto, D. Schmidt, R. Janßen, F. Felten, and G.A. Schneider, Thickness-Dependence of the Breakdown Strength: Analysis of the Dielectric and Mechanical Failure, J. Eur. Ceram. Soc., 2015, 35(1), p 113–123.CrossRef
47.
Zurück zum Zitat M.D. Nguyen, D.T. Tran, H.T. Dang, C.T. Nguyen, G. Rijnders, and H.N. Vu, Relaxor-Ferroelectric Films for Dielectric Tunable Applications: Effect of Film Thickness and Applied Electric Field, Materials, 2021, 14(21), p 6448.PubMedPubMedCentralCrossRef M.D. Nguyen, D.T. Tran, H.T. Dang, C.T. Nguyen, G. Rijnders, and H.N. Vu, Relaxor-Ferroelectric Films for Dielectric Tunable Applications: Effect of Film Thickness and Applied Electric Field, Materials, 2021, 14(21), p 6448.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat J. Oh et al., The Dependence of Dielectric Properties on the Thickness of (Ba.Sr) TiO3 Thin Films, Curr. Appl. Phys., 2007, 7(2), p 168–171.CrossRef J. Oh et al., The Dependence of Dielectric Properties on the Thickness of (Ba.Sr) TiO3 Thin Films, Curr. Appl. Phys., 2007, 7(2), p 168–171.CrossRef
49.
Zurück zum Zitat J. Pérez De La Cruz, E. Joanni, P.M. Vilarinho, and A.L. Kholkin, Thickness Effect on the Dielectric, Ferroelectric, and Piezoelectric Properties of Ferroelectric Lead Zirconate Titanate Thin Films, J. Appl. Phys., 2010, 108(11), p 114106.CrossRef J. Pérez De La Cruz, E. Joanni, P.M. Vilarinho, and A.L. Kholkin, Thickness Effect on the Dielectric, Ferroelectric, and Piezoelectric Properties of Ferroelectric Lead Zirconate Titanate Thin Films, J. Appl. Phys., 2010, 108(11), p 114106.CrossRef
50.
Zurück zum Zitat X. Hao, J. Zhai, F. Zhou, X. Song, and S. An, Thickness and Frequency Dependence of Electric-Field-Induced Strains of Sol-Gel Derived (Pb0.97La0.02)(Zr0.95Ti0.05)O3 Antiferroelectric Films, J. Sol-gel Sci. Technol., 2010, 53(2), p 366–371.CrossRef X. Hao, J. Zhai, F. Zhou, X. Song, and S. An, Thickness and Frequency Dependence of Electric-Field-Induced Strains of Sol-Gel Derived (Pb0.97La0.02)(Zr0.95Ti0.05)O3 Antiferroelectric Films, J. Sol-gel Sci. Technol., 2010, 53(2), p 366–371.CrossRef
51.
Zurück zum Zitat K. Natori, D. Otani, and N. Sano, Thickness Dependence of the Effective Dielectric Constant in a Thin Film Capacitor, Appl. Phys. Lett., 1998, 73(5), p 632–634.CrossRef K. Natori, D. Otani, and N. Sano, Thickness Dependence of the Effective Dielectric Constant in a Thin Film Capacitor, Appl. Phys. Lett., 1998, 73(5), p 632–634.CrossRef
52.
Zurück zum Zitat M. Avrami, Granulation, Phase change, and Microstructure Kinetics of Phase Change. III, J. Chem. Phys., 1941, 9(2), p 177–184.CrossRef M. Avrami, Granulation, Phase change, and Microstructure Kinetics of Phase Change. III, J. Chem. Phys., 1941, 9(2), p 177–184.CrossRef
53.
Zurück zum Zitat E. Fatuzzo, Theoretical Considerations on the Switching Transient in Ferroelectrics, Phys. Rev., 1962, 127(6), p 1999.CrossRef E. Fatuzzo, Theoretical Considerations on the Switching Transient in Ferroelectrics, Phys. Rev., 1962, 127(6), p 1999.CrossRef
54.
Zurück zum Zitat Y. Ishibashi and Y. Takagi, Note on ferroelectric domain switching, J. Phys. Soc. Jpn., 1971, 31(2), p 506–510.CrossRef Y. Ishibashi and Y. Takagi, Note on ferroelectric domain switching, J. Phys. Soc. Jpn., 1971, 31(2), p 506–510.CrossRef
55.
Zurück zum Zitat V. Gopalan and T.E. Mitchell, In Situ Video Observation of 180 Domain Switching in LiTaO3 by Electro-Optic Imaging Microscopy, J. Appl. Phys., 1991, 85(4), p 2304–2311.CrossRef V. Gopalan and T.E. Mitchell, In Situ Video Observation of 180 Domain Switching in LiTaO3 by Electro-Optic Imaging Microscopy, J. Appl. Phys., 1991, 85(4), p 2304–2311.CrossRef
56.
Zurück zum Zitat R. Gaynutdinov, S. Yudin, S. Ducharme, and V. Fridkin, Homogeneous Switching in Ultrathin Ferroelectric Films, J. Phys. Condens. Matter, 2011, 24(1), p 015902.PubMedCrossRef R. Gaynutdinov, S. Yudin, S. Ducharme, and V. Fridkin, Homogeneous Switching in Ultrathin Ferroelectric Films, J. Phys. Condens. Matter, 2011, 24(1), p 015902.PubMedCrossRef
57.
Zurück zum Zitat M.J. Zou, Y.L. Tang, Y.P. Feng, W.R. Geng, X.L. Ma, and Y.L. Zhu, Influence of Flexoelectric Effects on Domain Switching in Ferroelectric Films, J. Appl. Phys., 2021, 129(18), p 184103.CrossRef M.J. Zou, Y.L. Tang, Y.P. Feng, W.R. Geng, X.L. Ma, and Y.L. Zhu, Influence of Flexoelectric Effects on Domain Switching in Ferroelectric Films, J. Appl. Phys., 2021, 129(18), p 184103.CrossRef
58.
Zurück zum Zitat Z. Hu, B. Ma, S. Liu, M. Narayanan, and U. Balachandran, Relaxor Behavior and Energy Storage Performance of Ferroelectric PLZT Thin Films with Different Zr/Ti Ratios, Ceram. Int., 2014, 40(1), p 557–562.CrossRef Z. Hu, B. Ma, S. Liu, M. Narayanan, and U. Balachandran, Relaxor Behavior and Energy Storage Performance of Ferroelectric PLZT Thin Films with Different Zr/Ti Ratios, Ceram. Int., 2014, 40(1), p 557–562.CrossRef
59.
Zurück zum Zitat B. Ma, S. Liu, S. Tong, M. Narayanan, and U. Balachandran, Enhanced Dielectric Properties of Pb0.92La0.08Zr0.52Ti0.48O3 Films with Compressive Stress, J. Appl. Phys., 2012, 112(11), p 114117.CrossRef B. Ma, S. Liu, S. Tong, M. Narayanan, and U. Balachandran, Enhanced Dielectric Properties of Pb0.92La0.08Zr0.52Ti0.48O3 Films with Compressive Stress, J. Appl. Phys., 2012, 112(11), p 114117.CrossRef
60.
Zurück zum Zitat S. Tong et al., Effect of Lanthanum Content and Substrate Strain on Structural and Electrical Properties of Lead Lanthanum Zirconate Titanate thin Films, Mater. Chem. Phys., 2013, 140(2–3), p 427–430.CrossRef S. Tong et al., Effect of Lanthanum Content and Substrate Strain on Structural and Electrical Properties of Lead Lanthanum Zirconate Titanate thin Films, Mater. Chem. Phys., 2013, 140(2–3), p 427–430.CrossRef
61.
Zurück zum Zitat W. Xu, Q. Li, Z. Yin, X. Wang, and H. Zou, Effect of La Doping on Crystalline Orientation, Microstructure and Dielectric Properties of PZT Thin Films, Mater. Test., 2017, 59(10), p 885–889.CrossRef W. Xu, Q. Li, Z. Yin, X. Wang, and H. Zou, Effect of La Doping on Crystalline Orientation, Microstructure and Dielectric Properties of PZT Thin Films, Mater. Test., 2017, 59(10), p 885–889.CrossRef
62.
Zurück zum Zitat A. Antony Jeyaseelan and S. Dutta, Effect of Ligand Concentration on Microstructure, Ferroelectric and Piezoelectric Properties of PLZT Film, Mater. Chem. Phys., 2015, 162, p 487–490.CrossRef A. Antony Jeyaseelan and S. Dutta, Effect of Ligand Concentration on Microstructure, Ferroelectric and Piezoelectric Properties of PLZT Film, Mater. Chem. Phys., 2015, 162, p 487–490.CrossRef
63.
Zurück zum Zitat N. Md, Impact of Fatigue Behavior on Energy Storage Performance in Dielectric Thin-Film Capacitors, J. Eur. Ceram. Soc., 2020, 40(5), p 1886–1895.CrossRef N. Md, Impact of Fatigue Behavior on Energy Storage Performance in Dielectric Thin-Film Capacitors, J. Eur. Ceram. Soc., 2020, 40(5), p 1886–1895.CrossRef
64.
Zurück zum Zitat A. Pandey, S. Dalal, S. Dutta, and A. Dixit, Structural Characterization of Polycrystalline Thin Films by X-ray Diffraction Techniques, J. Mater. Sci.: Mater. Electron., 2021, 32, p 1341–1368. A. Pandey, S. Dalal, S. Dutta, and A. Dixit, Structural Characterization of Polycrystalline Thin Films by X-ray Diffraction Techniques, J. Mater. Sci.: Mater. Electron., 2021, 32, p 1341–1368.
65.
Zurück zum Zitat F. Vassenden, G. Linker, and J. Geerk, Growth Direction Control YBCO Thin Films, Physica C, 1991, 175(5–6), p 566–572.CrossRef F. Vassenden, G. Linker, and J. Geerk, Growth Direction Control YBCO Thin Films, Physica C, 1991, 175(5–6), p 566–572.CrossRef
66.
Zurück zum Zitat T. Nakamura, Y. Yamada, T. Kusumori, H. Minoura, and H. Muto, Improvement in the Crystallinity of ZnO Thin Films by Introduction of a Buffer Layer, Thin Solid Films, 2002, 411(1), p 60–64.CrossRef T. Nakamura, Y. Yamada, T. Kusumori, H. Minoura, and H. Muto, Improvement in the Crystallinity of ZnO Thin Films by Introduction of a Buffer Layer, Thin Solid Films, 2002, 411(1), p 60–64.CrossRef
67.
Zurück zum Zitat N. Jackson, F. Stam, J. O’Brien, L. Kailas, A. Mathewson, and C. O’Murchu, Crystallinity and Mechanical Effects From Annealing Parylene Thin Films, Thin Solid Films, 2016, 603, p 371–376.CrossRef N. Jackson, F. Stam, J. O’Brien, L. Kailas, A. Mathewson, and C. O’Murchu, Crystallinity and Mechanical Effects From Annealing Parylene Thin Films, Thin Solid Films, 2016, 603, p 371–376.CrossRef
68.
Zurück zum Zitat M. Toyoda, Y. Nanbu, Y. Nakazawa, M. Hirano, and M. Inagaki, Effect of Crystallinity of Anatase on Photoactivity for Methyleneblue Decomposition in Water, Appl. Catal. B Environ., 2004, 49(4), p 227–232.CrossRef M. Toyoda, Y. Nanbu, Y. Nakazawa, M. Hirano, and M. Inagaki, Effect of Crystallinity of Anatase on Photoactivity for Methyleneblue Decomposition in Water, Appl. Catal. B Environ., 2004, 49(4), p 227–232.CrossRef
69.
Zurück zum Zitat X. Hao, J. Zhou, and S. An, Effects of PbO Content on the Dielectric Properties and Energy Storage Performance of (Pb0.97La0.02)(Zr0.97Ti0.03)O3 Antiferroelectric Thin Films, J. Am. Ceram. Soc., 2011, 94(6), p 1647–1650.CrossRef X. Hao, J. Zhou, and S. An, Effects of PbO Content on the Dielectric Properties and Energy Storage Performance of (Pb0.97La0.02)(Zr0.97Ti0.03)O3 Antiferroelectric Thin Films, J. Am. Ceram. Soc., 2011, 94(6), p 1647–1650.CrossRef
70.
Zurück zum Zitat S. Gariglio, N. Stucki, J.-M. Triscone, and G. Triscone, Strain relaxation and critical temperature in epitaxial ferroelectric Pb (Zr0.20Ti0.80)O3 thin films, Appl. Phys. Lett., 2007, 90(20), p 202905.CrossRef S. Gariglio, N. Stucki, J.-M. Triscone, and G. Triscone, Strain relaxation and critical temperature in epitaxial ferroelectric Pb (Zr0.20Ti0.80)O3 thin films, Appl. Phys. Lett., 2007, 90(20), p 202905.CrossRef
71.
Zurück zum Zitat Z. Zhao et al., Grain-Size Effects on the Ferroelectric Behavior of Dense Nanocrystalline BaTiO3 Ceramics, Phys. Rev. B, 2004, 70(2), p 024107.CrossRef Z. Zhao et al., Grain-Size Effects on the Ferroelectric Behavior of Dense Nanocrystalline BaTiO3 Ceramics, Phys. Rev. B, 2004, 70(2), p 024107.CrossRef
72.
Zurück zum Zitat M.D. Nguyen, Tuning the Energy Storage Performance, Piezoelectric Strain and Strain Hysteresis of Relaxor PLZT Thin Films Through Controlled Microstructure by Changing the Ablation Rate, J. Eur. Ceram. Soc., 2019, 39(6), p 2076–2081.CrossRef M.D. Nguyen, Tuning the Energy Storage Performance, Piezoelectric Strain and Strain Hysteresis of Relaxor PLZT Thin Films Through Controlled Microstructure by Changing the Ablation Rate, J. Eur. Ceram. Soc., 2019, 39(6), p 2076–2081.CrossRef
73.
Zurück zum Zitat S.J. Kang and Y.H. Joung, Fatigue, Retention and Switching Properties of PLZT (x/30/70) Thin Films with Various La Concentrations, J. Mater. Sci., 2007, 42(18), p 7899–7905.CrossRef S.J. Kang and Y.H. Joung, Fatigue, Retention and Switching Properties of PLZT (x/30/70) Thin Films with Various La Concentrations, J. Mater. Sci., 2007, 42(18), p 7899–7905.CrossRef
74.
Zurück zum Zitat G. Viola, K. Boon Chong, F. Guiu, and M. John Reece, Role of Internal Field and Exhaustion in Ferroelectric Switching, J. Appl. Phys., 2014, 115(3), p 034106.CrossRef G. Viola, K. Boon Chong, F. Guiu, and M. John Reece, Role of Internal Field and Exhaustion in Ferroelectric Switching, J. Appl. Phys., 2014, 115(3), p 034106.CrossRef
75.
Zurück zum Zitat Y. Tan et al., Unfolding Grain Size Effects in Barium Titanate Ferroelectric Ceramics, Sci. Rep., 2015, 5(1), p 1–9. Y. Tan et al., Unfolding Grain Size Effects in Barium Titanate Ferroelectric Ceramics, Sci. Rep., 2015, 5(1), p 1–9.
76.
Zurück zum Zitat M. Eriksson et al., Ferroelectric Domain Structures and Electrical properties of Fine-Grained Lead-Free Sodium potassium Niobate Ceramics, J. Am. Ceram. Soc., 2011, 94(10), p 3391–3396.CrossRef M. Eriksson et al., Ferroelectric Domain Structures and Electrical properties of Fine-Grained Lead-Free Sodium potassium Niobate Ceramics, J. Am. Ceram. Soc., 2011, 94(10), p 3391–3396.CrossRef
77.
Zurück zum Zitat J.-F. Chou, M.-H. Lin, and H.-Y. Lu, Ferroelectric Domains in Pressureless-Sintered Barium Titanate, Acta Mater., 2000, 48(13), p 3569–3579.CrossRef J.-F. Chou, M.-H. Lin, and H.-Y. Lu, Ferroelectric Domains in Pressureless-Sintered Barium Titanate, Acta Mater., 2000, 48(13), p 3569–3579.CrossRef
79.
Zurück zum Zitat H.T. Martirena and J.C. Burfoot, Grain-Size Effects on Properties of Some Ferroelectric Ceramics, J. Phys. C Solid State Phys., 1974, 7(17), p 3182.CrossRef H.T. Martirena and J.C. Burfoot, Grain-Size Effects on Properties of Some Ferroelectric Ceramics, J. Phys. C Solid State Phys., 1974, 7(17), p 3182.CrossRef
80.
Zurück zum Zitat A. Kumar, S.R. Emani, K.C.J. Raju, J. Ryu, and A.R. James, Investigation of the Effects of Reduced Sintering Temperature on Dielectric, Ferroelectric and Energy Storage Properties of Microwave-Sintered PLZT 8/60/40 Ceramics, Energies, 2020, 13(23), p 6457.CrossRef A. Kumar, S.R. Emani, K.C.J. Raju, J. Ryu, and A.R. James, Investigation of the Effects of Reduced Sintering Temperature on Dielectric, Ferroelectric and Energy Storage Properties of Microwave-Sintered PLZT 8/60/40 Ceramics, Energies, 2020, 13(23), p 6457.CrossRef
81.
Zurück zum Zitat M.D. Nguyen, C.T. Nguyen, H.N. Vu, and G. Rijnders, Experimental Evidence of Breakdown Strength and its Effect on Energy-Storage Performance in Normal and Relaxor Ferroelectric Films, Curr. Appl. Phys., 2019, 19(9), p 1040–1045.CrossRef M.D. Nguyen, C.T. Nguyen, H.N. Vu, and G. Rijnders, Experimental Evidence of Breakdown Strength and its Effect on Energy-Storage Performance in Normal and Relaxor Ferroelectric Films, Curr. Appl. Phys., 2019, 19(9), p 1040–1045.CrossRef
82.
Zurück zum Zitat M.D. Nguyen, E.P. Houwman, and G. Rijnders, Energy Storage Performance and Electric Breakdown Field of Thin Relaxor Ferroelectric PLZT Films Using Microstructure and Growth Orientation Control, J. Phys. Chem. C, 2018, 122(27), p 15171–15179.CrossRef M.D. Nguyen, E.P. Houwman, and G. Rijnders, Energy Storage Performance and Electric Breakdown Field of Thin Relaxor Ferroelectric PLZT Films Using Microstructure and Growth Orientation Control, J. Phys. Chem. C, 2018, 122(27), p 15171–15179.CrossRef
83.
Zurück zum Zitat T. Hirano, H. Kawai, H. Suzuki, S. Kaneko, and A. Wada, Effect of Excess Lead Addition on Processing of Sol-Gel Derived Lanthanum-Modified Lead Zirconate Titanate Thin Film, Jpn. J. Appl. Phys., 1999, 38(9S), p 5354.CrossRef T. Hirano, H. Kawai, H. Suzuki, S. Kaneko, and A. Wada, Effect of Excess Lead Addition on Processing of Sol-Gel Derived Lanthanum-Modified Lead Zirconate Titanate Thin Film, Jpn. J. Appl. Phys., 1999, 38(9S), p 5354.CrossRef
84.
Zurück zum Zitat S. Tong et al., Lead Lanthanum Zirconate Titanate Ceramic Thin Films for Energy Storage, ACS Appl. Mater. Interfaces, 2013, 5(4), p 1474–1480.PubMedCrossRef S. Tong et al., Lead Lanthanum Zirconate Titanate Ceramic Thin Films for Energy Storage, ACS Appl. Mater. Interfaces, 2013, 5(4), p 1474–1480.PubMedCrossRef
85.
Zurück zum Zitat B. Ma et al., Residual Stress of (Pb0.92La0.08)(Zr0.52Ti0.48)O3 Films Grown by a Sol–Gel Process, Smart Mater. Struct., 2013, 22(5), p 055019.CrossRef B. Ma et al., Residual Stress of (Pb0.92La0.08)(Zr0.52Ti0.48)O3 Films Grown by a Sol–Gel Process, Smart Mater. Struct., 2013, 22(5), p 055019.CrossRef
86.
Zurück zum Zitat C. Vijayaraghavan, T.C. Goel, and R.G. Mendiratta, Structural and Electrical Properties of Sol-Gel Synthesized PLZT Thin Films, IEEE Trans. Dielectr. Electr. Insul., 1999, 6(1), p 69–72.CrossRef C. Vijayaraghavan, T.C. Goel, and R.G. Mendiratta, Structural and Electrical Properties of Sol-Gel Synthesized PLZT Thin Films, IEEE Trans. Dielectr. Electr. Insul., 1999, 6(1), p 69–72.CrossRef
87.
Zurück zum Zitat Y. Zhao, X. Hao, and Q. Zhang, Energy-Storage Properties and Electrocaloric Effect of Pb (1–3 x/2) La x Zr0.85Ti0.15O3 Antiferroelectric Thick Films, ACS Appl. Mater. Interfaces, 2014, 6(14), p 11633–11639.PubMedCrossRef Y. Zhao, X. Hao, and Q. Zhang, Energy-Storage Properties and Electrocaloric Effect of Pb (1–3 x/2) La x Zr0.85Ti0.15O3 Antiferroelectric Thick Films, ACS Appl. Mater. Interfaces, 2014, 6(14), p 11633–11639.PubMedCrossRef
88.
Zurück zum Zitat M.D. Nguyen, E.P. Houwman, M. Dekkers, C.T. Nguyen, H.N. Vu, and G. Rijnders, Research Update: Enhanced Energy Storage Density and Energy Efficiency of Epitaxial Pb0.9La0.1(Zr0.52Ti0.48)O3 Relaxor-Ferroelectric Thin-Films Deposited on Silicon by Pulsed Laser Deposition, APL Mater., 2016, 4(8), p 080701.CrossRef M.D. Nguyen, E.P. Houwman, M. Dekkers, C.T. Nguyen, H.N. Vu, and G. Rijnders, Research Update: Enhanced Energy Storage Density and Energy Efficiency of Epitaxial Pb0.9La0.1(Zr0.52Ti0.48)O3 Relaxor-Ferroelectric Thin-Films Deposited on Silicon by Pulsed Laser Deposition, APL Mater., 2016, 4(8), p 080701.CrossRef
89.
Zurück zum Zitat E. Brown, C. Ma, J. Acharya, B. Ma, J. Wu, and J. Li, Controlling Dielectric and Relaxor-Ferroelectric Properties for Energy Storage by tuning Pb0.92La0.08Zr0.52Ti0.48O3 Film Thickness, ACS Appl. Mater. Interfaces, 2014, 6(24), p 22417–22422.PubMedCrossRef E. Brown, C. Ma, J. Acharya, B. Ma, J. Wu, and J. Li, Controlling Dielectric and Relaxor-Ferroelectric Properties for Energy Storage by tuning Pb0.92La0.08Zr0.52Ti0.48O3 Film Thickness, ACS Appl. Mater. Interfaces, 2014, 6(24), p 22417–22422.PubMedCrossRef
90.
Zurück zum Zitat B. Ma, D.-K. Kwon, M. Narayanan, and U. Balachandran, Dielectric Properties and Energy Storage Capability of Antiferroelectric Pb0.92La0.08Zr0.95Ti0.05O3 Film-on-Foil Capacitors, J. Mater. Res., 2009, 24, p 2993.CrossRef B. Ma, D.-K. Kwon, M. Narayanan, and U. Balachandran, Dielectric Properties and Energy Storage Capability of Antiferroelectric Pb0.92La0.08Zr0.95Ti0.05O3 Film-on-Foil Capacitors, J. Mater. Res., 2009, 24, p 2993.CrossRef
91.
Zurück zum Zitat I. K. Yoo and S. B. Desu., “Fatigue parameters of lead zirconate titanate thin films, in MRS Online Proceedings Library (OPL), 1991, p. 243. I. K. Yoo and S. B. Desu., “Fatigue parameters of lead zirconate titanate thin films, in MRS Online Proceedings Library (OPL), 1991, p. 243.
92.
Zurück zum Zitat J.F. Scott and C.A.P. de Araujo, Ferroelectric Memories, Science, 1989, 246(4936), p 1400–1405.PubMedCrossRef J.F. Scott and C.A.P. de Araujo, Ferroelectric Memories, Science, 1989, 246(4936), p 1400–1405.PubMedCrossRef
93.
Zurück zum Zitat L. He and D. Vanderbilt, First-Principles Study of Oxygen-Vacancy Pinning of Domain Walls in PbTiO3, Phys. Rev. B, 2003, 68(13), p 134103.CrossRef L. He and D. Vanderbilt, First-Principles Study of Oxygen-Vacancy Pinning of Domain Walls in PbTiO3, Phys. Rev. B, 2003, 68(13), p 134103.CrossRef
94.
Zurück zum Zitat Y.-K. Choi, T. Hoshina, H. Takeda, and T. Tsurumi, Effect of Oxygen Vacancy and Oxygen Vacancy Migration on Dielectric Response of BaTiO3-Based Ceramics, Jpn. J. Appl. Phys., 2011, 50, p 031504.CrossRef Y.-K. Choi, T. Hoshina, H. Takeda, and T. Tsurumi, Effect of Oxygen Vacancy and Oxygen Vacancy Migration on Dielectric Response of BaTiO3-Based Ceramics, Jpn. J. Appl. Phys., 2011, 50, p 031504.CrossRef
95.
Zurück zum Zitat C.S. Hwang, Thickness-Dependent Dielectric Constants of (Ba, Sr) TiO3 Thin Films with Pt or Conducting Oxide Electrodes, J. Appl. Phys., 2002, 92(1), p 432–437.CrossRef C.S. Hwang, Thickness-Dependent Dielectric Constants of (Ba, Sr) TiO3 Thin Films with Pt or Conducting Oxide Electrodes, J. Appl. Phys., 2002, 92(1), p 432–437.CrossRef
96.
Zurück zum Zitat T.M. Doan, L. Lu, and M.O. Lai, Thickness Dependence of Structure, Tunable and Pyroelectric Properties of Laser-Ablated Ba (Zr0.25Ti0.75)O3 Thin Films, J. Phys. D. Appl. Phys., 2010, 43(3), p 035402.CrossRef T.M. Doan, L. Lu, and M.O. Lai, Thickness Dependence of Structure, Tunable and Pyroelectric Properties of Laser-Ablated Ba (Zr0.25Ti0.75)O3 Thin Films, J. Phys. D. Appl. Phys., 2010, 43(3), p 035402.CrossRef
97.
Zurück zum Zitat S. Song, J. Zhai, L. Gao, X. Yao, S. Lu, and Z. Xu, Thickness-Dependent Dielectric and Tunable Properties of Barium stannate Titanate Thin Films, J. Appl. Phys., 2009, 106(2), p 024104.CrossRef S. Song, J. Zhai, L. Gao, X. Yao, S. Lu, and Z. Xu, Thickness-Dependent Dielectric and Tunable Properties of Barium stannate Titanate Thin Films, J. Appl. Phys., 2009, 106(2), p 024104.CrossRef
98.
Zurück zum Zitat H. Yang, F. Yan, Y. Lin, T. Wang, L. He, and F. Wang, A Lead Free Relaxation and High Energy Storage Efficiency Ceramics for Energy Storage Applications, J. Alloys Compd., 2017, 710, p 436.CrossRef H. Yang, F. Yan, Y. Lin, T. Wang, L. He, and F. Wang, A Lead Free Relaxation and High Energy Storage Efficiency Ceramics for Energy Storage Applications, J. Alloys Compd., 2017, 710, p 436.CrossRef
99.
Zurück zum Zitat Y. Podgorny, K. Vorotilov, P. Lavrov, and A. Sigov, Leakage Currents in Porous PZT Films, Ferroelectrics, 2016, 503(1), p 77–84.CrossRef Y. Podgorny, K. Vorotilov, P. Lavrov, and A. Sigov, Leakage Currents in Porous PZT Films, Ferroelectrics, 2016, 503(1), p 77–84.CrossRef
100.
Zurück zum Zitat P. Shi et al., Study on the Properties of Pb (Zr, Ti)O3 Thin Films Grown Alternately by Pulsed Laser Deposition and Sol-Gel Method, Phys. Lett. A, 2020, 384(11), p 126232.CrossRef P. Shi et al., Study on the Properties of Pb (Zr, Ti)O3 Thin Films Grown Alternately by Pulsed Laser Deposition and Sol-Gel Method, Phys. Lett. A, 2020, 384(11), p 126232.CrossRef
101.
Zurück zum Zitat C.M. Raghavan, J.W. Kim, and S.S. Kim, Effects of Ho and Ti Doping on Structural and Electrical Properties of BiFeO3 Thin Films, J. Am. Ceram. Soc., 2014, 97(1), p 235–240.CrossRef C.M. Raghavan, J.W. Kim, and S.S. Kim, Effects of Ho and Ti Doping on Structural and Electrical Properties of BiFeO3 Thin Films, J. Am. Ceram. Soc., 2014, 97(1), p 235–240.CrossRef
102.
Zurück zum Zitat J. Narayan, R.A. Weeks, and E. Sonder, Aggregation of Defects and Thermal-Electric Breakdown in MgO, J. Appl. Phys., 1978, 49(12), p 5977–5981.CrossRef J. Narayan, R.A. Weeks, and E. Sonder, Aggregation of Defects and Thermal-Electric Breakdown in MgO, J. Appl. Phys., 1978, 49(12), p 5977–5981.CrossRef
103.
Zurück zum Zitat K. Kukli et al., Properties of Hafnium Oxide Films Grown by Atomic Layer Deposition from Hafnium Tetraiodide and Oxygen, J. Appl. Phys., 2002, 92(10), p 5698–5703.CrossRef K. Kukli et al., Properties of Hafnium Oxide Films Grown by Atomic Layer Deposition from Hafnium Tetraiodide and Oxygen, J. Appl. Phys., 2002, 92(10), p 5698–5703.CrossRef
104.
Zurück zum Zitat K. McKenna et al., Grain Boundary Mediated Leakage Current in Polycrystalline HfO2 Films, Microelectron. Eng., 2011, 88(7), p 1272–1275.CrossRef K. McKenna et al., Grain Boundary Mediated Leakage Current in Polycrystalline HfO2 Films, Microelectron. Eng., 2011, 88(7), p 1272–1275.CrossRef
105.
Zurück zum Zitat K. Murakami, M. Rommel, V. Yanev, A.J. Bauer, and L. Frey, Current Voltage Characteristics through Grains and Grain Boundaries of High-k Dielectric Thin Films Measured by Tunneling Atomic Force Microscopy, AIP Conf. Proc., 2011, 1395, p 134–138.CrossRef K. Murakami, M. Rommel, V. Yanev, A.J. Bauer, and L. Frey, Current Voltage Characteristics through Grains and Grain Boundaries of High-k Dielectric Thin Films Measured by Tunneling Atomic Force Microscopy, AIP Conf. Proc., 2011, 1395, p 134–138.CrossRef
Metadaten
Titel
Process-Controlled Domain Switching and Improved Ferroelectric Properties in Lanthanum-Modified Lead Zirconate Titanate Films
verfasst von
Anina Anju Balaraman
A. Antony Jeyaseelan
Soma Dutta
Publikationsdatum
13.04.2023
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2024
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08163-2

Weitere Artikel der Ausgabe 6/2024

Journal of Materials Engineering and Performance 6/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.