Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2021

20.05.2021

Production of Cylindrical Specimens Based on the Ni-Ti System by Selective Laser Melting from Elementary Powders

verfasst von: Rebeca Vieira de Oliveira, Ygor Pereira de Lima, Eduardo Hoisler Sallet, Danilo Abílio Corrêa Gonçalves, Naiara Vieira Le Sénèchal, Edilainea Alves Oliveira Melo, Rodolfo Teixeira, Patrícia Freitas Rodrigues, Paulo Inforçatti Neto, Jorge Vicente Lopes da Silva, Luiz Paulo Brandao, Andersan dos Santos Paula

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study aimed to evaluate the potential use of elemental powders, Ni oxyreduction and Ti HDH (hydration-dehydration) to obtain the NiTi shape memory alloy in cylindrical specimens from additive manufacturing process by Selective Laser Melting with laser power and energy density under control (100 to 150 W and 25 to 40 J/mm3). Scanning electron microscopy (SEM), X-ray energy-dispersive spectroscopy (EDS) and X-ray diffraction (XRD) conjugated analyses showed that all processing parameters yield samples with Ti enriched regions surrounded by alloy layers associated to Ni3Ti, Ni3Ti2, and NiTi2 intermetallic. This evidence suggests that the parameters applied were not enough to promote the complete fusion of Ti particles, indicating that the samples presented a melting microstructure with evidence of defects located due to lack of fusion due to the irregular voids and Ti islands that resemble the irregular morphology of the starting Ti HDH powder, and pores depending on the retention of gases in the fusion pool. Each explored condition presented in its structure a set of different phases in nature and proportion, without the NiTi intermetallic. Also, justifies the apparent and real density values not compatible with the NiTi intermetallic theoretical density, but the density resulting from the mixture of different Ni-Ti system phases formed. Observing the decrease in the cracks and pores, and the real densities measured, compared with the theoretical density of the NiTi intermetally, the specimens that represent the best conditions are those produced with 125 and 150 W with 30 J/mm3 , in order not compromising the SMA properties, and would allow microstructural evolution for the formation of the NiTi through heat treatment. Although the most favorable parameters, the NiTi system did not exhibited an austenitic matrix, and then the adoption of the proposed elementary powders mixture will be promising when followed by solution heat treatment, which is one of the works under development by our research group.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.F. Hamilton, B.A. Bimber and T.A. Palmer, Correlating Microstructure And Superelasticity of Directed Energy Deposition Additive Manufactured Ni-rich NiTi alloys, J. Alloys Compd., 2017, 739, p 712–722.CrossRef R.F. Hamilton, B.A. Bimber and T.A. Palmer, Correlating Microstructure And Superelasticity of Directed Energy Deposition Additive Manufactured Ni-rich NiTi alloys, J. Alloys Compd., 2017, 739, p 712–722.CrossRef
2.
Zurück zum Zitat S. Saedi, N.S. Moghaddam, A. Amerinatanzi, M. Elahinia and H.E. Karaca, On the Effects of Selective Laser Melting Process Parameters on Microstructure and Thermomechanical Response of Ni-rich NiTi, Acta Mater., 2018, 144, p 552–560.CrossRef S. Saedi, N.S. Moghaddam, A. Amerinatanzi, M. Elahinia and H.E. Karaca, On the Effects of Selective Laser Melting Process Parameters on Microstructure and Thermomechanical Response of Ni-rich NiTi, Acta Mater., 2018, 144, p 552–560.CrossRef
3.
Zurück zum Zitat W. Chen, Q. Yang, S. Huang, S. Huang, J.J. Kruzic and X. Li, Laser Power Modulated Microstructure Evolution, Phase Transformation and Mechanical Properties in NiTi Fabricated by Laser Powder Bed Fusion, J. Alloys Compd., 2020, 861, p 157959.CrossRef W. Chen, Q. Yang, S. Huang, S. Huang, J.J. Kruzic and X. Li, Laser Power Modulated Microstructure Evolution, Phase Transformation and Mechanical Properties in NiTi Fabricated by Laser Powder Bed Fusion, J. Alloys Compd., 2020, 861, p 157959.CrossRef
4.
Zurück zum Zitat S. Parvizi, V. Hasannaeimi, E. Saebnoori, T. Shahrabi and S.K. Sadrnezhaad, Effective Parameters on the Final Properties of NiTi-Based Alloys Manufactured by Powder Metallurgy Methods: A Review, Prog. Mater. Sci., 2020, 117, p 100739.CrossRef S. Parvizi, V. Hasannaeimi, E. Saebnoori, T. Shahrabi and S.K. Sadrnezhaad, Effective Parameters on the Final Properties of NiTi-Based Alloys Manufactured by Powder Metallurgy Methods: A Review, Prog. Mater. Sci., 2020, 117, p 100739.CrossRef
5.
Zurück zum Zitat P. Novák, H. Moravec, V. Vojtech, A. Knaisolvá, A. Skoláková, T.F. Kubatík and J. Kopeeek, Powder-Metallurgy Preparation of NiTi Shape-Memory Alloy Using Mechanical Alloying and Spark-Plasma Sintering, Mater. Tehnol., 2017, 51, p 141.CrossRef P. Novák, H. Moravec, V. Vojtech, A. Knaisolvá, A. Skoláková, T.F. Kubatík and J. Kopeeek, Powder-Metallurgy Preparation of NiTi Shape-Memory Alloy Using Mechanical Alloying and Spark-Plasma Sintering, Mater. Tehnol., 2017, 51, p 141.CrossRef
6.
Zurück zum Zitat M.H. Elahinia, M. Hashemi, M. Tabesh and S.B. Bhaduri, Manufacturing and Processing of NiTi Implants: A Review, Prog. Mater. Sci., 2012, 57(5), p 911–946.CrossRef M.H. Elahinia, M. Hashemi, M. Tabesh and S.B. Bhaduri, Manufacturing and Processing of NiTi Implants: A Review, Prog. Mater. Sci., 2012, 57(5), p 911–946.CrossRef
7.
Zurück zum Zitat S. Moghaddam, Toward Patient Specific Long Lasting Metallic Implants for Mandibular Segmental Defects, University of Toledo, 2015. S. Moghaddam, Toward Patient Specific Long Lasting Metallic Implants for Mandibular Segmental Defects, University of Toledo, 2015.
8.
Zurück zum Zitat M.H. Elahinia, N.S. Moghaddam, M.T. Andani, A. Amerinatanzi, B.A. Bimber and R.F. Hamilton, Fabrication of NiTi Through Additive Manufacturing: A Review, Prog. Mater. Sci., 2016, 83, p 630–663.CrossRef M.H. Elahinia, N.S. Moghaddam, M.T. Andani, A. Amerinatanzi, B.A. Bimber and R.F. Hamilton, Fabrication of NiTi Through Additive Manufacturing: A Review, Prog. Mater. Sci., 2016, 83, p 630–663.CrossRef
9.
Zurück zum Zitat A. Ziolkowski, Pseudoelasticity of Shape Memory Alloys: Theory and Experimental Studies, 1ª ed, B. Heinemann, Elsevier Science, 2015, p 168. A. Ziolkowski, Pseudoelasticity of Shape Memory Alloys: Theory and Experimental Studies, 1ª ed, B. Heinemann, Elsevier Science, 2015, p 168.
10.
Zurück zum Zitat J.M. Walker, C. Haberland, M. Taheri Andani, H.E. Karaca, D. Dean and M. Elahinia, Process Development and Characterization of Additively Manufactured Nickel–Titanium Shape Memory Parts, J. Intell. Mater. Syst. Struct., 2016, 27(19), p 2653–2660.CrossRef J.M. Walker, C. Haberland, M. Taheri Andani, H.E. Karaca, D. Dean and M. Elahinia, Process Development and Characterization of Additively Manufactured Nickel–Titanium Shape Memory Parts, J. Intell. Mater. Syst. Struct., 2016, 27(19), p 2653–2660.CrossRef
11.
Zurück zum Zitat R.F. Hamilton, B.A. Bimber, M.T. Andani and M. Elahinia, Multi-Scale Shape Memory Effect Recovery in NiTi Alloys Additive Manufactured by Selective Laser Melting and Laser Directed Energy Deposition, J. Mater. Process. Technol., 2017, 250, p 55–64.CrossRef R.F. Hamilton, B.A. Bimber, M.T. Andani and M. Elahinia, Multi-Scale Shape Memory Effect Recovery in NiTi Alloys Additive Manufactured by Selective Laser Melting and Laser Directed Energy Deposition, J. Mater. Process. Technol., 2017, 250, p 55–64.CrossRef
12.
Zurück zum Zitat J.P. Oliveira, A.J. Cavaleiro, N. Schell, A. Stark, R.M. Miranda, J.L. Ocana and F.M. Braz Fernandes, Effects of Laser Processing on the Transformation Characteristics of NiTi: A Contribute to Additive Manufacturing, Scripta Mater., 2018, 152, p 122–126.CrossRef J.P. Oliveira, A.J. Cavaleiro, N. Schell, A. Stark, R.M. Miranda, J.L. Ocana and F.M. Braz Fernandes, Effects of Laser Processing on the Transformation Characteristics of NiTi: A Contribute to Additive Manufacturing, Scripta Mater., 2018, 152, p 122–126.CrossRef
13.
Zurück zum Zitat Z. Zeng, B. Cong, J.P. Oliveira, W. Ke, N. Schell, B. Peng and S.S. Ao, Wire and arc Additive Manufacturing of a Ni-rich NiTi Shape Memory Alloy: Microstructure and Mechanical Properties, Addit Manuf, 2020, 32, p 101051. Z. Zeng, B. Cong, J.P. Oliveira, W. Ke, N. Schell, B. Peng and S.S. Ao, Wire and arc Additive Manufacturing of a Ni-rich NiTi Shape Memory Alloy: Microstructure and Mechanical Properties, Addit Manuf, 2020, 32, p 101051.
14.
Zurück zum Zitat W. Guo, Z. Sun, Y. Yang, X. Wang, Z. Xiong, Z. Li and S. Hao, Study on the Junction Zone of NiTi Shape Memory Alloy Produced by Selective Laser Melting via a Stripe Scanning Strategy, Intermetallics, 2020, 126, p 106947.CrossRef W. Guo, Z. Sun, Y. Yang, X. Wang, Z. Xiong, Z. Li and S. Hao, Study on the Junction Zone of NiTi Shape Memory Alloy Produced by Selective Laser Melting via a Stripe Scanning Strategy, Intermetallics, 2020, 126, p 106947.CrossRef
15.
Zurück zum Zitat S. Dadbakhsh, M. Speirs, J.P. Kruth and J. Van Humbeeck, Influence of SLM on Shape Memory and Compression Behaviour of NiTi Scaffolds, CIRP Ann. Manuf. Technol., 2015, 64(1), p 209–212.CrossRef S. Dadbakhsh, M. Speirs, J.P. Kruth and J. Van Humbeeck, Influence of SLM on Shape Memory and Compression Behaviour of NiTi Scaffolds, CIRP Ann. Manuf. Technol., 2015, 64(1), p 209–212.CrossRef
16.
Zurück zum Zitat T. Bormann, B. Müller, M. Schinhammer, A. Kessler, P. Thalmann and M. Wild, Microstructure of Selective Laser Melted Nickel–titanium, Mater. Charact., 2014, 94, p 189–202.CrossRef T. Bormann, B. Müller, M. Schinhammer, A. Kessler, P. Thalmann and M. Wild, Microstructure of Selective Laser Melted Nickel–titanium, Mater. Charact., 2014, 94, p 189–202.CrossRef
17.
Zurück zum Zitat P.C. Collins, D.A. Brice, P. Samimi, I. Ghamarian and H.L. Fraser, Microstructural Control of Additively Manufactured Metallic Materials, Annu. Rev. Mater., 2016, 46, p 63–91.CrossRef P.C. Collins, D.A. Brice, P. Samimi, I. Ghamarian and H.L. Fraser, Microstructural Control of Additively Manufactured Metallic Materials, Annu. Rev. Mater., 2016, 46, p 63–91.CrossRef
18.
Zurück zum Zitat W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah and A.M. Rubenchik, Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges, Appl. Phys. Rev., 2015, 2(4), p 41304.CrossRef W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah and A.M. Rubenchik, Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges, Appl. Phys. Rev., 2015, 2(4), p 41304.CrossRef
19.
Zurück zum Zitat J.P. Kruth, S. Dadbakhsh, B. Vrancken, K. Kempen, J. Vleugels and J.V. Humbeeck, Additive Manufacturing of Metals Through Selective Laser Melting: Process Aspects and Material Developments, CRC Press, 2015. J.P. Kruth, S. Dadbakhsh, B. Vrancken, K. Kempen, J. Vleugels and J.V. Humbeeck, Additive Manufacturing of Metals Through Selective Laser Melting: Process Aspects and Material Developments, CRC Press, 2015.
20.
Zurück zum Zitat M.T. Andani, S. Saedi, A.S. Turabi, M.R. Karamooz, C. Haberland, H.E. Karaca and M. Elahinia, Mechanical and Shape Memory Properties of Porous Ni50.1Ti49.9alloys Manufactured by Selective Laser Melting, J. Mech. Behav. Biomed. Mater., 2017, 68, p 224–231.CrossRef M.T. Andani, S. Saedi, A.S. Turabi, M.R. Karamooz, C. Haberland, H.E. Karaca and M. Elahinia, Mechanical and Shape Memory Properties of Porous Ni50.1Ti49.9alloys Manufactured by Selective Laser Melting, J. Mech. Behav. Biomed. Mater., 2017, 68, p 224–231.CrossRef
21.
Zurück zum Zitat N.S. Moghaddam, S.E. Saghaian, A. Amerinatanzi, H. Ibrahim and P. LI, G.P. Toker, H.E. Karaca, and M. Elahinia, , Anisotropic Tensile and Actuation Properties of NiTi Fabricated with Selective LASER melting, Mater. Sci. Eng., 2018, 724, p 220–230.CrossRef N.S. Moghaddam, S.E. Saghaian, A. Amerinatanzi, H. Ibrahim and P. LI, G.P. Toker, H.E. Karaca, and M. Elahinia, , Anisotropic Tensile and Actuation Properties of NiTi Fabricated with Selective LASER melting, Mater. Sci. Eng., 2018, 724, p 220–230.CrossRef
22.
Zurück zum Zitat Z. Qingquan, H. Shijie, Y. Liu, Z. Xiong, W. Guo, Y. Yang, L. Cui, L. Ren and Z. Zhang, The Microstructure of a Selective Laser Melting (SLM)-Fabricated NiTi Shape Memory Alloy with Superior Tensile Property and Shape Memory Recoverability, Appl. Mater. Today, 2020, 19, p 100547.CrossRef Z. Qingquan, H. Shijie, Y. Liu, Z. Xiong, W. Guo, Y. Yang, L. Cui, L. Ren and Z. Zhang, The Microstructure of a Selective Laser Melting (SLM)-Fabricated NiTi Shape Memory Alloy with Superior Tensile Property and Shape Memory Recoverability, Appl. Mater. Today, 2020, 19, p 100547.CrossRef
23.
Zurück zum Zitat S. Dadbakhsh, B. Vrancken, J.P. Kruth, J. Luyten and J.V. Humbeeck, Texture and Anisotropy in Selective Laser Melting of NiTi Alloy, Mater. Sci. Eng., 2016, 650, p 225–232.CrossRef S. Dadbakhsh, B. Vrancken, J.P. Kruth, J. Luyten and J.V. Humbeeck, Texture and Anisotropy in Selective Laser Melting of NiTi Alloy, Mater. Sci. Eng., 2016, 650, p 225–232.CrossRef
24.
Zurück zum Zitat D. Gu and C. Ma, In-situ Formation of Ni4Ti3 Precipitate and its Effect on Pseudoelasticity in Selective Laser Melting Additive manufactured NiTi-based Composites, Appl. Surf. Sci., 2018, 441, p 862–870.CrossRef D. Gu and C. Ma, In-situ Formation of Ni4Ti3 Precipitate and its Effect on Pseudoelasticity in Selective Laser Melting Additive manufactured NiTi-based Composites, Appl. Surf. Sci., 2018, 441, p 862–870.CrossRef
25.
Zurück zum Zitat C. Wang, X.P. Tan, Z. Du, S. Chandra, Z. Sun, C.W.J. Lim, S.B. Tor, C.S. Lim and C.H. Wong, Additive Manufacturing of NiTi Shape Memory Alloys Using Pre-Mixed Powders, J. Mater. Process. Technol., 2019, 271, p 152–161.CrossRef C. Wang, X.P. Tan, Z. Du, S. Chandra, Z. Sun, C.W.J. Lim, S.B. Tor, C.S. Lim and C.H. Wong, Additive Manufacturing of NiTi Shape Memory Alloys Using Pre-Mixed Powders, J. Mater. Process. Technol., 2019, 271, p 152–161.CrossRef
26.
Zurück zum Zitat C. Zhao, H. Liang, S. Luo, J. Yang and Z. Wang, The Effect of Energy Input on Reaction, Phase Transition And Shape Memory Effect of NiTi Alloy by Selective Laser Melting, J. Alloys Compd., 2020, 817, p 153288.CrossRef C. Zhao, H. Liang, S. Luo, J. Yang and Z. Wang, The Effect of Energy Input on Reaction, Phase Transition And Shape Memory Effect of NiTi Alloy by Selective Laser Melting, J. Alloys Compd., 2020, 817, p 153288.CrossRef
27.
Zurück zum Zitat W. Xu, S. Xiao, X. Lu, G. Chen, C. Liu and X. Qu, Fabrication of Commercial Pure Ti by Selective Laser Melting using Hydride-Dehydride Titanium Powders Treated by Ball Milling, J. Mater. Process. Technol., 2018, 35(2), p 322–327. W. Xu, S. Xiao, X. Lu, G. Chen, C. Liu and X. Qu, Fabrication of Commercial Pure Ti by Selective Laser Melting using Hydride-Dehydride Titanium Powders Treated by Ball Milling, J. Mater. Process. Technol., 2018, 35(2), p 322–327.
28.
Zurück zum Zitat Y.H. Liu, B. Liu, Y. Zhou, Y.H. Song, T.T. Zhou, Q. Sha and M. Yan, Ultra-Low Cost Ti Powder for Selective Laser Melting Additive Manufacturing and Superior Mechanical Properties Associated, Opto-Electron. Adv., 2019, 2(5), p 180028. Y.H. Liu, B. Liu, Y. Zhou, Y.H. Song, T.T. Zhou, Q. Sha and M. Yan, Ultra-Low Cost Ti Powder for Selective Laser Melting Additive Manufacturing and Superior Mechanical Properties Associated, Opto-Electron. Adv., 2019, 2(5), p 180028.
29.
Zurück zum Zitat Y.P. Dong, J.C. Tang, D.W. Wang, N. Wang, Z.D. He, J. Li, D.P. Zhao and M. Yan, Additive Manufacturing of Pure Ti with Superior Mechanical Performance, Low Cost, and Biocompatibility for Potential Replacement of Ti-6Al-4V, Mater. Des., 2020, 196, p 109142.CrossRef Y.P. Dong, J.C. Tang, D.W. Wang, N. Wang, Z.D. He, J. Li, D.P. Zhao and M. Yan, Additive Manufacturing of Pure Ti with Superior Mechanical Performance, Low Cost, and Biocompatibility for Potential Replacement of Ti-6Al-4V, Mater. Des., 2020, 196, p 109142.CrossRef
30.
Zurück zum Zitat A. Dehghan-manshadi et al., Metal Injection Moulding of Non-Spherical Titanium Powders: Processing, Microstructure and Mechanical Properties, J. Manuf. Process., 2018, 31, p 416–423.CrossRef A. Dehghan-manshadi et al., Metal Injection Moulding of Non-Spherical Titanium Powders: Processing, Microstructure and Mechanical Properties, J. Manuf. Process., 2018, 31, p 416–423.CrossRef
31.
Zurück zum Zitat P. Sneha et al., Use of Non-Spherical Hydride-Dehydride (HDH) Powder in Powder Bed Fusion Additive Manufacturing, Addit Manuf, 2020, 34, p 101188. P. Sneha et al., Use of Non-Spherical Hydride-Dehydride (HDH) Powder in Powder Bed Fusion Additive Manufacturing, Addit Manuf, 2020, 34, p 101188.
32.
Zurück zum Zitat C. Haberland, M. Elahinia, J. Walker, and H. Meier, Visions, concepts and strategies for smart nitinol actuators and complex nitinol structures produced by additive manufacturing, In ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, American Society of Mechanical Engineers, 2013, p V001T01A6-VT01A6. C. Haberland, M. Elahinia, J. Walker, and H. Meier, Visions, concepts and strategies for smart nitinol actuators and complex nitinol structures produced by additive manufacturing, In ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, American Society of Mechanical Engineers, 2013, p V001T01A6-VT01A6.
33.
Zurück zum Zitat N.S. Moghaddam, S. Saedi, A. Amerinatanzi, A. Hinojos, A. Ramazani, J. Kundin and M. Elahinia, Achieving Superelasticity in Additively MANUFACTURED NiTi in Compression Without Post-Process Heat Treatment, Sci. Rep., 2019, 9(1), p 1–11. N.S. Moghaddam, S. Saedi, A. Amerinatanzi, A. Hinojos, A. Ramazani, J. Kundin and M. Elahinia, Achieving Superelasticity in Additively MANUFACTURED NiTi in Compression Without Post-Process Heat Treatment, Sci. Rep., 2019, 9(1), p 1–11.
34.
Zurück zum Zitat G. Vastola, G. Zhang, Q.X. Pei and Y.-W. Zhang, Controlling of Residual Stress in Additive Manufacturing of Ti6Al4V by Finite Element Modeling, Addit. Manuf., 2016, 12, p 231–239. G. Vastola, G. Zhang, Q.X. Pei and Y.-W. Zhang, Controlling of Residual Stress in Additive Manufacturing of Ti6Al4V by Finite Element Modeling, Addit. Manuf., 2016, 12, p 231–239.
35.
Zurück zum Zitat S. Catchpole-Smith, N. Aboulkhair, L. Parry, C. Tuck, I.A. Ashcroft and A. Clare, Fractal Scan Strategies for Selective Laser Melting of “Unweldable” Nickel Superalloys, Addit. Manuf., 2017, 15, p 113–122. S. Catchpole-Smith, N. Aboulkhair, L. Parry, C. Tuck, I.A. Ashcroft and A. Clare, Fractal Scan Strategies for Selective Laser Melting of “Unweldable” Nickel Superalloys, Addit. Manuf., 2017, 15, p 113–122.
36.
Zurück zum Zitat J.P. Oliveira, A. LaLonde and J. Ma, Processing Parameters In laser Powder Bed Fusion Metal Additive Manufacturing, Mater. Des., 2020, 193, p 108762.CrossRef J.P. Oliveira, A. LaLonde and J. Ma, Processing Parameters In laser Powder Bed Fusion Metal Additive Manufacturing, Mater. Des., 2020, 193, p 108762.CrossRef
37.
Zurück zum Zitat P. Mercelis and J. Kruth, Residual Stresses in Selective Laser Sintering and Selective Laser Melting, Rapid Prototyp. J., 2006, 12(5), p 254–265.CrossRef P. Mercelis and J. Kruth, Residual Stresses in Selective Laser Sintering and Selective Laser Melting, Rapid Prototyp. J., 2006, 12(5), p 254–265.CrossRef
38.
Zurück zum Zitat S. Li, H. Hassanin, M.M. Attallah, N.J. Adkins and K. Essa, The Development of TiNi-Based Negative Poisson’s Ratio Structure Using Selective Laser Melting, Acta Mater., 2016, 105, p 75–83.CrossRef S. Li, H. Hassanin, M.M. Attallah, N.J. Adkins and K. Essa, The Development of TiNi-Based Negative Poisson’s Ratio Structure Using Selective Laser Melting, Acta Mater., 2016, 105, p 75–83.CrossRef
39.
Zurück zum Zitat B. Farhang, B. Ravichander, F. Venturi, A. Amerinatanzi and N.S. Moghaddam, Study on Variations of Microstructure and Metallurgical Properties in Various Heat-Affected Zones of SLM Fabricated Nickel-Titanium Alloy, Mater. Sci. Eng., 2020, 774, p 138919.CrossRef B. Farhang, B. Ravichander, F. Venturi, A. Amerinatanzi and N.S. Moghaddam, Study on Variations of Microstructure and Metallurgical Properties in Various Heat-Affected Zones of SLM Fabricated Nickel-Titanium Alloy, Mater. Sci. Eng., 2020, 774, p 138919.CrossRef
40.
Zurück zum Zitat P. Bayati, A. Jahadakbar, M. Barati, M. Nematollahi, L. Saint-Sulpice, M. Haghshenas, S.A. Chirani and Mahtabi, and M. Elahinia, , Toward Low and High Cycle Fatigue Behavior of SLM-Fabricated NiTi: Considering The Effect of Build Orientation and Employing A Self-Heating Approach, Int. J. Mech. Sci., 2020, 185, p 105878.CrossRef P. Bayati, A. Jahadakbar, M. Barati, M. Nematollahi, L. Saint-Sulpice, M. Haghshenas, S.A. Chirani and Mahtabi, and M. Elahinia, , Toward Low and High Cycle Fatigue Behavior of SLM-Fabricated NiTi: Considering The Effect of Build Orientation and Employing A Self-Heating Approach, Int. J. Mech. Sci., 2020, 185, p 105878.CrossRef
41.
Zurück zum Zitat B. Song, X. Zhao, S. Li, C. Han, Q. Wei, S. Wen, J. Liu and Y. Shi, Differences in Microstructure and Properties Between Selective Laser Melting and Traditional Manufacturing for Fabrication of Metal Parts: a Review, Front. Mech. Eng., 2015, 10(2), p 111–125.CrossRef B. Song, X. Zhao, S. Li, C. Han, Q. Wei, S. Wen, J. Liu and Y. Shi, Differences in Microstructure and Properties Between Selective Laser Melting and Traditional Manufacturing for Fabrication of Metal Parts: a Review, Front. Mech. Eng., 2015, 10(2), p 111–125.CrossRef
42.
Zurück zum Zitat T. Habijan, C. Haberland, H. Meier, J. Frenzel, J. Wittsiepe, C. Wuwer and M. Köller, The Biocompatibility of Dense and Porous Nickel-Titanium Produced By Selective Laser Melting, Mater. Sci. Eng., C, 2013, 33(1), p 419–426.CrossRef T. Habijan, C. Haberland, H. Meier, J. Frenzel, J. Wittsiepe, C. Wuwer and M. Köller, The Biocompatibility of Dense and Porous Nickel-Titanium Produced By Selective Laser Melting, Mater. Sci. Eng., C, 2013, 33(1), p 419–426.CrossRef
43.
Zurück zum Zitat A. Domashenkov, M. Doubenskaia, I. Smurov, M. Smirnov, and A. Travianov, Selective laser melting of NiTi powder. Lasers in Manufacturing Conference, 2017. A. Domashenkov, M. Doubenskaia, I. Smurov, M. Smirnov, and A. Travianov, Selective laser melting of NiTi powder. Lasers in Manufacturing Conference, 2017.
44.
Zurück zum Zitat J. Davis, and R. Nickel, Cobalt and their Alloys. ASM Specialty Handbook, ASM International Materials Park, 2000, p 44073–0002. J. Davis, and R. Nickel, Cobalt and their Alloys. ASM Specialty Handbook, ASM International Materials Park, 2000, p 44073–0002.
45.
Zurück zum Zitat M.J. Donachie, Titanium: A Technical Guide, ASM International, 2ª ed., 2000. M.J. Donachie, Titanium: A Technical Guide, ASM International, 2ª ed., 2000.
46.
47.
Zurück zum Zitat D.E. Hodgson, M.H. WU and R.J. Biermann, ASM International Handbook Committee: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Int., 1990, 2, p 897–902. D.E. Hodgson, M.H. WU and R.J. Biermann, ASM International Handbook Committee: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Int., 1990, 2, p 897–902.
48.
Zurück zum Zitat T.J. Rude, L.H. Strait Jr. and L.A. Ruhala, Measurement of Fiber Density by Helium Pycnometry, J. Compos. Mater., 2000, 34(22), p 1948–1958.CrossRef T.J. Rude, L.H. Strait Jr. and L.A. Ruhala, Measurement of Fiber Density by Helium Pycnometry, J. Compos. Mater., 2000, 34(22), p 1948–1958.CrossRef
49.
Zurück zum Zitat T. Terris, O. Andreau, P. Peyre, F. Adamski, I. Koutiri, C. Gorny and C. Dupuy, Optimization and Comparison of Porosity Rate Measurement Methods of Selective Laser Melted Metallic Parts, Addit. Manuf., 2019, 28, p 802–813. T. Terris, O. Andreau, P. Peyre, F. Adamski, I. Koutiri, C. Gorny and C. Dupuy, Optimization and Comparison of Porosity Rate Measurement Methods of Selective Laser Melted Metallic Parts, Addit. Manuf., 2019, 28, p 802–813.
51.
Zurück zum Zitat Z. Khoo, Y. Liu, J. An, C. Chua, Y. Shen and C. Kuo, A Review of Selective Laser Melted NiTi Shape Memory Alloy, Materials, 2018, 11(4), p 519.CrossRef Z. Khoo, Y. Liu, J. An, C. Chua, Y. Shen and C. Kuo, A Review of Selective Laser Melted NiTi Shape Memory Alloy, Materials, 2018, 11(4), p 519.CrossRef
52.
Zurück zum Zitat N. Read, W. Wang, K. Essa and M.M. Attallah, Selective Laser Melting of AlSi10Mg Alloy: Process Optimisation and Mechanical Properties Development, Mater. Des., 2015, 65, p 417–424.CrossRef N. Read, W. Wang, K. Essa and M.M. Attallah, Selective Laser Melting of AlSi10Mg Alloy: Process Optimisation and Mechanical Properties Development, Mater. Des., 2015, 65, p 417–424.CrossRef
53.
Zurück zum Zitat Y. Liu, M. Tang, Q. Hu, Y. Zhang and L. Zhang, Densification Behavior, Microstructural Evolution, and Mechanical PROPERTIES of TiC/AISI420 Stainless Steel Composites Fabricated by Selective Laser Melting, Mater. Des., 2020, 187, p 108381.CrossRef Y. Liu, M. Tang, Q. Hu, Y. Zhang and L. Zhang, Densification Behavior, Microstructural Evolution, and Mechanical PROPERTIES of TiC/AISI420 Stainless Steel Composites Fabricated by Selective Laser Melting, Mater. Des., 2020, 187, p 108381.CrossRef
Metadaten
Titel
Production of Cylindrical Specimens Based on the Ni-Ti System by Selective Laser Melting from Elementary Powders
verfasst von
Rebeca Vieira de Oliveira
Ygor Pereira de Lima
Eduardo Hoisler Sallet
Danilo Abílio Corrêa Gonçalves
Naiara Vieira Le Sénèchal
Edilainea Alves Oliveira Melo
Rodolfo Teixeira
Patrícia Freitas Rodrigues
Paulo Inforçatti Neto
Jorge Vicente Lopes da Silva
Luiz Paulo Brandao
Andersan dos Santos Paula
Publikationsdatum
20.05.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05863-5

Weitere Artikel der Ausgabe 7/2021

Journal of Materials Engineering and Performance 7/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.