Skip to main content
Erschienen in: Journal of Computational Electronics 3/2020

19.06.2020

RF analysis of intercalated graphene nanoribbon-based global-level interconnects

verfasst von: Manjit Kaur, Neena Gupta, Sanjeev Kumar, Balwinder Raj, Arun K. Singh

Erschienen in: Journal of Computational Electronics | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Intercalation doping is emerging as a prospective solution to enhance the performance of graphene nanoribbon interconnects. In this paper, the radio frequency (RF) analysis of stage-2 arsenic pentafluoride- and lithium-doped multilayer graphene nanoribbons (MLGNRs) has been carried out for global-level interconnects in terms of skin depth, surface impedance, critical ratio (CR), transfer gain, and 3-dB bandwidth. The skin-depth results demonstrate that doped MLGNRs exhibit minimum performance degradation primarily due to their higher conductivity, mean free path, and momentum relaxation time as compared to neutral MLGNR. An equivalent second-order accurate RLC model of an intercalation-doped MLGNR has been used to extract the transfer gain and 3-dB bandwidth results at 14-nm technology node for global-level interconnects. The results are further evaluated by implementing an advanced π-type equivalent single conductor derived from multi-conductor transmission line model. The doped MLGNR interconnects demonstrate 11-fold enhancement of 3-dB bandwidth as compared to copper (Cu). Also, the delay and energy-delay-product (EDP) computations in time domain for doped MLGNR interconnects exhibit nearly 10 times lesser delay and significant reduction in EDP than Cu counterparts. It is also observed that optimum values for 3-dB bandwidth and EDP parameters for intercalated MLGNRs could be achieved through width optimization. The RF and transient results validate intercalated MLGNRs as a potential candidate to replace Cu for next-generation global-level interconnects.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Burke, P.J.: Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol. 1(5), 129–144 (2002) Burke, P.J.: Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol. 1(5), 129–144 (2002)
2.
Zurück zum Zitat Naeemi, A., Meindl, J.D.: Conductance modeling for GNR interconnect. IEEE Electron Device Lett. 28(5), 428–431 (2007) Naeemi, A., Meindl, J.D.: Conductance modeling for GNR interconnect. IEEE Electron Device Lett. 28(5), 428–431 (2007)
3.
Zurück zum Zitat Naeemi, A., Meindl, J.D.: Design and performance modeling for single-walled carbon nanotubes as local, semiglobal, and global interconnects in gig scale integrated systems. IEEE Trans. Electron Devices 54(1), 26–37 (2007) Naeemi, A., Meindl, J.D.: Design and performance modeling for single-walled carbon nanotubes as local, semiglobal, and global interconnects in gig scale integrated systems. IEEE Trans. Electron Devices 54(1), 26–37 (2007)
4.
Zurück zum Zitat Li, H., Yin, W.Y., Banerjee, K., Mao, J.F.: Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects. IEEE Trans. Electron Devices 55(6), 1328–1337 (2008) Li, H., Yin, W.Y., Banerjee, K., Mao, J.F.: Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects. IEEE Trans. Electron Devices 55(6), 1328–1337 (2008)
5.
Zurück zum Zitat Novoselov, K.S., Falko, V.I., Colombo, L., et al.: A roadmap for Graphene. Nature 490, 192–200 (2012) Novoselov, K.S., Falko, V.I., Colombo, L., et al.: A roadmap for Graphene. Nature 490, 192–200 (2012)
6.
Zurück zum Zitat Zhang, R., Zhao, W.S., Hu, J., Yin, W.Y.: Electrothermal characterization of multilevel Cu-graphene heterogeneous interconnects in the presence of an electrostatic discharge (ESD). IEEE Trans. Nanotechnol. 14(2), 205–209 (2015) Zhang, R., Zhao, W.S., Hu, J., Yin, W.Y.: Electrothermal characterization of multilevel Cu-graphene heterogeneous interconnects in the presence of an electrostatic discharge (ESD). IEEE Trans. Nanotechnol. 14(2), 205–209 (2015)
7.
Zurück zum Zitat Singh, A.K., Auton, G., Hill, E., Song, A.M.: Graphene based ballistic rectifiers. Carbon 84, 124–129 (2015) Singh, A.K., Auton, G., Hill, E., Song, A.M.: Graphene based ballistic rectifiers. Carbon 84, 124–129 (2015)
8.
Zurück zum Zitat Xu, C., Li, H., Banerjee, K.: Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans. Electron Device 56(8), 1567–1578 (2009) Xu, C., Li, H., Banerjee, K.: Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans. Electron Device 56(8), 1567–1578 (2009)
9.
Zurück zum Zitat Balandin, A.A., Ghosh, S., Bao, W., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008) Balandin, A.A., Ghosh, S., Bao, W., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)
10.
Zurück zum Zitat Naeemi, A., Meindl, J.D.: Compact physics-based circuit models for graphene nanoribbon interconnects. IEEE Trans. Electron Devices 56(9), 1822–1833 (2009) Naeemi, A., Meindl, J.D.: Compact physics-based circuit models for graphene nanoribbon interconnects. IEEE Trans. Electron Devices 56(9), 1822–1833 (2009)
11.
Zurück zum Zitat Reddy, K.N., Majumder, M.K., Kaushik, B.K.: Delay uncertainty in MLGNR interconnects under process induced variations of width, doping, dielectric thickness and mean free path. J. Comput. Electron. 13(3), 639–646 (2014) Reddy, K.N., Majumder, M.K., Kaushik, B.K.: Delay uncertainty in MLGNR interconnects under process induced variations of width, doping, dielectric thickness and mean free path. J. Comput. Electron. 13(3), 639–646 (2014)
12.
Zurück zum Zitat Rai, M.K., Chatterjee, A.K., Sarkar, S., et al.: Performance analysis of multilayer graphene nanoribbon (MLGNR) interconnects. J. Comput. Electron. 15(2), 358–366 (2016) Rai, M.K., Chatterjee, A.K., Sarkar, S., et al.: Performance analysis of multilayer graphene nanoribbon (MLGNR) interconnects. J. Comput. Electron. 15(2), 358–366 (2016)
13.
Zurück zum Zitat Kumar, V., Rakheja, S., Naeemi, A.: Performance and energy-per-bit modeling of multilayer graphene nanoribbon conductors. IEEE Trans. Electron Devices 59(10), 2753–2761 (2012) Kumar, V., Rakheja, S., Naeemi, A.: Performance and energy-per-bit modeling of multilayer graphene nanoribbon conductors. IEEE Trans. Electron Devices 59(10), 2753–2761 (2012)
14.
Zurück zum Zitat Kumar, V.R., Majumder, M.K., Kukkam, N.R., Kaushik, B.K.: Time and frequency domain analysis of MLGNR interconnects. IEEE Trans. Nanotechnol. 14(3), 484–492 (2015) Kumar, V.R., Majumder, M.K., Kukkam, N.R., Kaushik, B.K.: Time and frequency domain analysis of MLGNR interconnects. IEEE Trans. Nanotechnol. 14(3), 484–492 (2015)
15.
Zurück zum Zitat Zhao, S., Yin, W.Y.: Comparative study on multilayer graphene nanoribbon (MLGNR) interconnects. IEEE Trans. Electromagnetic Compatibility 56(3), 638–645 (2014) Zhao, S., Yin, W.Y.: Comparative study on multilayer graphene nanoribbon (MLGNR) interconnects. IEEE Trans. Electromagnetic Compatibility 56(3), 638–645 (2014)
16.
Zurück zum Zitat Kaur, M., Gupta, N., Singh, A.K.: Impact of geometrical parameters on performance of MWCNT based chip interconnects. In: Proceedings of Progress In: Electromagnetics Research Symposium (PIERS), 988–993 2017 Kaur, M., Gupta, N., Singh, A.K.: Impact of geometrical parameters on performance of MWCNT based chip interconnects. In: Proceedings of Progress In: Electromagnetics Research Symposium (PIERS), 988–993 2017
17.
Zurück zum Zitat Kaur, M., Gupta, N., Singh, A.K.: Performance Analysis of Multilayer Graphene Nanoribbon Based Interconnects. In: Proceedings of IEEE MTT-S International Microwave and RF Conference (IMaRC), 176–179 2017 Kaur, M., Gupta, N., Singh, A.K.: Performance Analysis of Multilayer Graphene Nanoribbon Based Interconnects. In: Proceedings of IEEE MTT-S International Microwave and RF Conference (IMaRC), 176–179 2017
18.
Zurück zum Zitat Kaur, M., Gupta, N., Singh, A.K.: Crosstalk analysis of coupled MLGNR interconnects with different types of repeater insertion. J. Microprocessors and Microsystems. 67, 18–27 (2019) Kaur, M., Gupta, N., Singh, A.K.: Crosstalk analysis of coupled MLGNR interconnects with different types of repeater insertion. J. Microprocessors and Microsystems. 67, 18–27 (2019)
19.
Zurück zum Zitat Singh, K., Raj, B.: Temperature-dependent modeling and performance evaluation of multi-walled CNT and single-walled CNT as global interconnects. J. Electron. Mater. 44(12), 4825–4835 (2015) Singh, K., Raj, B.: Temperature-dependent modeling and performance evaluation of multi-walled CNT and single-walled CNT as global interconnects. J. Electron. Mater. 44(12), 4825–4835 (2015)
20.
Zurück zum Zitat Rai, M.K., Garg, H., Kaushik, B.K.: Temperature-dependent modeling and crosstalk analysis in mixed carbon nanotube bundle interconnects. J. Electron. Mater. 46(8), 5324–5337 (2017) Rai, M.K., Garg, H., Kaushik, B.K.: Temperature-dependent modeling and crosstalk analysis in mixed carbon nanotube bundle interconnects. J. Electron. Mater. 46(8), 5324–5337 (2017)
21.
Zurück zum Zitat Sharma, H., Singh, K.: Thermally aware modeling and performance analysis of MLGNR as on-chip VLSI interconnect material. J. Electron. Mater. 48(8), 4902–4912 (2019) Sharma, H., Singh, K.: Thermally aware modeling and performance analysis of MLGNR as on-chip VLSI interconnect material. J. Electron. Mater. 48(8), 4902–4912 (2019)
22.
Zurück zum Zitat Singh, K., Thakur, A.: Comparative analysis of mixed CNTs and MWCNTs as VLSI interconnects for deep sub-micron technology nodes. J. Electron. Mater. 48(4), 2543–2554 (2019) Singh, K., Thakur, A.: Comparative analysis of mixed CNTs and MWCNTs as VLSI interconnects for deep sub-micron technology nodes. J. Electron. Mater. 48(4), 2543–2554 (2019)
23.
Zurück zum Zitat Kaur, T., Rai, M.K., Khanna, R.: Effect of temperature on the performance of MLGNR interconnects. J. Comput. Electron. 18(2), 722–736 (2019) Kaur, T., Rai, M.K., Khanna, R.: Effect of temperature on the performance of MLGNR interconnects. J. Comput. Electron. 18(2), 722–736 (2019)
24.
Zurück zum Zitat Das, S., Das, D., Rahaman, H.: Electro-thermal RF modeling and performance analysis of graphene nanoribbon interconnects. J. Comput. Electron. 17(4), 1695–1708 (2018) Das, S., Das, D., Rahaman, H.: Electro-thermal RF modeling and performance analysis of graphene nanoribbon interconnects. J. Comput. Electron. 17(4), 1695–1708 (2018)
25.
Zurück zum Zitat Kumar, V.R., Majumder, M.K., Alam, A., et al.: Stability and delay analysis of multi-layered GNR and multi-walled CNT interconnects. J. Comput. Electron. 14(2), 611–618 (2015) Kumar, V.R., Majumder, M.K., Alam, A., et al.: Stability and delay analysis of multi-layered GNR and multi-walled CNT interconnects. J. Comput. Electron. 14(2), 611–618 (2015)
26.
Zurück zum Zitat Bhattacharya, S., Das, D., Rahaman, H.: Reduced thickness interconnect model using GNR to avoid crosstalk effects. J. Comput. Electron. 15(2), 367–380 (2016) Bhattacharya, S., Das, D., Rahaman, H.: Reduced thickness interconnect model using GNR to avoid crosstalk effects. J. Comput. Electron. 15(2), 367–380 (2016)
27.
Zurück zum Zitat Bhattacharya, S., Das, S., Mukhopadhyay, A., et al.: Analysis of a temperature-dependent delay optimization model for GNR interconnects using a wire sizing method. J. Comput. Electron. 17(4), 1536–1548 (2018) Bhattacharya, S., Das, S., Mukhopadhyay, A., et al.: Analysis of a temperature-dependent delay optimization model for GNR interconnects using a wire sizing method. J. Comput. Electron. 17(4), 1536–1548 (2018)
28.
Zurück zum Zitat Bagheri, A., Ranjbar, M., Haji-Nasiri, S., et al.: Modelling and analysis of crosstalk induced noise effects in bundle SWCNT interconnects and its impact on signal stability. J. Comput. Electron. 16(3), 845–855 (2017) Bagheri, A., Ranjbar, M., Haji-Nasiri, S., et al.: Modelling and analysis of crosstalk induced noise effects in bundle SWCNT interconnects and its impact on signal stability. J. Comput. Electron. 16(3), 845–855 (2017)
29.
Zurück zum Zitat Li, H., Banerjee, K.: High-frequency analysis of carbon nanotube interconnects and implications for on-chip inductor design. IEEE Trans. Electron Devices. 56(10), 2202–2214 (2009) Li, H., Banerjee, K.: High-frequency analysis of carbon nanotube interconnects and implications for on-chip inductor design. IEEE Trans. Electron Devices. 56(10), 2202–2214 (2009)
30.
Zurück zum Zitat Sarkar, D., Xu, C., Li, H., Banerjee, K.: High-frequency behavior of graphene-based interconnects—Part I: impedance modeling. IEEE Trans. Electron. Devices. 58(3), 843–852 (2011) Sarkar, D., Xu, C., Li, H., Banerjee, K.: High-frequency behavior of graphene-based interconnects—Part I: impedance modeling. IEEE Trans. Electron. Devices. 58(3), 843–852 (2011)
31.
Zurück zum Zitat Sarkar, D., Xu, C., Li, H., Banerjee, K.: High-frequency behavior of graphene-based interconnects—Part I: impedance analysis and implications for inductor design. IEEE Trans. Electron Devices 58(3), 853–859 (2011) Sarkar, D., Xu, C., Li, H., Banerjee, K.: High-frequency behavior of graphene-based interconnects—Part I: impedance analysis and implications for inductor design. IEEE Trans. Electron Devices 58(3), 853–859 (2011)
32.
Zurück zum Zitat Qian, L., Xia, Y., Shi, G.: Study of crosstalk effect on the propagation characteristics of coupled MLGNR interconnects. IEEE Trans. Nanotechnol. 15(5), 810–819 (2016) Qian, L., Xia, Y., Shi, G.: Study of crosstalk effect on the propagation characteristics of coupled MLGNR interconnects. IEEE Trans. Nanotechnol. 15(5), 810–819 (2016)
33.
Zurück zum Zitat Kumar, P., Singh, A., Garg, A., Sharma, R.: Compact models for transient analysis of single-layer graphene nanoribbon interconnects. In: Proceedings of 15th UKSim Computer Modelling and Simulation, 809–814 2013 Kumar, P., Singh, A., Garg, A., Sharma, R.: Compact models for transient analysis of single-layer graphene nanoribbon interconnects. In: Proceedings of 15th UKSim Computer Modelling and Simulation, 809–814 2013
34.
Zurück zum Zitat Bhattacharya, S., Das, D., Rahaman, H.: Stability analysis in top contact and side-contact graphene nanoribbon interconnects. IETE J. Res. 63(4), 588–596 (2017) Bhattacharya, S., Das, D., Rahaman, H.: Stability analysis in top contact and side-contact graphene nanoribbon interconnects. IETE J. Res. 63(4), 588–596 (2017)
35.
Zurück zum Zitat Nishad, A.K., Sharma, R.: Analytical time-domain models for performance optimization of multilayer GNR interconnects. IEEE J. Sel. Top. Quantum Electron. 20(1), 17–24 (2014) Nishad, A.K., Sharma, R.: Analytical time-domain models for performance optimization of multilayer GNR interconnects. IEEE J. Sel. Top. Quantum Electron. 20(1), 17–24 (2014)
36.
Zurück zum Zitat Dresselhaus, M.S., Dresselhaus, : Intercalation compounds of graphite. Adv. Phys. 51(1), 1–186 (2002) Dresselhaus, M.S., Dresselhaus, : Intercalation compounds of graphite. Adv. Phys. 51(1), 1–186 (2002)
37.
Zurück zum Zitat Nishad, A.K., Sharma, R.: Lithium-intercalated graphene interconnects: prospects for on-chip applications. IEEE J. Electron Devices Soc. 4(6), 485–489 (2016) Nishad, A.K., Sharma, R.: Lithium-intercalated graphene interconnects: prospects for on-chip applications. IEEE J. Electron Devices Soc. 4(6), 485–489 (2016)
38.
Zurück zum Zitat Kumbhare, V.R., Paltani, P.P., Venkataiah, C., Majumder, M.K.: Analytical study of bundled MWCNT and edged MLGNR interconnects: impact on propagation delay and area. IEEE Trans. Nanotechnol. 18, 606–610 (2019) Kumbhare, V.R., Paltani, P.P., Venkataiah, C., Majumder, M.K.: Analytical study of bundled MWCNT and edged MLGNR interconnects: impact on propagation delay and area. IEEE Trans. Nanotechnol. 18, 606–610 (2019)
39.
Zurück zum Zitat Singh, A.K., Auton, G., Hill, E., Song, A.: Estimation of intrinsic and extrinsic capacitances of graphene self-switching diode using conformal mapping technique. 2D Mater. 5(3), 035023 (2018) Singh, A.K., Auton, G., Hill, E., Song, A.: Estimation of intrinsic and extrinsic capacitances of graphene self-switching diode using conformal mapping technique. 2D Mater. 5(3), 035023 (2018)
40.
Zurück zum Zitat Garg, S., Kaushal, B., Kumar, S., Kasjoo, S.R., Mahapatra, S., Singh, A.K.: Extraction of trench capacitance and reverse recovery time of InGaAs self-switching diode. IEEE Trans. on Nanotech. 18, 925–931 (2019) Garg, S., Kaushal, B., Kumar, S., Kasjoo, S.R., Mahapatra, S., Singh, A.K.: Extraction of trench capacitance and reverse recovery time of InGaAs self-switching diode. IEEE Trans. on Nanotech. 18, 925–931 (2019)
41.
Zurück zum Zitat Garg, A., Jain, N., Singh, A.K.: Modeling and simulation of a graphene-based three-terminal junction rectifier. J. Comput. Electron. 17(2), 562 (2018) Garg, A., Jain, N., Singh, A.K.: Modeling and simulation of a graphene-based three-terminal junction rectifier. J. Comput. Electron. 17(2), 562 (2018)
42.
Zurück zum Zitat Singh, A.K., Kasjoo, S.R., Song, A.M.: Low-frequency noise of a ballistic rectifier. IEEE Trans. on Nanotech. 13(3), 527–531 (2014) Singh, A.K., Kasjoo, S.R., Song, A.M.: Low-frequency noise of a ballistic rectifier. IEEE Trans. on Nanotech. 13(3), 527–531 (2014)
43.
Zurück zum Zitat Garg, A., Jain, N., Kumar, S., Kasjoo, S.R., Singh, A.K.: Analysis of nonlinear characteristics of a graphene based four-terminal ballistic rectifier using a drift-diffusion model. Nanoscale Adv. 10, 1–9 (2019) Garg, A., Jain, N., Kumar, S., Kasjoo, S.R., Singh, A.K.: Analysis of nonlinear characteristics of a graphene based four-terminal ballistic rectifier using a drift-diffusion model. Nanoscale Adv. 10, 1–9 (2019)
44.
Zurück zum Zitat Rakheja, S., Kumar, V., Naeemi, A.: Evaluation of the potential performance of graphene nanoribbons as on chip interconnects. Proc IEEE 101(7), 1740–1765 (2013) Rakheja, S., Kumar, V., Naeemi, A.: Evaluation of the potential performance of graphene nanoribbons as on chip interconnects. Proc IEEE 101(7), 1740–1765 (2013)
45.
Zurück zum Zitat Sondheimer, E.H.: The mean free path of electrons in metals. Adv. Phys. 50(6), 499–537 (2001) Sondheimer, E.H.: The mean free path of electrons in metals. Adv. Phys. 50(6), 499–537 (2001)
46.
Zurück zum Zitat Reuter, G.E.H., Sondheimer, E.H.: The theory of the anomalous skin effect in metals. Proc Royal Soc. A: Math. Phys. Sci. 195, 336–364 (1948)MATH Reuter, G.E.H., Sondheimer, E.H.: The theory of the anomalous skin effect in metals. Proc Royal Soc. A: Math. Phys. Sci. 195, 336–364 (1948)MATH
47.
Zurück zum Zitat Benedict, L.X., Crespi, V.H., Louie, S.G., Cohen, M.L.: Static conductivity and superconductivity of carbon nanotubes: relations between tubes and sheets. Phys. Rev. B Condens. Matter. 52(20), 14935–14940 (1995) Benedict, L.X., Crespi, V.H., Louie, S.G., Cohen, M.L.: Static conductivity and superconductivity of carbon nanotubes: relations between tubes and sheets. Phys. Rev. B Condens. Matter. 52(20), 14935–14940 (1995)
48.
Zurück zum Zitat Bao, W., Wan, J., Han, X., et al.: Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nat. Commun. 5(4224), 1–9 (2014) Bao, W., Wan, J., Han, X., et al.: Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nat. Commun. 5(4224), 1–9 (2014)
49.
Zurück zum Zitat Kerr, A.R.: Surface impedance of superconductors and normal conductors in EM simulators. NRAO Electron Division, MMA Memo 245, 1–16 (1999) Kerr, A.R.: Surface impedance of superconductors and normal conductors in EM simulators. NRAO Electron Division, MMA Memo 245, 1–16 (1999)
51.
Zurück zum Zitat Amore, M.D., Sarto, M.S., Tamburrano, A.: Fast transient analysis of next generation interconnects based on carbon nanotubes. IEEE Trans. Electromagn. Compat. 52(2), 496–503 (2010) Amore, M.D., Sarto, M.S., Tamburrano, A.: Fast transient analysis of next generation interconnects based on carbon nanotubes. IEEE Trans. Electromagn. Compat. 52(2), 496–503 (2010)
52.
Zurück zum Zitat Dworsky, L.N.: Modern Transmission Line Theory and Applications. John Wiley & Sons, New York (1979) Dworsky, L.N.: Modern Transmission Line Theory and Applications. John Wiley & Sons, New York (1979)
Metadaten
Titel
RF analysis of intercalated graphene nanoribbon-based global-level interconnects
verfasst von
Manjit Kaur
Neena Gupta
Sanjeev Kumar
Balwinder Raj
Arun K. Singh
Publikationsdatum
19.06.2020
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 3/2020
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-020-01530-5

Weitere Artikel der Ausgabe 3/2020

Journal of Computational Electronics 3/2020 Zur Ausgabe

Neuer Inhalt