Skip to main content
Erschienen in: Neural Computing and Applications 7-8/2014

01.12.2014 | Original Article

River flow forecasting through nonlinear local approximation in a fuzzy model

verfasst von: P. C. Nayak, K. P. Sudheer, S. K. Jain

Erschienen in: Neural Computing and Applications | Ausgabe 7-8/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study investigates the potential of nonlinear local function approximation in a Takagi–Sugeno (TS) fuzzy model for river flow forecasting. Generally, in a TS framework, the local approximation is performed by a linear model, while in this approach, linear function approximation is substituted using a nonlinear function approximation. The primary hypothesis herein is that the process being modeled (rainfall–runoff in this study) is highly nonlinear, and a linear approximation at the local domain might still leave a lot of unexplained variance by the model. In this study, subtractive clustering technique is used for domain partition, and neural network is used for function approximation. The modeling approach has been tested on two case studies: Kolar basin in India and Kentucky basin in USA. The results of fuzzy nonlinear local approximation (FNLLA) model are highly promising. The performance of the FNLLA is compared with that of a pure fuzzy inference system (FIS), and it is observed that both the models perform similar at 1-step-ahead forecasts. However, the FNLLA performs much better than FIS at higher lead times. It is also observed that FNLLA forecasts the river flow with lesser error compared to FIS. In the case of Kolar River, more than 40 % of the total data are forecasted with <2 % error by FNLLA at 1 h ahead, while the corresponding value for FIS is only 20 %. In the case of 3-h-ahead forecasts, these values are 25 % for FNLLA and 15 % for FIS. Performance of FNLLA in the case of Kentucky River basin was also better compared to FIS. It is also found that FNLLA simulates the peak flow better than FIS, which is certainly an improvement over the existing models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abrahart RJ, Anctil F, Coulibaly P, Dawson CW, Mount NJ, See LM, Shamseldin AY, Solomatine DP, Toth E, Wilby RL (2012) Two decades of anarchy? Emerging themes and outstanding challenges for neural network modelling of surface hydrology. Prog Phys Geogr 36:480–513CrossRef Abrahart RJ, Anctil F, Coulibaly P, Dawson CW, Mount NJ, See LM, Shamseldin AY, Solomatine DP, Toth E, Wilby RL (2012) Two decades of anarchy? Emerging themes and outstanding challenges for neural network modelling of surface hydrology. Prog Phys Geogr 36:480–513CrossRef
2.
Zurück zum Zitat Amorocho J, Brandstetter A (1971) A critique of current methods of hydrologic systems investigations. EOS Trans AGU 45:307–321CrossRef Amorocho J, Brandstetter A (1971) A critique of current methods of hydrologic systems investigations. EOS Trans AGU 45:307–321CrossRef
3.
Zurück zum Zitat Anders U, Korn O (1999) Model selection in neural networks. Neural Netw 12:309–323 Anders U, Korn O (1999) Model selection in neural networks. Neural Netw 12:309–323
4.
Zurück zum Zitat Beven KJ (2001) Rainfall–runoff modelling—the primer. Wiley, Chichester Beven KJ (2001) Rainfall–runoff modelling—the primer. Wiley, Chichester
5.
Zurück zum Zitat Chang F-J, Hu H-F, Chen Y-C (2001) Counterpropagation fuzzy-neural network for streamflow reconstruction. Hydrol Process 15:219–232CrossRef Chang F-J, Hu H-F, Chen Y-C (2001) Counterpropagation fuzzy-neural network for streamflow reconstruction. Hydrol Process 15:219–232CrossRef
6.
Zurück zum Zitat Chang L-C, Chang F-J, Tsai Y-H (2005) Fuzzy exemplar-based inference system for flood forecasting. Water Resour Res 41:W02005. doi:10.1029/2004WR003037 Chang L-C, Chang F-J, Tsai Y-H (2005) Fuzzy exemplar-based inference system for flood forecasting. Water Resour Res 41:W02005. doi:10.​1029/​2004WR003037
7.
Zurück zum Zitat Chen YH, Chang FJ (2009) Evolutionary artificial neural networks for hydrological systems forecasting. J Hydrol 367:125–137CrossRef Chen YH, Chang FJ (2009) Evolutionary artificial neural networks for hydrological systems forecasting. J Hydrol 367:125–137CrossRef
8.
Zurück zum Zitat Chiang YM, Hsu KL, Chang FJ, Hong Y, Sorooshian S (2007) Merging multiple precipitation sources for flash flood forecasting. J Hydrol 340:183–196CrossRef Chiang YM, Hsu KL, Chang FJ, Hong Y, Sorooshian S (2007) Merging multiple precipitation sources for flash flood forecasting. J Hydrol 340:183–196CrossRef
9.
Zurück zum Zitat Chiu S (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2(3):267–278 Chiu S (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2(3):267–278
10.
Zurück zum Zitat Cigizoglu HK, Kisi O (2006) Methods to improve the neural network performance in suspended sediment estimation. J Hydrol 317:221–238CrossRef Cigizoglu HK, Kisi O (2006) Methods to improve the neural network performance in suspended sediment estimation. J Hydrol 317:221–238CrossRef
11.
Zurück zum Zitat Daniel TM (1991) Neural networks—applications in hydrology and water resources engineering. In: Proceedings on international hydrology and water resources symposium. Institution of Engineers, Perth, Australia Daniel TM (1991) Neural networks—applications in hydrology and water resources engineering. In: Proceedings on international hydrology and water resources symposium. Institution of Engineers, Perth, Australia
13.
Zurück zum Zitat Hsu K, Gupta VH, Sorooshian S (1995) Artificial neural network modeling of the rainfall–runoff process. Water Resour Res 31(10):2517–2530CrossRef Hsu K, Gupta VH, Sorooshian S (1995) Artificial neural network modeling of the rainfall–runoff process. Water Resour Res 31(10):2517–2530CrossRef
14.
Zurück zum Zitat Ikeda S, Ochiai M, Sawaragi Y (1976) Sequential GMDH algorithm and its applications to river flow prediction. IEEE Trans Syst Manag Cybern 6(7):473–479CrossRef Ikeda S, Ochiai M, Sawaragi Y (1976) Sequential GMDH algorithm and its applications to river flow prediction. IEEE Trans Syst Manag Cybern 6(7):473–479CrossRef
15.
Zurück zum Zitat Imrie CE, Durucan S, Korre A (2000) River flow prediction using artificial neural networks: generalization beyond the calibration range. J Hydrol 233:138–153CrossRef Imrie CE, Durucan S, Korre A (2000) River flow prediction using artificial neural networks: generalization beyond the calibration range. J Hydrol 233:138–153CrossRef
16.
Zurück zum Zitat Jain A, Srinivasulu S (2004) Development of effective and efficient rainfall–runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resour Res 40(4):W04302. doi:10.1029/2003WR002355 CrossRef Jain A, Srinivasulu S (2004) Development of effective and efficient rainfall–runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resour Res 40(4):W04302. doi:10.​1029/​2003WR002355 CrossRef
17.
Zurück zum Zitat Jain A, Sudheer KP, Srinivasulu S (2004) Identification of physical processes inherent in artificial neural rainfall–runoff models. Hydrol Process 18(3):571–581CrossRef Jain A, Sudheer KP, Srinivasulu S (2004) Identification of physical processes inherent in artificial neural rainfall–runoff models. Hydrol Process 18(3):571–581CrossRef
18.
Zurück zum Zitat Jain SK (2008) Development of integrated discharge and sediment rating relation using a compound neural network. J Hydrol Eng ASCE 13(3):124–131CrossRef Jain SK (2008) Development of integrated discharge and sediment rating relation using a compound neural network. J Hydrol Eng ASCE 13(3):124–131CrossRef
19.
Zurück zum Zitat Jones LK (2000) Local greedy approximation for nonlinear regression and neural network training. Ann Stat 28(5):1379–1389CrossRefMATH Jones LK (2000) Local greedy approximation for nonlinear regression and neural network training. Ann Stat 28(5):1379–1389CrossRefMATH
20.
Zurück zum Zitat Maier HR, Jain A, Dandy GC, Sudheer KP (2010) Methods used for the development of neural networks for the prediction of water resources variables in river systems: current status and future directions. Env Mod Softw 25:891–909. doi:10.1016/j.envsoft.2010.02.003 CrossRef Maier HR, Jain A, Dandy GC, Sudheer KP (2010) Methods used for the development of neural networks for the prediction of water resources variables in river systems: current status and future directions. Env Mod Softw 25:891–909. doi:10.​1016/​j.​envsoft.​2010.​02.​003 CrossRef
23.
Zurück zum Zitat Nayak PC, Sudheer KP (2008) Fuzzy model identification based on cluster estimation for reservoir inflow forecasting. Hydrol Process 22:827–841. doi:10.1002/hyp.6644 CrossRef Nayak PC, Sudheer KP (2008) Fuzzy model identification based on cluster estimation for reservoir inflow forecasting. Hydrol Process 22:827–841. doi:10.​1002/​hyp.​6644 CrossRef
24.
Zurück zum Zitat Nayak PC, Sudheer KP, Ramasastri KS (2005) Fuzzy computing based rainfall–runoff model for real time flood forecasting. Hydrol Process 19:955–968. doi:10.1002/hyp.5553 CrossRef Nayak PC, Sudheer KP, Ramasastri KS (2005) Fuzzy computing based rainfall–runoff model for real time flood forecasting. Hydrol Process 19:955–968. doi:10.​1002/​hyp.​5553 CrossRef
25.
Zurück zum Zitat Nayak PC, Sudheer KP, Rangan DM, Ramasastri KS (2004) A neuro-fuzzy computing technique for modeling hydrological time series. J Hydrol 291(1–2):52–66CrossRef Nayak PC, Sudheer KP, Rangan DM, Ramasastri KS (2004) A neuro-fuzzy computing technique for modeling hydrological time series. J Hydrol 291(1–2):52–66CrossRef
26.
Zurück zum Zitat Parasuraman K, Elshorbagy A, Carey SK (2006) Spiking modular neural networks: a neural network modeling approach for hydrological processes. Water Resour Res 42:W05412. doi:10.1029/2005WR004317 CrossRef Parasuraman K, Elshorbagy A, Carey SK (2006) Spiking modular neural networks: a neural network modeling approach for hydrological processes. Water Resour Res 42:W05412. doi:10.​1029/​2005WR004317 CrossRef
27.
Zurück zum Zitat Sajikumar N, Thandaveswara BS (1999) A non-linear rainfall–runoff model using an artificial neural network. J Hydrol 216:32–35CrossRef Sajikumar N, Thandaveswara BS (1999) A non-linear rainfall–runoff model using an artificial neural network. J Hydrol 216:32–35CrossRef
28.
Zurück zum Zitat See L, Openshaw S (1999) Applying soft computing approaches to river level forecasting. Hydrol Sci J 44(5):763–779CrossRef See L, Openshaw S (1999) Applying soft computing approaches to river level forecasting. Hydrol Sci J 44(5):763–779CrossRef
29.
Zurück zum Zitat Shamseldin AY, Nasr AE, O’Connor KM (2002) Comparison of different forms of the multi-layer feed-forward neural network method used for river flow forecasting. Hydrol Earth Syst Sci 6:671–684CrossRef Shamseldin AY, Nasr AE, O’Connor KM (2002) Comparison of different forms of the multi-layer feed-forward neural network method used for river flow forecasting. Hydrol Earth Syst Sci 6:671–684CrossRef
30.
Zurück zum Zitat Singer AC, Wornell G, Oppenheim A (1992) Codebook prediction: a nonlinear signal modeling paradigm. In: Proceedings of the international conference on acoustics, speech and signal processing, San Francisco, vol 5. IEEE, pp 325–328 Singer AC, Wornell G, Oppenheim A (1992) Codebook prediction: a nonlinear signal modeling paradigm. In: Proceedings of the international conference on acoustics, speech and signal processing, San Francisco, vol 5. IEEE, pp 325–328
31.
Zurück zum Zitat Sudheer KP (2005) Knowledge extraction from trained neural network river flow models. J Hydrol Eng ASCE 10(4):264–269CrossRef Sudheer KP (2005) Knowledge extraction from trained neural network river flow models. J Hydrol Eng ASCE 10(4):264–269CrossRef
32.
Zurück zum Zitat Sudheer KP, Gosain AK, Ramasastri KS (2002) A data-driven algorithm for constructing artificial neural network rainfall–runoff models. Hydrol Process 16:1325–1330CrossRef Sudheer KP, Gosain AK, Ramasastri KS (2002) A data-driven algorithm for constructing artificial neural network rainfall–runoff models. Hydrol Process 16:1325–1330CrossRef
33.
Zurück zum Zitat Sudheer KP, Nayak PC, Ramasastri KS (2003) Improving peak flow estimates in artificial neural network river flow models. Hydrol Process 17(1):671–686 Sudheer KP, Nayak PC, Ramasastri KS (2003) Improving peak flow estimates in artificial neural network river flow models. Hydrol Process 17(1):671–686
34.
Zurück zum Zitat Takagi T, Sugeno M (1985) Fuzzy identification of systems and its application to modeling and control. IEEE Trans Syst Man Cybern 15(1):116–132CrossRefMATH Takagi T, Sugeno M (1985) Fuzzy identification of systems and its application to modeling and control. IEEE Trans Syst Man Cybern 15(1):116–132CrossRefMATH
35.
Zurück zum Zitat Tayfur G (2006) Fuzzy, ANN, and regression models to predict longitudinal dispersion coefficient in natural streams. Nord Hydrol 37(2):143–164 Tayfur G (2006) Fuzzy, ANN, and regression models to predict longitudinal dispersion coefficient in natural streams. Nord Hydrol 37(2):143–164
36.
Zurück zum Zitat Tayfur G, Singh VP (2006) ANN and fuzzy logic models for simulating event-based rainfall–runoff. J Hydraul Eng 132(12):1321–1330CrossRef Tayfur G, Singh VP (2006) ANN and fuzzy logic models for simulating event-based rainfall–runoff. J Hydraul Eng 132(12):1321–1330CrossRef
37.
Zurück zum Zitat Tayfur G, Singh VP (2011) Predicting mean and bankfull discharge from channel cross-sectional area by expert and regression methods. Water Resour Manag 25(5):1253–1267CrossRef Tayfur G, Singh VP (2011) Predicting mean and bankfull discharge from channel cross-sectional area by expert and regression methods. Water Resour Manag 25(5):1253–1267CrossRef
38.
Zurück zum Zitat Tokar AS, Markus M (2000) Precipitation-runoff modeling using artificial neural network and conceptual models. J Hydrol Eng Am Soc Civil Eng 5(2):156–161 Tokar AS, Markus M (2000) Precipitation-runoff modeling using artificial neural network and conceptual models. J Hydrol Eng Am Soc Civil Eng 5(2):156–161
39.
Zurück zum Zitat Vernieuwe H, Georgieva O, De Baets B, Pauwels VRN, Verhoest NEC, De Troch FP (2005) Comparison of data-driven Takagi–Sugeno models of rainfall–discharge dynamics. J Hydrol 302(1–4):173–186CrossRef Vernieuwe H, Georgieva O, De Baets B, Pauwels VRN, Verhoest NEC, De Troch FP (2005) Comparison of data-driven Takagi–Sugeno models of rainfall–discharge dynamics. J Hydrol 302(1–4):173–186CrossRef
40.
Zurück zum Zitat Wilby RL, Abrahart RJ, Dawson CW (2003) Detection of conceptual model rainfall–runoff processes inside an artificial neural network. Hydrol Sci J 48(2):163–181CrossRef Wilby RL, Abrahart RJ, Dawson CW (2003) Detection of conceptual model rainfall–runoff processes inside an artificial neural network. Hydrol Sci J 48(2):163–181CrossRef
41.
Zurück zum Zitat Xiong LH, Shamseldin AY, O’Connor KM (2001) A nonlinear combination of the forecasts of rainfall–runoff models by the first order Takagi–Sugeno fuzzy system. J Hydrol 245(1–4):196–217CrossRef Xiong LH, Shamseldin AY, O’Connor KM (2001) A nonlinear combination of the forecasts of rainfall–runoff models by the first order Takagi–Sugeno fuzzy system. J Hydrol 245(1–4):196–217CrossRef
42.
Zurück zum Zitat Yager R, Filev D (1994) Generation of fuzzy rules by Mountain clustering. J Intell Fuzzy Syst 2(3):209–219 Yager R, Filev D (1994) Generation of fuzzy rules by Mountain clustering. J Intell Fuzzy Syst 2(3):209–219
43.
Zurück zum Zitat Zhang B, Govindaraju RS (2000) Prediction of watershed runoff using Bayesian concepts and modular neural networks. Water Resour Res 36(3):753–762CrossRef Zhang B, Govindaraju RS (2000) Prediction of watershed runoff using Bayesian concepts and modular neural networks. Water Resour Res 36(3):753–762CrossRef
Metadaten
Titel
River flow forecasting through nonlinear local approximation in a fuzzy model
verfasst von
P. C. Nayak
K. P. Sudheer
S. K. Jain
Publikationsdatum
01.12.2014
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 7-8/2014
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-014-1684-z

Weitere Artikel der Ausgabe 7-8/2014

Neural Computing and Applications 7-8/2014 Zur Ausgabe

Premium Partner