Skip to main content
Erschienen in: Journal of Computational Electronics 1/2015

01.03.2015

Self-consistent solution of Schrödinger–Poisson equations in a reverse biased nano-scale \(p\)-\(n\) junction based on \(\hbox {Si/Si}_{0.4}\hbox {Ge}_{0.6}/\hbox {Si}\) quantum well

verfasst von: Aritra Acharyya, Subhashri Chatterjee, Adrija Das, Kumari Alka Singh

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the quantum mechanical behavior of a reverse biased nano-scale \(p\)-\(n\) junction based on \(\hbox {Si/Si}_{0.4}\hbox {Ge}_{0.6}/\hbox {Si}\) quantum well has been studied by obtaining the self-consistent solution of coupled Schrödinger and Poisson equations. The carrier confinement within the said quantum well structure has been investigated by analyzing the special variations of electron and hole densities throughout the device structure obtained from the self-consistent solution of coupled Schrödinger and Poisson equations for different widths of the quantum well. The tunnel current across the junction has also been calculated for the heterostructure for different applied reverse bias voltages. Results show that, due to the greater depth of the quantum well in conduction band as compared to that in valance band of \(\hbox {Si/Si}_{0.4}\hbox {Ge}_{0.6}/\hbox {Si}\) heterostructure, the quantum confinement effect is more pronounced for electrons in conduction band as compared to that for holes in valance band. Finally the current-voltage characteristics of the heterostructure under consideration have been investigated for different widths of the quantum well. It is observed that the modulation of tunnel current may be achieved by varying the width of the quantum well. The present study is the groundwork for investigating the optoelectronic properties of nano-scale photodetectors based on \(\hbox {Si/Si}_{1-x}\hbox {Ge}_{x}/\hbox {Si}\) material system capable of detecting longer wavelengths around 1.30 and 1.55 \(\upmu \hbox {m}\).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Shockley, W.: Circuit element utilizing semiconductive material. U.S. Patent 2569347, 1–13 (1951) Shockley, W.: Circuit element utilizing semiconductive material. U.S. Patent 2569347, 1–13 (1951)
2.
Zurück zum Zitat Casey, H.C., Cho, A.Y., Barnes, P.A.: Application of molecular-beam epitaxial layers to heterostructure laser. IEEE J. Quantum Electron. 11(7), 467–470 (1975)CrossRef Casey, H.C., Cho, A.Y., Barnes, P.A.: Application of molecular-beam epitaxial layers to heterostructure laser. IEEE J. Quantum Electron. 11(7), 467–470 (1975)CrossRef
3.
Zurück zum Zitat Kasper, E., Luy, J.F.: Molecular beam epitaxy of silicon based electronic structures. Microelectron. J. 22(3), 5–16 (1991)CrossRef Kasper, E., Luy, J.F.: Molecular beam epitaxy of silicon based electronic structures. Microelectron. J. 22(3), 5–16 (1991)CrossRef
4.
Zurück zum Zitat Luo, G., Zhu, P., Chen, P., Liu, Z., Lin, H., Qian, P.: An ultrahigh vacuum chemical vapor deposition system and its application to growth of \(n\)MOSFET and HBT structures. Vacuum 59(4), 927–931 (2000)CrossRef Luo, G., Zhu, P., Chen, P., Liu, Z., Lin, H., Qian, P.: An ultrahigh vacuum chemical vapor deposition system and its application to growth of \(n\)MOSFET and HBT structures. Vacuum 59(4), 927–931 (2000)CrossRef
5.
Zurück zum Zitat Bean, J.C.: Silicon-based semiconductor heterostructures: column IV bandgap engineering. Proc. IEEE 80(4), 571–587 (1992)CrossRef Bean, J.C.: Silicon-based semiconductor heterostructures: column IV bandgap engineering. Proc. IEEE 80(4), 571–587 (1992)CrossRef
6.
Zurück zum Zitat Ravaioli, U., Kerkhoven, T., Raschke, M., Galick, A.T.: Numerical simulation of electron confinement in contiguous quantum wires. Supperlattices Microstruct. 11(3), 343–345 (1992)CrossRef Ravaioli, U., Kerkhoven, T., Raschke, M., Galick, A.T.: Numerical simulation of electron confinement in contiguous quantum wires. Supperlattices Microstruct. 11(3), 343–345 (1992)CrossRef
7.
Zurück zum Zitat Borukhovich, A.S.: Quantum tunneling in multilayers and heterostructures with ferromagnetic semiconductors. Physics-Uspekhi 42(7), 653–667 (1999)CrossRef Borukhovich, A.S.: Quantum tunneling in multilayers and heterostructures with ferromagnetic semiconductors. Physics-Uspekhi 42(7), 653–667 (1999)CrossRef
8.
Zurück zum Zitat Fox, M., Ispasoiu, R.: Quantum wells, superlattices, and band-gap engineering. Mater. Optoelectron. Photonics D.42, 1021–1039 (2004) Fox, M., Ispasoiu, R.: Quantum wells, superlattices, and band-gap engineering. Mater. Optoelectron. Photonics D.42, 1021–1039 (2004)
9.
Zurück zum Zitat Miller, D.A.B.: Optoelectronic applications of quantum wells. Optics Photonics News, 1(2), 7–15 (1990) Miller, D.A.B.: Optoelectronic applications of quantum wells. Optics Photonics News, 1(2), 7–15 (1990)
10.
Zurück zum Zitat Aeberhard, U.R.S.: A Microscopic Theory of Quantum Well Photovoltaics. PhD Dissertation submitted to Swiss Federal Institute of Technology Zurich, 1–217 (2008) Aeberhard, U.R.S.: A Microscopic Theory of Quantum Well Photovoltaics. PhD Dissertation submitted to Swiss Federal Institute of Technology Zurich, 1–217 (2008)
11.
Zurück zum Zitat Blatt, J.M.: Practical points concerning the solution of the Schrödinger equation. J. Comput. Phys. 1(3), 382–396 (1967)CrossRefMATH Blatt, J.M.: Practical points concerning the solution of the Schrödinger equation. J. Comput. Phys. 1(3), 382–396 (1967)CrossRefMATH
12.
Zurück zum Zitat Luscombe, J.H., Bouchard, A.M., Luban, M.: Electron confinement in quantum nanostructures: self-consistent Poisson–Schrödinger theory. Phys. Rev. B 46(16), 10262–10268 (1992)CrossRef Luscombe, J.H., Bouchard, A.M., Luban, M.: Electron confinement in quantum nanostructures: self-consistent Poisson–Schrödinger theory. Phys. Rev. B 46(16), 10262–10268 (1992)CrossRef
13.
Zurück zum Zitat Wang, L., Asbeck, P.M., Taur, Y.: Self-consistent 1-D Schrödinger–Poisson solver for III-V heterostructures accounting for conduction band non-parabolicity. Solid-State Electron. 54(11), 1257–1262 (2010)CrossRef Wang, L., Asbeck, P.M., Taur, Y.: Self-consistent 1-D Schrödinger–Poisson solver for III-V heterostructures accounting for conduction band non-parabolicity. Solid-State Electron. 54(11), 1257–1262 (2010)CrossRef
14.
Zurück zum Zitat Jeng, S.J., Jagannathan, B., Rieh, J.S., Johnson, J., Schonenberg, K.T., Greenberg, D., Stricker, A., Chen, H., Khater, M., Ahlgren, D., Freeman, G., Stein, K., Subbanna, S.: A 210 GHz f SiGe heterojunction bipolar transistor with a non-self-aligned (NSA) structure. IEEE Electron Device Lett. 22, 542–544 (2001)CrossRef Jeng, S.J., Jagannathan, B., Rieh, J.S., Johnson, J., Schonenberg, K.T., Greenberg, D., Stricker, A., Chen, H., Khater, M., Ahlgren, D., Freeman, G., Stein, K., Subbanna, S.: A 210 GHz f SiGe heterojunction bipolar transistor with a non-self-aligned (NSA) structure. IEEE Electron Device Lett. 22, 542–544 (2001)CrossRef
15.
Zurück zum Zitat Jagannathan, B., Khater, M., Pagette, F., Rieh, J.S., Angell, D., Chen, H., Florkey, J., Golan, F., Greenberg, D.R., Groves, R., Jeng, S.J., Johnson, J., Mengistu, E., Schonenberg, K.T., Schnabel, C.M., Smith, P., Stricker, A., Ahlgren, D., Freeman, G., Stein, K., Subbanna, S.: Self-aligned SiGe NPN transistors with 285 GHz \(f_{MAX}\) and 207 GHz \(f_{T}\) in a manufacturable technology. IEEE Electron Device Lett. 23, 258–260 (2002)CrossRef Jagannathan, B., Khater, M., Pagette, F., Rieh, J.S., Angell, D., Chen, H., Florkey, J., Golan, F., Greenberg, D.R., Groves, R., Jeng, S.J., Johnson, J., Mengistu, E., Schonenberg, K.T., Schnabel, C.M., Smith, P., Stricker, A., Ahlgren, D., Freeman, G., Stein, K., Subbanna, S.: Self-aligned SiGe NPN transistors with 285 GHz \(f_{MAX}\) and 207 GHz \(f_{T}\) in a manufacturable technology. IEEE Electron Device Lett. 23, 258–260 (2002)CrossRef
16.
Zurück zum Zitat Mizuno, T., Takagi, S., Sugiyama, N., Satake, H., Kurobe, A., Toriumi, A.: Electron and hole mobility enhancement in strained-Si MOSFET’s on SiGe-on-insulator substrates fabricated by SIMOX technology. IEEE Electron Device Lett. 21, 230–232 (2000)CrossRef Mizuno, T., Takagi, S., Sugiyama, N., Satake, H., Kurobe, A., Toriumi, A.: Electron and hole mobility enhancement in strained-Si MOSFET’s on SiGe-on-insulator substrates fabricated by SIMOX technology. IEEE Electron Device Lett. 21, 230–232 (2000)CrossRef
17.
Zurück zum Zitat Konig, U., Schaffler, F.: \(p\)-Type Ge-channel MODFET’s with high transconductance grown on Si substrates. IEEE Electron Device Lett. 14, 205–207 (1993)CrossRef Konig, U., Schaffler, F.: \(p\)-Type Ge-channel MODFET’s with high transconductance grown on Si substrates. IEEE Electron Device Lett. 14, 205–207 (1993)CrossRef
18.
Zurück zum Zitat Irisawa, T., Tokumitsu, S., Hattori, T., Nakagawa, K., Koh, S., Shiraki, Y.: Ultrahigh room-temperature hole Hall and effective mobility in \(\text{ Si }_{0.3}\text{ Ge }_{0.7}/\text{ Ge }/\text{ Si }_{0.3}\text{ Ge }_{0.7}\) heterostructures. Appl. Phys. Lett. 81(5), 847–849 (2002)CrossRef Irisawa, T., Tokumitsu, S., Hattori, T., Nakagawa, K., Koh, S., Shiraki, Y.: Ultrahigh room-temperature hole Hall and effective mobility in \(\text{ Si }_{0.3}\text{ Ge }_{0.7}/\text{ Ge }/\text{ Si }_{0.3}\text{ Ge }_{0.7}\) heterostructures. Appl. Phys. Lett. 81(5), 847–849 (2002)CrossRef
19.
Zurück zum Zitat Rim, K., Chu, J., Chen, H., Jenkins, K.A., Kanarsky, T., Lee, K., Mocuta, A., Zhu, H., Roy, R., Newbury, J., Ott, J., Petrarca, K., Mooney, P., Lacey, D., Koester, S., Chan, K., Boyd, D., Ieong, M., and Wong, H.S.: Strained-Si for sub-100-nm MOSFETs. VLSI Symp. Tech. Dig., 98–99 (2002) Rim, K., Chu, J., Chen, H., Jenkins, K.A., Kanarsky, T., Lee, K., Mocuta, A., Zhu, H., Roy, R., Newbury, J., Ott, J., Petrarca, K., Mooney, P., Lacey, D., Koester, S., Chan, K., Boyd, D., Ieong, M., and Wong, H.S.: Strained-Si for sub-100-nm MOSFETs. VLSI Symp. Tech. Dig., 98–99 (2002)
20.
Zurück zum Zitat Suda, Y., Koyama, H.: Electron resonant tunneling with a high peak-to-valley ratio at room temperature in triple barrier diodes. Appl. Phys. Lett. 79, 2273–2275 (2001)CrossRef Suda, Y., Koyama, H.: Electron resonant tunneling with a high peak-to-valley ratio at room temperature in triple barrier diodes. Appl. Phys. Lett. 79, 2273–2275 (2001)CrossRef
21.
Zurück zum Zitat Krstelj, Z.M., Liu, C.W., Xiao, X., Sturm, J.C.: Symmetric \(\text{ Si }/\text{ Si }_{1-x}\text{ Ge }_{x}\) electron resonant tunneling diodes with an anomalous temperature behavior. Appl. Phys. Lett. 62, 603–605 (1993)CrossRef Krstelj, Z.M., Liu, C.W., Xiao, X., Sturm, J.C.: Symmetric \(\text{ Si }/\text{ Si }_{1-x}\text{ Ge }_{x}\) electron resonant tunneling diodes with an anomalous temperature behavior. Appl. Phys. Lett. 62, 603–605 (1993)CrossRef
22.
Zurück zum Zitat Liu, H.C., Landheer, D., Buchanan, N., Houghton, D.C.: Resonant tunneling in \(\text{ Si }/\text{ Si }_{1-x}\text{ Ge }_{x}\) double-barrier structures. Appl. Phys. Lett. 52, 1809–1811 (1988)CrossRef Liu, H.C., Landheer, D., Buchanan, N., Houghton, D.C.: Resonant tunneling in \(\text{ Si }/\text{ Si }_{1-x}\text{ Ge }_{x}\) double-barrier structures. Appl. Phys. Lett. 52, 1809–1811 (1988)CrossRef
23.
Zurück zum Zitat Ismail, K., Meyerson, B.S., Rishton, S., Chu, J., Nelson, S., Noccra, J.: High-transconductance \(n\)-type Si/SiGe modulation-doped field-effect transistors. IEEE Electron Device Lett. 13, 229–231 (1992) Ismail, K., Meyerson, B.S., Rishton, S., Chu, J., Nelson, S., Noccra, J.: High-transconductance \(n\)-type Si/SiGe modulation-doped field-effect transistors. IEEE Electron Device Lett. 13, 229–231 (1992)
24.
Zurück zum Zitat Takagi, S., Hoyt, J.L., Welser, J.J., Gibbons, J.F.: Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 80, 1567 (1996)CrossRef Takagi, S., Hoyt, J.L., Welser, J.J., Gibbons, J.F.: Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 80, 1567 (1996)CrossRef
25.
Zurück zum Zitat Koester, S.J., Hammond, R., Chu, J.O.: Extremely high transconductance \(\text{ Ge }/\text{ Si }_{0.4}\text{ Ge }_{0.6}\) p-MODFET’s grown by UHV-CVD. IEEE Electron Device Lett. 21(3), 110–112 (2000)CrossRef Koester, S.J., Hammond, R., Chu, J.O.: Extremely high transconductance \(\text{ Ge }/\text{ Si }_{0.4}\text{ Ge }_{0.6}\) p-MODFET’s grown by UHV-CVD. IEEE Electron Device Lett. 21(3), 110–112 (2000)CrossRef
26.
Zurück zum Zitat Paul, D.J., See, P., Bates, R., Griffin, N., Coonan, B.P., Redmond, G., Crean, G.M., Zozoulenko, I.V., Berggren, K.F., Hollander, B., Mantl, S.: Si/SiGe electron resonant tunneling diodes with graded spacer wells. Appl. Phys. Lett. 78(26), 4184–4186 (2001)CrossRef Paul, D.J., See, P., Bates, R., Griffin, N., Coonan, B.P., Redmond, G., Crean, G.M., Zozoulenko, I.V., Berggren, K.F., Hollander, B., Mantl, S.: Si/SiGe electron resonant tunneling diodes with graded spacer wells. Appl. Phys. Lett. 78(26), 4184–4186 (2001)CrossRef
27.
Zurück zum Zitat Chang, S.J., Nayak, D.K., Shiraki, Y.: 1.54 \({\mu }\) m electroluminescence from erbium-doped SiGe light emitting diodes. J. Appl. Phys. 83, 1426–1428 (1998)CrossRef Chang, S.J., Nayak, D.K., Shiraki, Y.: 1.54 \({\mu }\) m electroluminescence from erbium-doped SiGe light emitting diodes. J. Appl. Phys. 83, 1426–1428 (1998)CrossRef
28.
Zurück zum Zitat Lee, M.H., Chen, K.F., Lai, C.C., Liu, C.W., Pai, W.W., Chen, M.J., Lin, C.F.: The roughness-enhanced light emission from metal-oxide-silicon light-emitting diodes using very high vacuum prebake. Jpn. J. Appl. Phys. Part 2 Lett. 41, L326–328 (2002)CrossRef Lee, M.H., Chen, K.F., Lai, C.C., Liu, C.W., Pai, W.W., Chen, M.J., Lin, C.F.: The roughness-enhanced light emission from metal-oxide-silicon light-emitting diodes using very high vacuum prebake. Jpn. J. Appl. Phys. Part 2 Lett. 41, L326–328 (2002)CrossRef
29.
Zurück zum Zitat Sfina, N., Lazzari, J.L., Cuminal, Y., Christol, P., Said, M.: Simulation of p-i-n heterojunctions built on strain-compensated \(\text{ Si }/\text{ Si }_{0.40}\text{ Ge }_{0.60}/\text{ Si }\) multiple quantum wells for photodetection near 1.55 \(\mu \text{ m }\). Thin Solid Films 517, 388–390 (2008)CrossRef Sfina, N., Lazzari, J.L., Cuminal, Y., Christol, P., Said, M.: Simulation of p-i-n heterojunctions built on strain-compensated \(\text{ Si }/\text{ Si }_{0.40}\text{ Ge }_{0.60}/\text{ Si }\) multiple quantum wells for photodetection near 1.55 \(\mu \text{ m }\). Thin Solid Films 517, 388–390 (2008)CrossRef
30.
Zurück zum Zitat Pei, Z., Liang, C.S., Lai, L.S., Tseng, Y.T., Hsu, Y.M., Chen, P.S., Lu, S.C., Liu, C.M., Tsai, M.J., Liu, C.W.: High efficient 850 nm and 1310 nm multiple quantum well SiGe/Si heterojunction phototransistors with 1.25 plus GHz bandwidth. In: International Electron Device Meeting (IEDM), pp. 1–4 (2002) Pei, Z., Liang, C.S., Lai, L.S., Tseng, Y.T., Hsu, Y.M., Chen, P.S., Lu, S.C., Liu, C.M., Tsai, M.J., Liu, C.W.: High efficient 850 nm and 1310 nm multiple quantum well SiGe/Si heterojunction phototransistors with 1.25 plus GHz bandwidth. In: International Electron Device Meeting (IEDM), pp. 1–4 (2002)
31.
Zurück zum Zitat Chand, N.: A long-wavelength infra-red phototransistor. Electron. Lett. 29(20), 1800–1802 (1993)CrossRef Chand, N.: A long-wavelength infra-red phototransistor. Electron. Lett. 29(20), 1800–1802 (1993)CrossRef
32.
Zurück zum Zitat Yang, M., Schaub, J., Rogers, D., Ritter, M., Rim, K., Welse, J., Park, B.: High speed silicon lateral trench detector on SOI substrate. IEDM Tech. Dig., 547–550 (2001) Yang, M., Schaub, J., Rogers, D., Ritter, M., Rim, K., Welse, J., Park, B.: High speed silicon lateral trench detector on SOI substrate. IEDM Tech. Dig., 547–550 (2001)
33.
Zurück zum Zitat Hsu, B.C., Chang, S.T., Shie, C.R., Lai, C.C., Chen, P.S., Liu, C.W.: High efficient 820 nm MOS Ge quantum dot photodetectors for short reach integrated optical receivers. In: International Electron Device Meeting (IEDM), pp. 91–94 (2002) Hsu, B.C., Chang, S.T., Shie, C.R., Lai, C.C., Chen, P.S., Liu, C.W.: High efficient 820 nm MOS Ge quantum dot photodetectors for short reach integrated optical receivers. In: International Electron Device Meeting (IEDM), pp. 91–94 (2002)
35.
Zurück zum Zitat Doudlas, J., Yuan, Y.: Finite difference method for the transient behavior of a semiconductor device. IMA 286, 1–20 (1987) Doudlas, J., Yuan, Y.: Finite difference method for the transient behavior of a semiconductor device. IMA 286, 1–20 (1987)
36.
Zurück zum Zitat Christodoulou, N.S.: An algorithm using Runge–Kutta methods of orders 4 and 5 for systems of ODEs. Int. J. Numer. Methods Appl. 2(1), 47–57 (2009)MATHMathSciNet Christodoulou, N.S.: An algorithm using Runge–Kutta methods of orders 4 and 5 for systems of ODEs. Int. J. Numer. Methods Appl. 2(1), 47–57 (2009)MATHMathSciNet
37.
Zurück zum Zitat Stern, F.: Iteration methods for calculating self-consistent fields in semiconductor inversion layers. J. Comput. Phys. 6(1), 56–67 (1970)CrossRefMATH Stern, F.: Iteration methods for calculating self-consistent fields in semiconductor inversion layers. J. Comput. Phys. 6(1), 56–67 (1970)CrossRefMATH
38.
Zurück zum Zitat Acharyya, A., Banerjee, J.P.: Studies on anisotype \(\text{ Si }/\text{ Si }_{1-x}\text{ Ge }_{x}\) heterojunction DDR IMPATTs: efficient millimeter-wave sources at 94 GHz window. IETE J. Res. 59(4), 424–432 (2013)CrossRef Acharyya, A., Banerjee, J.P.: Studies on anisotype \(\text{ Si }/\text{ Si }_{1-x}\text{ Ge }_{x}\) heterojunction DDR IMPATTs: efficient millimeter-wave sources at 94 GHz window. IETE J. Res. 59(4), 424–432 (2013)CrossRef
39.
Zurück zum Zitat Sastry, S.S.: Introductory Methods of Numerical Analysis, 2nd edn, pp. 125–126. Prentice-Hall, New Delhi (1995) Sastry, S.S.: Introductory Methods of Numerical Analysis, 2nd edn, pp. 125–126. Prentice-Hall, New Delhi (1995)
40.
Zurück zum Zitat Ku, J.H., Nemanich, R.J.: Surface electronic structure of clean and hydrogen-chemisorbed \(\text{ Si }_{x}\text{ Ge }_{1-x}\) alloy surfaces. Phys. Rev. B 54(19), 102–110 (1996)CrossRef Ku, J.H., Nemanich, R.J.: Surface electronic structure of clean and hydrogen-chemisorbed \(\text{ Si }_{x}\text{ Ge }_{1-x}\) alloy surfaces. Phys. Rev. B 54(19), 102–110 (1996)CrossRef
41.
Zurück zum Zitat Schaffler, F.: In: Levinshtein, M.E., Rumyantsev, S.L., Shur, M.S., (Eds) Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, pp. 149–188. John Wiley, New York (2001) Schaffler, F.: In: Levinshtein, M.E., Rumyantsev, S.L., Shur, M.S., (Eds) Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, pp. 149–188. John Wiley, New York (2001)
42.
Zurück zum Zitat Cavassilas, N., Autran, J.L., Aniel, F., Fishman, G.: Energy and temperature dependence of electron effective masses in silicon. J. Appl. Phys. 92(3), 1431–1433 (2002)CrossRef Cavassilas, N., Autran, J.L., Aniel, F., Fishman, G.: Energy and temperature dependence of electron effective masses in silicon. J. Appl. Phys. 92(3), 1431–1433 (2002)CrossRef
44.
Zurück zum Zitat Sfina, N., Yahyaoui, N., Said, M., Lazzari, J.L.: Modelling of the quantum transport in strained Si/SiGe/Si superlattices based p-i-n Infrared photodetectors for 1.3 - 1.55 \(\mu \text{ m }\) optical communication. Modeling and Numerical Simulation of Material Science 4, 37–52 (2014)CrossRef Sfina, N., Yahyaoui, N., Said, M., Lazzari, J.L.: Modelling of the quantum transport in strained Si/SiGe/Si superlattices based p-i-n Infrared photodetectors for 1.3 - 1.55 \(\mu \text{ m }\) optical communication. Modeling and Numerical Simulation of Material Science 4, 37–52 (2014)CrossRef
45.
Zurück zum Zitat Meyerson, B.S.: UHV/CVD growth of Si and Si:Ge alloys: chemistry, physics and device applications. Proc. IEEE 80(10), 1592–1608 (1992) Meyerson, B.S.: UHV/CVD growth of Si and Si:Ge alloys: chemistry, physics and device applications. Proc. IEEE 80(10), 1592–1608 (1992)
46.
Zurück zum Zitat Kasper, E., Kibbel, H., Herzog, H.J.: 50 GHz SiGe heterobipolar transistors: growth of the complete layer sequence by molecular beam epitaxy. Thin Solid Films 222, 137–140 (1992)CrossRef Kasper, E., Kibbel, H., Herzog, H.J.: 50 GHz SiGe heterobipolar transistors: growth of the complete layer sequence by molecular beam epitaxy. Thin Solid Films 222, 137–140 (1992)CrossRef
47.
Zurück zum Zitat Lee, W.S., Liu, T.Y.: The effect of annealing temperature on the microstructure of nanoindented Au/Cr/Si thin films. Nanotechnology 18(33), 335701 (2007)CrossRef Lee, W.S., Liu, T.Y.: The effect of annealing temperature on the microstructure of nanoindented Au/Cr/Si thin films. Nanotechnology 18(33), 335701 (2007)CrossRef
Metadaten
Titel
Self-consistent solution of Schrödinger–Poisson equations in a reverse biased nano-scale - junction based on quantum well
verfasst von
Aritra Acharyya
Subhashri Chatterjee
Adrija Das
Kumari Alka Singh
Publikationsdatum
01.03.2015
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2015
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-014-0637-1

Weitere Artikel der Ausgabe 1/2015

Journal of Computational Electronics 1/2015 Zur Ausgabe

Neuer Inhalt