Skip to main content
Erschienen in: Journal of Computational Electronics 1/2015

01.03.2015

Quantum corrected drift-diffusion model for terahertz IMPATTs based on different semiconductors

verfasst von: Aritra Acharyya, Jayabrata Goswami, Suranjana Banerjee, J. P. Banerjee

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The authors have developed a quantum corrected drift-diffusion model for impact avalanche transit time (IMPATT) devices by coupling the density gradient model with the classical drift-diffusion model. A large-signal simulation technique has been developed by incorporating the quantum potentials in the current density equations for the analysis of double-drift region IMPATT devices based on different semiconductors such as Wurtzite–GaN, InP, type-IIb diamond (C), 4H–SiC and Si deigned to operate at different millimeter-wave (mm-wave) and terahertz (THz) frequencies. It is observed that, the RF power output and DC to RF conversion efficiency of the devices operating at higher mm-wave (\(>\)140 GHz) and THz frequencies reduce due to the incorporation of quantum corrections in the model; but the effect of quantum corrections are negligible for the devices operating at lower mm-wave frequencies (\(\le \)140 GHz).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Eisele, H., Chen, C.C., Munns, G.O., Haddad, G.I.: The potential of InP IMPATT diodes as high-power millimeter-wave sources: First experimental results. IEEE MTT-S International Microwave Symposium Digest, pp. 529–532 (1996) Eisele, H., Chen, C.C., Munns, G.O., Haddad, G.I.: The potential of InP IMPATT diodes as high-power millimeter-wave sources: First experimental results. IEEE MTT-S International Microwave Symposium Digest, pp. 529–532 (1996)
2.
Zurück zum Zitat Mukherjee, M., Majumder, N.: Optically Illuminated 4H–SiC terahertz IMPATT device. Egypt J. Solids 30(1), 87–101 (2007) Mukherjee, M., Majumder, N.: Optically Illuminated 4H–SiC terahertz IMPATT device. Egypt J. Solids 30(1), 87–101 (2007)
3.
Zurück zum Zitat Mukherjee, M., Majumder, N., Roy, S.K.: Prospects of 4H–SiC double drift region IMPATT device as a photo-sensitive high power source at 0.7 terahertz frequency regime. Active Passiv. Electron. Compon. 2008, 1–9 (2008)CrossRef Mukherjee, M., Majumder, N., Roy, S.K.: Prospects of 4H–SiC double drift region IMPATT device as a photo-sensitive high power source at 0.7 terahertz frequency regime. Active Passiv. Electron. Compon. 2008, 1–9 (2008)CrossRef
4.
Zurück zum Zitat Mukherjee, M., Roy, S.K.: Optically modulated III–V nitride-based top-mounted and flip-chip IMPATT oscillators at terahertz regime: studies on the shift of avalanche transit time phase delay due to photogenerated carriers. IEEE Trans. Electron Devices 56(7), 1411–1417 (2009)CrossRef Mukherjee, M., Roy, S.K.: Optically modulated III–V nitride-based top-mounted and flip-chip IMPATT oscillators at terahertz regime: studies on the shift of avalanche transit time phase delay due to photogenerated carriers. IEEE Trans. Electron Devices 56(7), 1411–1417 (2009)CrossRef
5.
Zurück zum Zitat Trew, R.J., Yan, J.B., Mock, P.M.: The potentiality of diamond and SiC electronic devices for microwave and millimeter-wave power applications. Proc. IEEE 79(5), 598–620 (1991)CrossRef Trew, R.J., Yan, J.B., Mock, P.M.: The potentiality of diamond and SiC electronic devices for microwave and millimeter-wave power applications. Proc. IEEE 79(5), 598–620 (1991)CrossRef
6.
Zurück zum Zitat Acharyya, A., Banerjee, J.P.: Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Appl. Nanosci. 4, 1–14 (2014)CrossRef Acharyya, A., Banerjee, J.P.: Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Appl. Nanosci. 4, 1–14 (2014)CrossRef
7.
Zurück zum Zitat Evans, W.J., Haddad, G.I.: A large-signal analysis of IMPATT diodes. IEEE Trans. Electron Devices 15(10), 708–717 (1968)CrossRef Evans, W.J., Haddad, G.I.: A large-signal analysis of IMPATT diodes. IEEE Trans. Electron Devices 15(10), 708–717 (1968)CrossRef
8.
Zurück zum Zitat Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Devices 6(1), 64–77 (1969)CrossRef Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Devices 6(1), 64–77 (1969)CrossRef
9.
Zurück zum Zitat Gupta, M.S., Lomax, R.J.: A current-excited large-signal analysis of IMPATT devices and its circuit implementations. IEEE Trans. Electron Devices 20, 395–399 (1973)CrossRef Gupta, M.S., Lomax, R.J.: A current-excited large-signal analysis of IMPATT devices and its circuit implementations. IEEE Trans. Electron Devices 20, 395–399 (1973)CrossRef
10.
Zurück zum Zitat Jüngel, A., Tang, S.: A relaxation scheme for the hydrodynamic equations for semiconductors. Appl. Numer. Math. 43, 229–252 (2002)CrossRefMATHMathSciNet Jüngel, A., Tang, S.: A relaxation scheme for the hydrodynamic equations for semiconductors. Appl. Numer. Math. 43, 229–252 (2002)CrossRefMATHMathSciNet
11.
Zurück zum Zitat Aluru, N.R., Raefsky, A., Pinsky, P.M., Law, K.H., Goossens, R.J.G., Dutton, R.W.: A finite element formulation for the hydrodynamic semiconductor device equations. Comput. Methods Appl. Mech. Eng. 107, 269–298 (1993)CrossRefMATH Aluru, N.R., Raefsky, A., Pinsky, P.M., Law, K.H., Goossens, R.J.G., Dutton, R.W.: A finite element formulation for the hydrodynamic semiconductor device equations. Comput. Methods Appl. Mech. Eng. 107, 269–298 (1993)CrossRefMATH
12.
Zurück zum Zitat Sadi, T., Thobel, J.L.: Analysis of the high-frequency performance of InGaAs/InAlAs nanojunctions using a 3D Monte Carlo simulator. J. Appl. Phys. 106, 083709 (2009)CrossRef Sadi, T., Thobel, J.L.: Analysis of the high-frequency performance of InGaAs/InAlAs nanojunctions using a 3D Monte Carlo simulator. J. Appl. Phys. 106, 083709 (2009)CrossRef
13.
Zurück zum Zitat Sadi, T., Kivisaari, P., Oksanen, J., Tulkki, J.: On the correlation of the Auger generated hot electron emission and efficiency droop in III-N LEDs. Appl. Phys. Lett. 105, 091106-1-5 (2014)CrossRef Sadi, T., Kivisaari, P., Oksanen, J., Tulkki, J.: On the correlation of the Auger generated hot electron emission and efficiency droop in III-N LEDs. Appl. Phys. Lett. 105, 091106-1-5 (2014)CrossRef
14.
Zurück zum Zitat Iniguez-de-la-Torre, I., et al.: Influence of the surface charge on the operation of ballistic T-branch junctions: a self-consistent model for Monte Carlo simulations. Semicond. Sci. Technol 22, 663–670 (2007)CrossRef Iniguez-de-la-Torre, I., et al.: Influence of the surface charge on the operation of ballistic T-branch junctions: a self-consistent model for Monte Carlo simulations. Semicond. Sci. Technol 22, 663–670 (2007)CrossRef
15.
Zurück zum Zitat MacPherson, R.F., Dunn, G.M., Pilgrim, N.J.: Simulation of gallium nitride Gunn diodes at various doping levels and temperatures for frequencies up to 300 GHz by Monte Carlo simulation, and incorporating the effects of thermal heating. Semicond. Sci. Technol. 23, 055005 (2008)CrossRef MacPherson, R.F., Dunn, G.M., Pilgrim, N.J.: Simulation of gallium nitride Gunn diodes at various doping levels and temperatures for frequencies up to 300 GHz by Monte Carlo simulation, and incorporating the effects of thermal heating. Semicond. Sci. Technol. 23, 055005 (2008)CrossRef
16.
Zurück zum Zitat Vasileska, D., Mamaluy, D., Khan, H.R., Raleva, K., Goodnick, S.M.: Semiconductor device modeling. J. Comput. Theor. Nanosci. 5, 999–1030 (2008)CrossRef Vasileska, D., Mamaluy, D., Khan, H.R., Raleva, K., Goodnick, S.M.: Semiconductor device modeling. J. Comput. Theor. Nanosci. 5, 999–1030 (2008)CrossRef
17.
Zurück zum Zitat Acharyya, A., Banerjee, S., Banerjee, J.P.: Influence of skin effect on the series resistance of millimeter-wave of IMPATT devices. J. Comput. Electron. 12(3), 511–525 (2013)CrossRef Acharyya, A., Banerjee, S., Banerjee, J.P.: Influence of skin effect on the series resistance of millimeter-wave of IMPATT devices. J. Comput. Electron. 12(3), 511–525 (2013)CrossRef
18.
Zurück zum Zitat Acharyya, A., Chakraborty, J., Das, K., Datta, S., De, P., Banerjee, S., Banerjee, J.P.: Large-signal characterization of DDR silicon IMPATTs operating in millimeter-wave and terahertz regime. J. Semicond. 34(10), 104003-1-8 (2013)CrossRef Acharyya, A., Chakraborty, J., Das, K., Datta, S., De, P., Banerjee, S., Banerjee, J.P.: Large-signal characterization of DDR silicon IMPATTs operating in millimeter-wave and terahertz regime. J. Semicond. 34(10), 104003-1-8 (2013)CrossRef
19.
Zurück zum Zitat Acharyya, A., Datta, K., Ghosh, R., Sarkar, M., Sanyal, R., Banerjee, S., Banerjee, J.P.: Diamond based DDR IMPATTs: prospects and potentiality as millimeter-wave source at 94 GHz atmospheric window. Radioengineering 22(2), 624–631 (2013) Acharyya, A., Datta, K., Ghosh, R., Sarkar, M., Sanyal, R., Banerjee, S., Banerjee, J.P.: Diamond based DDR IMPATTs: prospects and potentiality as millimeter-wave source at 94 GHz atmospheric window. Radioengineering 22(2), 624–631 (2013)
20.
Zurück zum Zitat Acharyya, A., Banerjee, S., Banerjee, J.P.: A proposed simulation technique to study the series resistance and related millimeter-wave properties of Ka-band Si IMPATTs from the electric field snap-shots. Int. J. Microw. Wirel. Technol. 5(1), 91–100 (2013)CrossRef Acharyya, A., Banerjee, S., Banerjee, J.P.: A proposed simulation technique to study the series resistance and related millimeter-wave properties of Ka-band Si IMPATTs from the electric field snap-shots. Int. J. Microw. Wirel. Technol. 5(1), 91–100 (2013)CrossRef
21.
Zurück zum Zitat Acharyya, A., Mallik, A., Banerjee, D., Ganguli, S., Das, A., Dasgupta, S., Banerjee, J.P.: IMPATT devices based on group III–V compound semiconductors: prospects as potential terahertz radiators. HKIE Trans. 21(3), 135–147 (2014)CrossRef Acharyya, A., Mallik, A., Banerjee, D., Ganguli, S., Das, A., Dasgupta, S., Banerjee, J.P.: IMPATT devices based on group III–V compound semiconductors: prospects as potential terahertz radiators. HKIE Trans. 21(3), 135–147 (2014)CrossRef
22.
Zurück zum Zitat Acharyya, A., Chakraborty, J., Das, K., Datta, S., De, P., Banerjee, S., Banerjee, J.P.: Large-signal characterization of DDR silicon IMPATTs operating up to 0.5 THz. Int. J. Microw. Wirel. Technol. 5(5), 567–578 (2013)CrossRef Acharyya, A., Chakraborty, J., Das, K., Datta, S., De, P., Banerjee, S., Banerjee, J.P.: Large-signal characterization of DDR silicon IMPATTs operating up to 0.5 THz. Int. J. Microw. Wirel. Technol. 5(5), 567–578 (2013)CrossRef
23.
Zurück zum Zitat Acharyya, A., Banerjee, S., Banerjee, J.P.: Large-signal simulation of 94 GHz pulsed DDR silicon IMPATTs including the temperature transient effect. Radioengineering 21(4), 1218–1225 (2012) Acharyya, A., Banerjee, S., Banerjee, J.P.: Large-signal simulation of 94 GHz pulsed DDR silicon IMPATTs including the temperature transient effect. Radioengineering 21(4), 1218–1225 (2012)
24.
Zurück zum Zitat Acharyya, A., Banerjee, S., Banerjee, J.P.: Effect of junction temperature on the large-signal properties of a 94 GHz silicon based double-drift region impact avalanche transit time device. J. Semicond. 34(2), 024001-1-12 (2013)CrossRef Acharyya, A., Banerjee, S., Banerjee, J.P.: Effect of junction temperature on the large-signal properties of a 94 GHz silicon based double-drift region impact avalanche transit time device. J. Semicond. 34(2), 024001-1-12 (2013)CrossRef
25.
Zurück zum Zitat Acharyya, A., Chatterjee, S., Goswami, J., Banerjee, S., Banerjee, J.P.: Quantum drift-diffusion model for IMPATT devices. J. Comput. Electron. 13, 739–752 (2014)CrossRef Acharyya, A., Chatterjee, S., Goswami, J., Banerjee, S., Banerjee, J.P.: Quantum drift-diffusion model for IMPATT devices. J. Comput. Electron. 13, 739–752 (2014)CrossRef
26.
Zurück zum Zitat Ancona, M.G., Tiersten, H.F.: Macroscopic physics of the silicon inversion layer. Phys. Rev. B 35, 7959–7965 (1987)CrossRef Ancona, M.G., Tiersten, H.F.: Macroscopic physics of the silicon inversion layer. Phys. Rev. B 35, 7959–7965 (1987)CrossRef
27.
Zurück zum Zitat Ancona, M.G., Yu, Z., Dutton, R.W., Voorde, P.J.V., Cao, M., Vook, D.: Density-gradient analysis of MOS tunneling. IEEE Trans. Electron Devices 47(12), 2310–2319 (2000)CrossRef Ancona, M.G., Yu, Z., Dutton, R.W., Voorde, P.J.V., Cao, M., Vook, D.: Density-gradient analysis of MOS tunneling. IEEE Trans. Electron Devices 47(12), 2310–2319 (2000)CrossRef
28.
Zurück zum Zitat Ancona, M.G.: Density-gradient theory: a macroscopic approach to quantum confinement and tunneling in semiconductor devices. J. Comput. Electron. 10, 65–97 (2011)CrossRef Ancona, M.G.: Density-gradient theory: a macroscopic approach to quantum confinement and tunneling in semiconductor devices. J. Comput. Electron. 10, 65–97 (2011)CrossRef
29.
Zurück zum Zitat Falco, C.D., Gatti, E., Lacaita, A.L., Sacco, R.: Quantum-corrected drift-diffusion models for transport in semiconductor devices. J. Comput. Phys. 204(2), 533–561 (2005)CrossRefMATHMathSciNet Falco, C.D., Gatti, E., Lacaita, A.L., Sacco, R.: Quantum-corrected drift-diffusion models for transport in semiconductor devices. J. Comput. Phys. 204(2), 533–561 (2005)CrossRefMATHMathSciNet
31.
Zurück zum Zitat Shiyu, S.C., Wang, G.: High-field properties of carrier transport in bulk wurtzite GaN: Monte Carlo perspective. J. Appl. Phys. 103, 703–708 (2008) Shiyu, S.C., Wang, G.: High-field properties of carrier transport in bulk wurtzite GaN: Monte Carlo perspective. J. Appl. Phys. 103, 703–708 (2008)
32.
Zurück zum Zitat Kramer, B., Micrea, A.: Determination of saturated electron velocity in GaAs’. Appl. Phys. Lett. 26, 623–624 (1975)CrossRef Kramer, B., Micrea, A.: Determination of saturated electron velocity in GaAs’. Appl. Phys. Lett. 26, 623–624 (1975)CrossRef
33.
Zurück zum Zitat Ferry, D.K.: High-field transport in wide-bandgap semiconductors. Phys. Rev. B 12, 2361–2369 (1975)CrossRef Ferry, D.K.: High-field transport in wide-bandgap semiconductors. Phys. Rev. B 12, 2361–2369 (1975)CrossRef
34.
Zurück zum Zitat Canali, C., Gatti, E., Kozlov, S.F., Manfredi, P.F., Manfredotti, C., Nava, F., Quirini, A.: Electrical properties and performances of neutral diamond nuclear radiation detectors. Nucl. Instrum. Methods 160, 73–77 (1979)CrossRef Canali, C., Gatti, E., Kozlov, S.F., Manfredi, P.F., Manfredotti, C., Nava, F., Quirini, A.: Electrical properties and performances of neutral diamond nuclear radiation detectors. Nucl. Instrum. Methods 160, 73–77 (1979)CrossRef
35.
Zurück zum Zitat Vassilevski, K.V., Zekentes, K., Zorenko, A.V., Romanov, L.P.: Experimental determination of electron drift velocity in 4H–SiC \(\text{ p }^{+}-\text{ n }-\text{ n }^{+}\) avalanche diodes. IEEE Electron Device Lett. 21, 485–487 (2000)CrossRef Vassilevski, K.V., Zekentes, K., Zorenko, A.V., Romanov, L.P.: Experimental determination of electron drift velocity in 4H–SiC \(\text{ p }^{+}-\text{ n }-\text{ n }^{+}\) avalanche diodes. IEEE Electron Device Lett. 21, 485–487 (2000)CrossRef
36.
Zurück zum Zitat Canali, C., Ottaviani, G., Quaranta, A.A.: Drift velocity of electrons and holes and associated anisotropic effects in silicon. J. Phys. Chem. Solids 32(8), 1707–1720 (1971)CrossRef Canali, C., Ottaviani, G., Quaranta, A.A.: Drift velocity of electrons and holes and associated anisotropic effects in silicon. J. Phys. Chem. Solids 32(8), 1707–1720 (1971)CrossRef
37.
Zurück zum Zitat Sze, S.M., Ryder, R.M.: Microwave avalanche diodes. Proc. IEEE Special Issue Microw. Semicond. Devices 59, 1140–1154 (1971) Sze, S.M., Ryder, R.M.: Microwave avalanche diodes. Proc. IEEE Special Issue Microw. Semicond. Devices 59, 1140–1154 (1971)
38.
Zurück zum Zitat Acharyya, A., Banerjee, J.P.: Potentiality of IMPATT devices as terahertz source: an avalanche response time based approach to determine the upper cut-off frequency limits. IETE J. Res. 59(2), 118–127 (2013)CrossRef Acharyya, A., Banerjee, J.P.: Potentiality of IMPATT devices as terahertz source: an avalanche response time based approach to determine the upper cut-off frequency limits. IETE J. Res. 59(2), 118–127 (2013)CrossRef
39.
Zurück zum Zitat Acharyya, A., Banerjee, S., Banerjee, J.P.: Potentiality of semiconducting diamond as base material of millimeter-wave and terahertz IMPATT devices. J. Semicond. 35(3), 034005-1-11 (2014)CrossRef Acharyya, A., Banerjee, S., Banerjee, J.P.: Potentiality of semiconducting diamond as base material of millimeter-wave and terahertz IMPATT devices. J. Semicond. 35(3), 034005-1-11 (2014)CrossRef
41.
Zurück zum Zitat Kunihiro, K., Kasahara, K., Takahashi, Y., Ohno, Y.: Experimental evaluation of impact ionization coefficients in GaN. IEEE Electron Device Lett. 20, 608–610 (1999)CrossRef Kunihiro, K., Kasahara, K., Takahashi, Y., Ohno, Y.: Experimental evaluation of impact ionization coefficients in GaN. IEEE Electron Device Lett. 20, 608–610 (1999)CrossRef
42.
Zurück zum Zitat Umebu, I., Chowdhury, A.N.M.M., Robson, P.N.: Ionization coefficients measured in abrupt InP junction. Appl. Phys. Lett. 36, 302–303 (1980)CrossRef Umebu, I., Chowdhury, A.N.M.M., Robson, P.N.: Ionization coefficients measured in abrupt InP junction. Appl. Phys. Lett. 36, 302–303 (1980)CrossRef
43.
Zurück zum Zitat Konorova, E.A., Kuznetsov, Y.A., Sergienko, V.A., Tkachenko, S.D., Tsikunov, A.K., Spitsyn, A.V., Danyushevski, Y.Z.: Impact ionization in semiconductor structures made of ion-implanted diamond. Sov. Phys. - Semicond. 17, 146–149 (1983) Konorova, E.A., Kuznetsov, Y.A., Sergienko, V.A., Tkachenko, S.D., Tsikunov, A.K., Spitsyn, A.V., Danyushevski, Y.Z.: Impact ionization in semiconductor structures made of ion-implanted diamond. Sov. Phys. - Semicond. 17, 146–149 (1983)
44.
Zurück zum Zitat Konstantinov, A.O., Wahab, Q., Nordell, N., Lindefelt, U.: Ionization rates and critical fields in 4H–Silicon Carbide. Appl. Phys. Lett. 71, 90–92 (1997)CrossRef Konstantinov, A.O., Wahab, Q., Nordell, N., Lindefelt, U.: Ionization rates and critical fields in 4H–Silicon Carbide. Appl. Phys. Lett. 71, 90–92 (1997)CrossRef
45.
Zurück zum Zitat Grant, W.N.: Electron and hole ionization rates in epitaxial Silicon. Solid State Electron 16(10), 1189–1203 (1973)CrossRefMathSciNet Grant, W.N.: Electron and hole ionization rates in epitaxial Silicon. Solid State Electron 16(10), 1189–1203 (1973)CrossRefMathSciNet
46.
Zurück zum Zitat Elta, M.E.: The effect of mixed tunneling and avalanche breakdown on microwave transit time diodes (PhD Dissertation). Electron Physics Laboratory, University of Michigan, Ann Arbor, MI, Technical Report (1978) Elta, M.E.: The effect of mixed tunneling and avalanche breakdown on microwave transit time diodes (PhD Dissertation). Electron Physics Laboratory, University of Michigan, Ann Arbor, MI, Technical Report (1978)
48.
Zurück zum Zitat Ancona, M.G.: Macroscopic description of quantum-mechanical tunneling. Phys. Rev. B 42, 1222–1223 (1990)CrossRef Ancona, M.G.: Macroscopic description of quantum-mechanical tunneling. Phys. Rev. B 42, 1222–1223 (1990)CrossRef
49.
Zurück zum Zitat Ancona, M.G.: Density-gradient analysis of field emission from metals. Phys. Rev. B 46, 4874–4883 (1992)CrossRef Ancona, M.G.: Density-gradient analysis of field emission from metals. Phys. Rev. B 46, 4874–4883 (1992)CrossRef
50.
Zurück zum Zitat Luy, J.F., Casel, A., Behr, W., Kasper, E.: A 90-GHz double-drift IMPATT diode made with Si MBE. IEEE Trans. Electron Devices 34(5), 1084–1089 (1987)CrossRef Luy, J.F., Casel, A., Behr, W., Kasper, E.: A 90-GHz double-drift IMPATT diode made with Si MBE. IEEE Trans. Electron Devices 34(5), 1084–1089 (1987)CrossRef
51.
Zurück zum Zitat Wollitzer, M., Buchler, J., Schafflr, F., Luy, J.F.: D-band Si-IMPATT diodes with 300 mW CW output power at 140 GHz. Electron. Lett. 32, 122–123 (1996)CrossRef Wollitzer, M., Buchler, J., Schafflr, F., Luy, J.F.: D-band Si-IMPATT diodes with 300 mW CW output power at 140 GHz. Electron. Lett. 32, 122–123 (1996)CrossRef
Metadaten
Titel
Quantum corrected drift-diffusion model for terahertz IMPATTs based on different semiconductors
verfasst von
Aritra Acharyya
Jayabrata Goswami
Suranjana Banerjee
J. P. Banerjee
Publikationsdatum
01.03.2015
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2015
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-014-0658-9

Weitere Artikel der Ausgabe 1/2015

Journal of Computational Electronics 1/2015 Zur Ausgabe

Neuer Inhalt