Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2009

01.12.2009

Self-sustained asynchronous irregular states and Up–Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons

verfasst von: Alain Destexhe

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Randomly-connected networks of integrate-and-fire (IF) neurons are known to display asynchronous irregular (AI) activity states, which resemble the discharge activity recorded in the cerebral cortex of awake animals. However, it is not clear whether such activity states are specific to simple IF models, or if they also exist in networks where neurons are endowed with complex intrinsic properties similar to electrophysiological measurements. Here, we investigate the occurrence of AI states in networks of nonlinear IF neurons, such as the adaptive exponential IF (Brette-Gerstner-Izhikevich) model. This model can display intrinsic properties such as low-threshold spike (LTS), regular spiking (RS) or fast-spiking (FS). We successively investigate the oscillatory and AI dynamics of thalamic, cortical and thalamocortical networks using such models. AI states can be found in each case, sometimes with surprisingly small network size of the order of a few tens of neurons. We show that the presence of LTS neurons in cortex or in thalamus, explains the robust emergence of AI states for relatively small network sizes. Finally, we investigate the role of spike-frequency adaptation (SFA). In cortical networks with strong SFA in RS cells, the AI state is transient, but when SFA is reduced, AI states can be self-sustained for long times. In thalamocortical networks, AI states are found when the cortex is itself in an AI state, but with strong SFA, the thalamocortical network displays Up and Down state transitions, similar to intracellular recordings during slow-wave sleep or anesthesia. Self-sustained Up and Down states could also be generated by two-layer cortical networks with LTS cells. These models suggest that intrinsic properties such as adaptation and low-threshold bursting activity are crucial for the genesis and control of AI states in thalamocortical networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Avendaño, C., Rausell, E., Perez-Aguilar, D., & Isorna, S. (1988). Organization of the association cortical afferent connections of area 5: A retrograde tracer study in the cat. Journal of Comparative Neurology, 278, 1–33.CrossRefPubMed Avendaño, C., Rausell, E., Perez-Aguilar, D., & Isorna, S. (1988). Organization of the association cortical afferent connections of area 5: A retrograde tracer study in the cat. Journal of Comparative Neurology, 278, 1–33.CrossRefPubMed
Zurück zum Zitat Avendaño, C., Rausell, E., & Reinoso-Suarez, F. (1985). Thalamic projections to areas 5a and 5b of the parietal cortex in the cat: A retrograde horseradish peroxidase study. Journal of Neuroscience, 5, 1446–1470.PubMed Avendaño, C., Rausell, E., & Reinoso-Suarez, F. (1985). Thalamic projections to areas 5a and 5b of the parietal cortex in the cat: A retrograde horseradish peroxidase study. Journal of Neuroscience, 5, 1446–1470.PubMed
Zurück zum Zitat Baranyi, A., Szente, M. B., & Woody, C. D. (1993a). Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. I. Patterns of firing activity and synaptic responses. Journal of Neurophysiology, 69, 1850–1864.PubMed Baranyi, A., Szente, M. B., & Woody, C. D. (1993a). Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. I. Patterns of firing activity and synaptic responses. Journal of Neurophysiology, 69, 1850–1864.PubMed
Zurück zum Zitat Baranyi, A., Szente, M. B., & Woody, C. D. (1993b). Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. II. Membrane parameters, action potentials, current-induced voltage responses and electrotonic structures. Journal of Neurophysiology, 69, 1865–1879.PubMed Baranyi, A., Szente, M. B., & Woody, C. D. (1993b). Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. II. Membrane parameters, action potentials, current-induced voltage responses and electrotonic structures. Journal of Neurophysiology, 69, 1865–1879.PubMed
Zurück zum Zitat Binzegger, T., Douglas, R. J., & Martin, K. A. C. (2004). A quantitative map of the circuit of cat primary visual cortex. Journal of Neuroscience, 24, 8441–8453.CrossRefPubMed Binzegger, T., Douglas, R. J., & Martin, K. A. C. (2004). A quantitative map of the circuit of cat primary visual cortex. Journal of Neuroscience, 24, 8441–8453.CrossRefPubMed
Zurück zum Zitat Borg-Graham, L. J., Monier, C., & Frégnac, Y. (1998). Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature, 393, 369–373.CrossRefPubMed Borg-Graham, L. J., Monier, C., & Frégnac, Y. (1998). Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature, 393, 369–373.CrossRefPubMed
Zurück zum Zitat Bourassa, J., & Deschênes, M. (1995). Corticothalamic projections from the primary visual cortex in rats: A single fiber study using biocytin as an anterograde tracer. Neuroscience, 66, 253–263.CrossRefPubMed Bourassa, J., & Deschênes, M. (1995). Corticothalamic projections from the primary visual cortex in rats: A single fiber study using biocytin as an anterograde tracer. Neuroscience, 66, 253–263.CrossRefPubMed
Zurück zum Zitat Braitenberg, V., & Schüz, A. (1998). Cortex: Statistics and geometry of neuronal connectivity (2nd ed.). Berlin: Springer. Braitenberg, V., & Schüz, A. (1998). Cortex: Statistics and geometry of neuronal connectivity (2nd ed.). Berlin: Springer.
Zurück zum Zitat Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiology, 94, 3637–3642.CrossRefPubMed Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiology, 94, 3637–3642.CrossRefPubMed
Zurück zum Zitat Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8, 183–208.CrossRefPubMed Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8, 183–208.CrossRefPubMed
Zurück zum Zitat Cessac, B. (2008). A discrete time neural network model with spiking neurons. Rigorous results on the spontaneous dynamics. Journal of Mathematical Biology, 56, 311–345.CrossRefPubMed Cessac, B. (2008). A discrete time neural network model with spiking neurons. Rigorous results on the spontaneous dynamics. Journal of Mathematical Biology, 56, 311–345.CrossRefPubMed
Zurück zum Zitat Cessac, B., & Viéville, T. (2009). On dynamics of integrate-and-fire neural networks with conductance based synapses. Frontiers of Computer Neuroscience, 3, 1. Cessac, B., & Viéville, T. (2009). On dynamics of integrate-and-fire neural networks with conductance based synapses. Frontiers of Computer Neuroscience, 3, 1.
Zurück zum Zitat Compte, A., Sanchez-Vives, M. V., McCormick, D. A., & Wang, X. J. (2003). Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. Journal of Neurophysiology, 89, 2707–2725.CrossRefPubMed Compte, A., Sanchez-Vives, M. V., McCormick, D. A., & Wang, X. J. (2003). Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. Journal of Neurophysiology, 89, 2707–2725.CrossRefPubMed
Zurück zum Zitat Connors, B. W., & Gutnick, M. J. (1990). Intrinsic firing patterns of diverse neocortical neurons. Trends in Neurosciences, 13, 99–104.CrossRefPubMed Connors, B. W., & Gutnick, M. J. (1990). Intrinsic firing patterns of diverse neocortical neurons. Trends in Neurosciences, 13, 99–104.CrossRefPubMed
Zurück zum Zitat Contreras, D., & Steriade, M. (1995). Cellular basis of EEG slow rhythms: A study of dynamic corticothalamic relationships. Journal of Neuroscience, 15, 604–622.PubMed Contreras, D., & Steriade, M. (1995). Cellular basis of EEG slow rhythms: A study of dynamic corticothalamic relationships. Journal of Neuroscience, 15, 604–622.PubMed
Zurück zum Zitat Contreras, D., Timofeev, I., & Steriade, M. (1996). Mechanisms of long lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. Journal of Physiology, 494, 251–264.PubMed Contreras, D., Timofeev, I., & Steriade, M. (1996). Mechanisms of long lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. Journal of Physiology, 494, 251–264.PubMed
Zurück zum Zitat Cossart, R., Aronov, D., & Yuste, R. (2003). Attractor dynamics of network UP states in the neocortex. Nature, 423, 283–238.CrossRefPubMed Cossart, R., Aronov, D., & Yuste, R. (2003). Attractor dynamics of network UP states in the neocortex. Nature, 423, 283–238.CrossRefPubMed
Zurück zum Zitat Crutchfield, J. P., & Kaneko, K. (1988). Are attractors relevant to turbulence? Physical Review Letters, 60, 2715–2718.CrossRefPubMed Crutchfield, J. P., & Kaneko, K. (1988). Are attractors relevant to turbulence? Physical Review Letters, 60, 2715–2718.CrossRefPubMed
Zurück zum Zitat de la Peña, E., & Geijo-Barrientos, E. (1996). Laminar organization, morphology and physiological properties of pyramidal neurons that have the low-threshold calcium current in the guinea-pig frontal cortex. Journal of Neuroscience, 16, 5301–5311.PubMed de la Peña, E., & Geijo-Barrientos, E. (1996). Laminar organization, morphology and physiological properties of pyramidal neurons that have the low-threshold calcium current in the guinea-pig frontal cortex. Journal of Neuroscience, 16, 5301–5311.PubMed
Zurück zum Zitat Destexhe, A., Contreras, D., & Steriade, M. (1998). Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. Journal of Neurophysiology, 79, 999–1016.PubMed Destexhe, A., Contreras, D., & Steriade, M. (1998). Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. Journal of Neurophysiology, 79, 999–1016.PubMed
Zurück zum Zitat Destexhe, A., Contreras, D., & Steriade, M. (2001). LTS cells in cerebral cortex and their role in generating spike-and-wave oscillations. Neurocomputing, 38, 555–563.CrossRef Destexhe, A., Contreras, D., & Steriade, M. (2001). LTS cells in cerebral cortex and their role in generating spike-and-wave oscillations. Neurocomputing, 38, 555–563.CrossRef
Zurück zum Zitat Destexhe, A., & Paré, D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. Journal of Neurophysiology, 81, 1531–1547.PubMed Destexhe, A., & Paré, D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. Journal of Neurophysiology, 81, 1531–1547.PubMed
Zurück zum Zitat Destexhe, A., Rudolph, M., & Paré, D. (2003). The high-conductance state of neocortical neurons in vivo. Nature Reviews Neuroscience, 4, 739–751.CrossRefPubMed Destexhe, A., Rudolph, M., & Paré, D. (2003). The high-conductance state of neocortical neurons in vivo. Nature Reviews Neuroscience, 4, 739–751.CrossRefPubMed
Zurück zum Zitat Destexhe, A., & Sejnowski, T. J. (2003). Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiological Reviews, 83, 1401–1453.PubMed Destexhe, A., & Sejnowski, T. J. (2003). Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiological Reviews, 83, 1401–1453.PubMed
Zurück zum Zitat El Boustani, S., & Destexhe, A. (2009). A master equation formalism for macroscopic modeling of asynchronous irregular activity states. Neural Computation, 21, 46–100.CrossRefPubMed El Boustani, S., & Destexhe, A. (2009). A master equation formalism for macroscopic modeling of asynchronous irregular activity states. Neural Computation, 21, 46–100.CrossRefPubMed
Zurück zum Zitat El Boustani, S., Pospischil, M., Rudolph-Lilith, M., & Destexhe, A. (2007). Activated cortical states: Experiments, analyses and models. Journal of Physiology (Paris), 101, 99–109.CrossRef El Boustani, S., Pospischil, M., Rudolph-Lilith, M., & Destexhe, A. (2007). Activated cortical states: Experiments, analyses and models. Journal of Physiology (Paris), 101, 99–109.CrossRef
Zurück zum Zitat FitzGibbon, T., Tevah, L. V., & Jervie-Sefton, A. (1995). Connections between the reticular nucleus of the thalamus and pulvinar-lateralis posterior complex: A WGA-HRP study. Journal of Comparative Neurology, 363, 489–504.CrossRefPubMed FitzGibbon, T., Tevah, L. V., & Jervie-Sefton, A. (1995). Connections between the reticular nucleus of the thalamus and pulvinar-lateralis posterior complex: A WGA-HRP study. Journal of Comparative Neurology, 363, 489–504.CrossRefPubMed
Zurück zum Zitat Fourcaud-Trocme, N., Hansel, D., van Vreeswijk, C., & Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs. Journal of Neuroscience, 23, 11628–11640.PubMed Fourcaud-Trocme, N., Hansel, D., van Vreeswijk, C., & Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs. Journal of Neuroscience, 23, 11628–11640.PubMed
Zurück zum Zitat Freund, T. F., Martin, K. A., Soltesz, I., Somogyi, P., & Whitteridge, D. (1989). Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey. Journal of Comparative Neurology, 289, 315–336.CrossRefPubMed Freund, T. F., Martin, K. A., Soltesz, I., Somogyi, P., & Whitteridge, D. (1989). Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey. Journal of Comparative Neurology, 289, 315–336.CrossRefPubMed
Zurück zum Zitat Grenier, F., Timofeev, I., & Steriade, M. (1998). Leading role of thalamic over cortical neurons during postinhibitory rebound excitation. Proceedings of the National Academy of Sciences of the United States of America, 95, 13929–13934.CrossRefPubMed Grenier, F., Timofeev, I., & Steriade, M. (1998). Leading role of thalamic over cortical neurons during postinhibitory rebound excitation. Proceedings of the National Academy of Sciences of the United States of America, 95, 13929–13934.CrossRefPubMed
Zurück zum Zitat Hines, M. L. & Carnevale, N. T. (1997). The Neuron simulation environment. Neural Computation, 9, 1179–1209.CrossRefPubMed Hines, M. L. & Carnevale, N. T. (1997). The Neuron simulation environment. Neural Computation, 9, 1179–1209.CrossRefPubMed
Zurück zum Zitat Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks, 15, 1063–1070.CrossRefPubMed Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks, 15, 1063–1070.CrossRefPubMed
Zurück zum Zitat Jones, E. G. (1985). The thalamus. New York: Plenum. Jones, E. G. (1985). The thalamus. New York: Plenum.
Zurück zum Zitat Kim, U., Sanches-Vives, M. V., & McCormick, D. A. (1997). Functional dynamics of GABAergic inhibition in the thalamus. Science, 278, 130–134.CrossRefPubMed Kim, U., Sanches-Vives, M. V., & McCormick, D. A. (1997). Functional dynamics of GABAergic inhibition in the thalamus. Science, 278, 130–134.CrossRefPubMed
Zurück zum Zitat Kumar, A., Schrader, S., Aertsen, A., & Rotter, S. (2008). The high-conductance state of cortical networks. Neural Computation, 20, 1–43.CrossRefPubMed Kumar, A., Schrader, S., Aertsen, A., & Rotter, S. (2008). The high-conductance state of cortical networks. Neural Computation, 20, 1–43.CrossRefPubMed
Zurück zum Zitat Landry, P., & Deschênes, M. (1981). Intracortical arborizations and receptive fields of identified ventrobasal thalamocortical afferents to the primary somatic sensory cortex in the cat. Journal of Comparative Neurology, 199, 345–371.CrossRefPubMed Landry, P., & Deschênes, M. (1981). Intracortical arborizations and receptive fields of identified ventrobasal thalamocortical afferents to the primary somatic sensory cortex in the cat. Journal of Comparative Neurology, 199, 345–371.CrossRefPubMed
Zurück zum Zitat Lee, A. K., Manns, I. D., Sakmann, B., & Brecht, M. (2006). Whole-cell recordings in freely moving rats. Neuron, 51, 399–407.CrossRefPubMed Lee, A. K., Manns, I. D., Sakmann, B., & Brecht, M. (2006). Whole-cell recordings in freely moving rats. Neuron, 51, 399–407.CrossRefPubMed
Zurück zum Zitat Llinás, R. R. (1988). The intrinsic electrophysiological properties of mammalian neurons: A new insight into CNS function. Science, 242, 1654–1664.CrossRefPubMed Llinás, R. R. (1988). The intrinsic electrophysiological properties of mammalian neurons: A new insight into CNS function. Science, 242, 1654–1664.CrossRefPubMed
Zurück zum Zitat Matsumura, M., Cope, T., & Fetz, E. E. (1988). Sustained excitatory synaptic input to motor cortex neurons in awake animals revealed by intracellular recording of membrane potentials. Experimental Brain Research, 70, 463–469.CrossRef Matsumura, M., Cope, T., & Fetz, E. E. (1988). Sustained excitatory synaptic input to motor cortex neurons in awake animals revealed by intracellular recording of membrane potentials. Experimental Brain Research, 70, 463–469.CrossRef
Zurück zum Zitat McCormick, D. A. (1992). Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Progress in Neurobiology, 39, 337–388.CrossRefPubMed McCormick, D. A. (1992). Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Progress in Neurobiology, 39, 337–388.CrossRefPubMed
Zurück zum Zitat Minderhoud, J. M. (1971). An anatomical study of the efferent connections of the thalamic reticular nucleus. Experimental Brain Research, 112, 435–446. Minderhoud, J. M. (1971). An anatomical study of the efferent connections of the thalamic reticular nucleus. Experimental Brain Research, 112, 435–446.
Zurück zum Zitat Paré, D., Shink, E., Gaudreau, H., Destexhe, A., & Lang, E. J. (1998). Impact of spontaneous synaptic activity on the resting properties of cat neocortical neurons in vivo. Journal of Neurophysiology, 79, 1450–1460.PubMed Paré, D., Shink, E., Gaudreau, H., Destexhe, A., & Lang, E. J. (1998). Impact of spontaneous synaptic activity on the resting properties of cat neocortical neurons in vivo. Journal of Neurophysiology, 79, 1450–1460.PubMed
Zurück zum Zitat Parga, N., & Abbott, L. F. (2007). Network model of spontaneous activity exhibiting synchronous transitions between up and down states. Frontiers in Neuroscience, 1, 57–66.CrossRefPubMed Parga, N., & Abbott, L. F. (2007). Network model of spontaneous activity exhibiting synchronous transitions between up and down states. Frontiers in Neuroscience, 1, 57–66.CrossRefPubMed
Zurück zum Zitat Plenz, D., & Aertsen, A. (1996). Neural dynamics in cortex-striatum co-cultures II—spatiotemporal characteristics of neuronal activity. Neuroscience, 70, 893–924.CrossRefPubMed Plenz, D., & Aertsen, A. (1996). Neural dynamics in cortex-striatum co-cultures II—spatiotemporal characteristics of neuronal activity. Neuroscience, 70, 893–924.CrossRefPubMed
Zurück zum Zitat Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z., Bal, T., Frégnac, Y., et al. (2008). Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biological Cybernetics, 99, 427–441.CrossRefPubMed Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z., Bal, T., Frégnac, Y., et al. (2008). Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biological Cybernetics, 99, 427–441.CrossRefPubMed
Zurück zum Zitat Rausell, E., & Jones, E. G. (1995). Extent of intracortical arborization of thalamocortical axons as a determinant of representational plasticity in monkey somatic sensory cortex. Journal of Neuroscience, 15, 4270–4288.PubMed Rausell, E., & Jones, E. G. (1995). Extent of intracortical arborization of thalamocortical axons as a determinant of representational plasticity in monkey somatic sensory cortex. Journal of Neuroscience, 15, 4270–4288.PubMed
Zurück zum Zitat Robertson, R. T., & Cunningham, T. J. (1981). Organization of corticothalamic projections from parietal cortex in cat. Journal of Comparative Neurology, 199, 569–585.CrossRefPubMed Robertson, R. T., & Cunningham, T. J. (1981). Organization of corticothalamic projections from parietal cortex in cat. Journal of Comparative Neurology, 199, 569–585.CrossRefPubMed
Zurück zum Zitat Rudolph, M., Pelletier, J.-G., Paré, D., & Destexhe, A. (2005). Characterization of synaptic conductances and integrative properties during electrically-induced EEG-activated states in neocortical neurons in vivo. Journal of Neurophysiology, 94, 2805–2821.CrossRefPubMed Rudolph, M., Pelletier, J.-G., Paré, D., & Destexhe, A. (2005). Characterization of synaptic conductances and integrative properties during electrically-induced EEG-activated states in neocortical neurons in vivo. Journal of Neurophysiology, 94, 2805–2821.CrossRefPubMed
Zurück zum Zitat Rudolph, M., Pospischil, M., Timofeev, I., & Destexhe, A. (2007). Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. Journal of Neuroscience, 27, 5280–5290.CrossRefPubMed Rudolph, M., Pospischil, M., Timofeev, I., & Destexhe, A. (2007). Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. Journal of Neuroscience, 27, 5280–5290.CrossRefPubMed
Zurück zum Zitat Sanchez-Vives, M. V., & McCormick, D. A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 10, 1027–1034. Sanchez-Vives, M. V., & McCormick, D. A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 10, 1027–1034.
Zurück zum Zitat Sherman, S. M., & Guillery, R. W. (2001). Exploring the thalamus. New York: Academic. Sherman, S. M., & Guillery, R. W. (2001). Exploring the thalamus. New York: Academic.
Zurück zum Zitat Smith, G. D., Cox, C. L., Sherman, M. & Rinzel, J. (2000). Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. Journal of Neurophysiology, 83, 588–610.PubMed Smith, G. D., Cox, C. L., Sherman, M. & Rinzel, J. (2000). Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. Journal of Neurophysiology, 83, 588–610.PubMed
Zurück zum Zitat Steriade, M. (2003). Neuronal substrates of sleep and epilepsy. Cambridge: Cambridge University Press. Steriade, M. (2003). Neuronal substrates of sleep and epilepsy. Cambridge: Cambridge University Press.
Zurück zum Zitat Steriade, M., Amzica, F., & Nunez, A. (1993a). Cholinergic and noradrenergic modulation of the slow (~0.3 Hz) oscillation in neocortical cells. Journal of Neurophysiology, 70, 1384–1400. Steriade, M., Amzica, F., & Nunez, A. (1993a). Cholinergic and noradrenergic modulation of the slow (~0.3 Hz) oscillation in neocortical cells. Journal of Neurophysiology, 70, 1384–1400.
Zurück zum Zitat Steriade, M., Deschênes, M., Domich, L., & Mulle, C. (1985). Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. Journal of Neurophysiology, 54, 1473–1497.PubMed Steriade, M., Deschênes, M., Domich, L., & Mulle, C. (1985). Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. Journal of Neurophysiology, 54, 1473–1497.PubMed
Zurück zum Zitat Steriade, M., Nunez, A., & Amzica, F. (1993b). Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. Journal of Neuroscience, 13, 3266–3283.PubMed Steriade, M., Nunez, A., & Amzica, F. (1993b). Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. Journal of Neuroscience, 13, 3266–3283.PubMed
Zurück zum Zitat Steriade, M., Timofeev, I., & Grenier, F. (2001). Natural waking and sleep states: A view from inside neocortical neurons. Journal of Neurophysiology, 85, 1969–1985.PubMed Steriade, M., Timofeev, I., & Grenier, F. (2001). Natural waking and sleep states: A view from inside neocortical neurons. Journal of Neurophysiology, 85, 1969–1985.PubMed
Zurück zum Zitat Tél, T., & Lai, Y.-C. (2008). Chaotic transients in spatially extended systems. Physics Reports, 460, 245–275.CrossRef Tél, T., & Lai, Y.-C. (2008). Chaotic transients in spatially extended systems. Physics Reports, 460, 245–275.CrossRef
Zurück zum Zitat Thomson, A. M., & Bannister, A. P. (2003). Interlaminar connections in the neocortex. Cerebral Cortex, 13, 5–14.CrossRefPubMed Thomson, A. M., & Bannister, A. P. (2003). Interlaminar connections in the neocortex. Cerebral Cortex, 13, 5–14.CrossRefPubMed
Zurück zum Zitat Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T. J., & Steriade, M. (2000). Origin of slow cortical oscillations in deafferented cortical slabs. Cerebral Cortex, 10, 1185–1199.CrossRefPubMed Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T. J., & Steriade, M. (2000). Origin of slow cortical oscillations in deafferented cortical slabs. Cerebral Cortex, 10, 1185–1199.CrossRefPubMed
Zurück zum Zitat Updyke, B. V. (1981). Projections from visual areas of the middle suprasylvian sulcus onto the lateral posterior complex and adjacent thalamic nuclei in cat. Journal of Comparative Neurology, 201, 477–506.CrossRefPubMed Updyke, B. V. (1981). Projections from visual areas of the middle suprasylvian sulcus onto the lateral posterior complex and adjacent thalamic nuclei in cat. Journal of Comparative Neurology, 201, 477–506.CrossRefPubMed
Zurück zum Zitat Vogels, T. P., & Abbott, L. F. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. Journal of Neuroscience, 25, 10786–10795.CrossRefPubMed Vogels, T. P., & Abbott, L. F. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. Journal of Neuroscience, 25, 10786–10795.CrossRefPubMed
Zurück zum Zitat von Krosigk, M., Bal, T., & McCormick, D. A. (1993). Cellular mechanisms of a synchronized oscillation in the thalamus. Science, 261, 361–364.CrossRef von Krosigk, M., Bal, T., & McCormick, D. A. (1993). Cellular mechanisms of a synchronized oscillation in the thalamus. Science, 261, 361–364.CrossRef
Zurück zum Zitat White, E. L. (1986). Termination of thalamic afferents in the cerebral cortex. In E. G. Jones & A. Peters (Eds.), Cerebral cortex (Vol. 5, pp. 271–289). New York: Plenum. White, E. L. (1986). Termination of thalamic afferents in the cerebral cortex. In E. G. Jones & A. Peters (Eds.), Cerebral cortex (Vol. 5, pp. 271–289). New York: Plenum.
Zurück zum Zitat White, E. L., & Hersch, S. M. (1982). A quantitative study of thalamocortical and other synapses involving the apical dendrites of corticothalamic cells in mouse SmI cortex. Journal of Neurocytology, 11, 137–157.CrossRefPubMed White, E. L., & Hersch, S. M. (1982). A quantitative study of thalamocortical and other synapses involving the apical dendrites of corticothalamic cells in mouse SmI cortex. Journal of Neurocytology, 11, 137–157.CrossRefPubMed
Zurück zum Zitat Xiang, Z., Huguenard, J. R., & Prince, D. A. (1998). Cholinergic switching within neocortical inhibitory networks. Science, 281, 985–988.CrossRefPubMed Xiang, Z., Huguenard, J. R., & Prince, D. A. (1998). Cholinergic switching within neocortical inhibitory networks. Science, 281, 985–988.CrossRefPubMed
Zurück zum Zitat Zillmer, R., Livi, R., Politi, A., & Torcini, A. (2006). Desynchronization in diluted neural networks. Physical Review E, 74, 036203.CrossRef Zillmer, R., Livi, R., Politi, A., & Torcini, A. (2006). Desynchronization in diluted neural networks. Physical Review E, 74, 036203.CrossRef
Metadaten
Titel
Self-sustained asynchronous irregular states and Up–Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons
verfasst von
Alain Destexhe
Publikationsdatum
01.12.2009
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2009
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-009-0164-4

Weitere Artikel der Ausgabe 3/2009

Journal of Computational Neuroscience 3/2009 Zur Ausgabe