Skip to main content
Erschienen in: Polymer Bulletin 11/2020

10.12.2019 | Original Paper

Silver nanoparticles-embedded poly(1-naphthylamine) nanospheres for low-cost non-enzymatic electrochemical H2O2 sensor

verfasst von: Femina Kanjirathamthadathil Saidu, Alex Joseph, Eldhose Vadakkechalil Varghese, George Vazhathara Thomas

Erschienen in: Polymer Bulletin | Ausgabe 11/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, a novel nanocomposite containing silver nanoparticles (AgNPs) embedded poly(1-naphthylamine) nanospheres (Ag/PNA) was prepared by in situ chemical reduction of silver nitrate. The structure, composition, and morphology of the prepared Ag/PNA nanocomposites were established by Fourier transform infrared spectrometry, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The electrochemical properties of the PNA and Ag/PNA-modified carbon paste electrodes were analyzed using cyclic voltammetry (cyclic voltammogram) and electrochemical impedance spectroscopy. It is observed that the electrochemical and charge transfer characteristics of PNA have significantly enhanced upon the incorporation of AgNPs. The prepared Ag/PNA nanocomposite has shown impressive electrocatalytic and electrochemical sensing performance toward H2O2. Remarkably, the present Ag/PNA-based enzymeless voltammetric H2O2 sensor showed a wide detection range in the concentration range of 1–3000 μM with a lower detection limit of 0.972 μM. The study revealed that Ag/PNA-modified carbon paste electrodes are an ideal platform for the fabrication of low-cost non-enzymatic H2O2 sensor with high sensitivity, good reproducibility, better selectivity, and stability.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18:319–326 Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18:319–326
2.
Zurück zum Zitat Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870PubMed Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870PubMed
3.
Zurück zum Zitat Francis S, Joseph S, Koshy EP, Mathew B (2017) Synthesis and characterization of multifunctional gold and silver nanoparticles using leaf extract of: naregamia alata and their applications in the catalysis and control of mastitis. New J Chem 41:14288–14298 Francis S, Joseph S, Koshy EP, Mathew B (2017) Synthesis and characterization of multifunctional gold and silver nanoparticles using leaf extract of: naregamia alata and their applications in the catalysis and control of mastitis. New J Chem 41:14288–14298
4.
Zurück zum Zitat Suchomel P, Kvitek L, Prucek R et al (2018) Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity. Sci Rep 8:1–11 Suchomel P, Kvitek L, Prucek R et al (2018) Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity. Sci Rep 8:1–11
5.
Zurück zum Zitat Choudhary M, Brink R, Nandi D et al (2017) Gold nanoparticle within the polymer chain, a multi-functional composite material, for the electrochemical detection of dopamine and the hydrogen atom-mediated reduction of Rhodamine-B, a mechanistic approach. J Mater Sci 52:770–781 Choudhary M, Brink R, Nandi D et al (2017) Gold nanoparticle within the polymer chain, a multi-functional composite material, for the electrochemical detection of dopamine and the hydrogen atom-mediated reduction of Rhodamine-B, a mechanistic approach. J Mater Sci 52:770–781
6.
Zurück zum Zitat Sagitha P, Sarada K, Muraleedharan K (2016) One-pot synthesis of poly vinyl alcohol (PVA) supported silver nanoparticles and its efficiency in catalytic reduction of methylene blue. Trans Nonferrous Met Soc China 26:2693–2700 Sagitha P, Sarada K, Muraleedharan K (2016) One-pot synthesis of poly vinyl alcohol (PVA) supported silver nanoparticles and its efficiency in catalytic reduction of methylene blue. Trans Nonferrous Met Soc China 26:2693–2700
7.
Zurück zum Zitat Chamoli P, Das MK, Kar KK (2017) Green synthesis of silver-graphene nanocomposite-based transparent conducting film. Phys E Low-Dimens Syst Nanostruct 90:76–84 Chamoli P, Das MK, Kar KK (2017) Green synthesis of silver-graphene nanocomposite-based transparent conducting film. Phys E Low-Dimens Syst Nanostruct 90:76–84
8.
Zurück zum Zitat Horiguchi Y, Kanda T, Torigoe K et al (2014) Preparation of gold/silver/titania trilayered nanorods and their photocatalytic activities. Langmuir 30:922–928PubMed Horiguchi Y, Kanda T, Torigoe K et al (2014) Preparation of gold/silver/titania trilayered nanorods and their photocatalytic activities. Langmuir 30:922–928PubMed
9.
Zurück zum Zitat Stejskal J (2013) Conducting polymer-silver composites. Chem Pap 67:814–848 Stejskal J (2013) Conducting polymer-silver composites. Chem Pap 67:814–848
10.
Zurück zum Zitat Spain E, Keyes TE, Forster RJ (2013) Polypyrrole-gold nanoparticle composites for highly sensitive DNA detection. Electrochim Acta 109:102–109 Spain E, Keyes TE, Forster RJ (2013) Polypyrrole-gold nanoparticle composites for highly sensitive DNA detection. Electrochim Acta 109:102–109
11.
Zurück zum Zitat Upadhyay J, Kumar A, Gogoi B, Buragohain AK (2015) Antibacterial and hemolysis activity of polypyrrole nanotubes decorated with silver nanoparticles by an in situ reduction process. Mater Sci Eng, C 54:8–13 Upadhyay J, Kumar A, Gogoi B, Buragohain AK (2015) Antibacterial and hemolysis activity of polypyrrole nanotubes decorated with silver nanoparticles by an in situ reduction process. Mater Sci Eng, C 54:8–13
12.
Zurück zum Zitat Kim J, Ju H, Inamdar AI et al (2014) Synthesis and enhanced electrochemical supercapacitor properties of Ag–MnO2-polyaniline nanocomposite electrodes. Energy 70:473–477 Kim J, Ju H, Inamdar AI et al (2014) Synthesis and enhanced electrochemical supercapacitor properties of Ag–MnO2-polyaniline nanocomposite electrodes. Energy 70:473–477
13.
Zurück zum Zitat Park E, seok Kwon O, joo Park S et al (2012) One-pot synthesis of silver nanoparticles decorated poly(3,4-ethylenedioxythiophene) nanotubes for chemical sensor application. J Mater Chem 22:1521–1526 Park E, seok Kwon O, joo Park S et al (2012) One-pot synthesis of silver nanoparticles decorated poly(3,4-ethylenedioxythiophene) nanotubes for chemical sensor application. J Mater Chem 22:1521–1526
14.
Zurück zum Zitat Yuan C, Xu Y, Zhong L et al (2013) Heterogeneous silver-polyaniline nanocomposites with tunable morphology and controllable catalytic properties. Nanotechnology 24:185602–185612PubMed Yuan C, Xu Y, Zhong L et al (2013) Heterogeneous silver-polyaniline nanocomposites with tunable morphology and controllable catalytic properties. Nanotechnology 24:185602–185612PubMed
15.
Zurück zum Zitat Reda SM, Al-Ghannam SM (2012) Synthesis and electrical properties of polyaniline composite with silver nanoparticles. Adv Mater Phys Chem 02:75–81 Reda SM, Al-Ghannam SM (2012) Synthesis and electrical properties of polyaniline composite with silver nanoparticles. Adv Mater Phys Chem 02:75–81
16.
Zurück zum Zitat Dan LI, Huang J, Kaner RB (2009) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42:135–145 Dan LI, Huang J, Kaner RB (2009) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42:135–145
17.
Zurück zum Zitat Ma B, Wang M, Tian D et al (2015) Micro/nano-structured polyaniline/silver catalyzed borohydride reduction of 4-nitrophenol. RSC Adv 5:41639–41645 Ma B, Wang M, Tian D et al (2015) Micro/nano-structured polyaniline/silver catalyzed borohydride reduction of 4-nitrophenol. RSC Adv 5:41639–41645
18.
Zurück zum Zitat Bober P, Stejskal J, Trchová M, Prokeš J (2014) In-situ prepared polyaniline-silver composites: single- and two-step strategies. Electrochim Acta 122:259–266 Bober P, Stejskal J, Trchová M, Prokeš J (2014) In-situ prepared polyaniline-silver composites: single- and two-step strategies. Electrochim Acta 122:259–266
19.
Zurück zum Zitat Blinova NV, Stejskal J, Trchová M et al (2009) The oxidation of aniline with silver nitrate to polyaniline-silver composites. Polymer (Guildf) 50:50–56 Blinova NV, Stejskal J, Trchová M et al (2009) The oxidation of aniline with silver nitrate to polyaniline-silver composites. Polymer (Guildf) 50:50–56
20.
Zurück zum Zitat Bober P, Stejskal J, Trchová M, Prokeš J (2011) Polyaniline-silver composites prepared by the oxidation of aniline with mixed oxidants, silver nitrate and ammonium peroxydisulfate: the control of silver content. Polymer (Guildf) 52:5947–5952 Bober P, Stejskal J, Trchová M, Prokeš J (2011) Polyaniline-silver composites prepared by the oxidation of aniline with mixed oxidants, silver nitrate and ammonium peroxydisulfate: the control of silver content. Polymer (Guildf) 52:5947–5952
21.
Zurück zum Zitat Stejskal J, Trchová M, Brožová L, Prokeš J (2009) Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites. Chem Pap 63:77–83 Stejskal J, Trchová M, Brožová L, Prokeš J (2009) Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites. Chem Pap 63:77–83
22.
Zurück zum Zitat Nesher G, Aylien M, Sandaki G et al (2009) Polyaniline entrapped in silver: structural properties and electrical conductivity. Adv Funct Mater 19:1293–1298 Nesher G, Aylien M, Sandaki G et al (2009) Polyaniline entrapped in silver: structural properties and electrical conductivity. Adv Funct Mater 19:1293–1298
23.
Zurück zum Zitat Massoumi B, Fathalipour S, Massoudi A et al (2013) Ag/polyaniline nanocomposites: synthesize, characterization, and application to the detection of dopamine and tyrosine. J Appl Polym Sci 130:2780–2789 Massoumi B, Fathalipour S, Massoudi A et al (2013) Ag/polyaniline nanocomposites: synthesize, characterization, and application to the detection of dopamine and tyrosine. J Appl Polym Sci 130:2780–2789
24.
Zurück zum Zitat Bober P, Stejskal J, Trchová M et al (2010) Oxidation of aniline with silver nitrate accelerated by p-phenylenediamine: a new route to conducting composites. Macromolecules 43:10406–10413 Bober P, Stejskal J, Trchová M et al (2010) Oxidation of aniline with silver nitrate accelerated by p-phenylenediamine: a new route to conducting composites. Macromolecules 43:10406–10413
25.
Zurück zum Zitat Tang L, Duan F, Chen M (2017) Green synthesis of silver nanoparticles embedded in polyaniline nanofibers via vitamin C for supercapacitor applications. J Mater Sci: Mater Electron 28:7769–7777 Tang L, Duan F, Chen M (2017) Green synthesis of silver nanoparticles embedded in polyaniline nanofibers via vitamin C for supercapacitor applications. J Mater Sci: Mater Electron 28:7769–7777
26.
Zurück zum Zitat Chen S, Yuan R, Chai Y, Hu F (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15–32 Chen S, Yuan R, Chai Y, Hu F (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15–32
27.
Zurück zum Zitat Ansari AA, Sumana G, Khan R, Malhotra BD (2009) Polyaniline-cerium oxide nanocomposite for hydrogen peroxide sensor. J Nanosci Nanotechnol 9:4679–4685PubMed Ansari AA, Sumana G, Khan R, Malhotra BD (2009) Polyaniline-cerium oxide nanocomposite for hydrogen peroxide sensor. J Nanosci Nanotechnol 9:4679–4685PubMed
28.
Zurück zum Zitat Barman K, Jasimuddin S (2016) Non-enzymatic electrochemical sensing of glucose and hydrogen peroxide using a bis(acetylacetonato)oxovanadium(iv) complex modified gold electrode. RSC Adv 6:20800–20806 Barman K, Jasimuddin S (2016) Non-enzymatic electrochemical sensing of glucose and hydrogen peroxide using a bis(acetylacetonato)oxovanadium(iv) complex modified gold electrode. RSC Adv 6:20800–20806
29.
Zurück zum Zitat Tian K, Prestgard M, Tiwari A (2014) A review of recent advances in nonenzymatic glucose sensors. Mater Sci Eng, C 41:100–118 Tian K, Prestgard M, Tiwari A (2014) A review of recent advances in nonenzymatic glucose sensors. Mater Sci Eng, C 41:100–118
30.
Zurück zum Zitat Hatchett DW, Josowicz M (2008) Composites of intrinsically conducting polymers as sensing nanomaterials. Chem Rev 108:746–769PubMed Hatchett DW, Josowicz M (2008) Composites of intrinsically conducting polymers as sensing nanomaterials. Chem Rev 108:746–769PubMed
31.
Zurück zum Zitat Malhotra B, Dhand C, Lakshminarayanan R et al (2015) Polyaniline-based biosensors. Nanobiosensors Dis Diagnosis 4:25 Malhotra B, Dhand C, Lakshminarayanan R et al (2015) Polyaniline-based biosensors. Nanobiosensors Dis Diagnosis 4:25
32.
Zurück zum Zitat Kabomo TM, Scurrell MS (2016) The effects of ring substituents in aniline on the reactivity of PANI with hydrogen tetrachloroaurate and the dispersion of gold nanoparticles. Polym Adv Technol 27:759–764 Kabomo TM, Scurrell MS (2016) The effects of ring substituents in aniline on the reactivity of PANI with hydrogen tetrachloroaurate and the dispersion of gold nanoparticles. Polym Adv Technol 27:759–764
33.
Zurück zum Zitat Refat MS, Adam AM (2014) Research and reviews. J Mater Sci 2:90–93 Refat MS, Adam AM (2014) Research and reviews. J Mater Sci 2:90–93
34.
Zurück zum Zitat Jadoun S, Verma A, Ashraf SM, Riaz U (2017) A short review on the synthesis, characterization, and application studies of poly(1-naphthylamine): a seldom explored polyaniline derivative. Colloid Polym Sci 295:1443–1453 Jadoun S, Verma A, Ashraf SM, Riaz U (2017) A short review on the synthesis, characterization, and application studies of poly(1-naphthylamine): a seldom explored polyaniline derivative. Colloid Polym Sci 295:1443–1453
35.
Zurück zum Zitat Riaz U, Ashraf SM, Aleem S et al (2016) Microwave-assisted green synthesis of some nanoconjugated copolymers: characterisation and fluorescence quenching studies with bovine serum albumin. New J Chem 40:4643–4653 Riaz U, Ashraf SM, Aleem S et al (2016) Microwave-assisted green synthesis of some nanoconjugated copolymers: characterisation and fluorescence quenching studies with bovine serum albumin. New J Chem 40:4643–4653
36.
Zurück zum Zitat Liu Y (2013) Poly(1-naphthylamine)-nickel modified glassy carbon electrode for electrocatalytic oxidation of formaldehyde in alkaline medium. Int J Electrochem Sci 8:4776–4784 Liu Y (2013) Poly(1-naphthylamine)-nickel modified glassy carbon electrode for electrocatalytic oxidation of formaldehyde in alkaline medium. Int J Electrochem Sci 8:4776–4784
37.
Zurück zum Zitat Huang SS, Lin HG, Yu RQ (1992) Electrocatalysis of a chemically modified poly(1-naphthylamine) film electrode. Anal Chim Acta 262:331–337 Huang SS, Lin HG, Yu RQ (1992) Electrocatalysis of a chemically modified poly(1-naphthylamine) film electrode. Anal Chim Acta 262:331–337
38.
Zurück zum Zitat Syafiuddin A, Salmiati Salim MR et al (2017) A review of silver nanoparticles: research trends, global consumption, synthesis, properties, and future challenges. J Chin Chem Soc 64:732–756 Syafiuddin A, Salmiati Salim MR et al (2017) A review of silver nanoparticles: research trends, global consumption, synthesis, properties, and future challenges. J Chin Chem Soc 64:732–756
39.
Zurück zum Zitat Kumar THV, Sundramoorthy AK (2018) Non-enzymatic electrochemical detection of urea on silver nanoparticles anchored nitrogen-doped single-walled carbon nanotube modified electrode. J Electrochem Soc 165:B3006–B3016 Kumar THV, Sundramoorthy AK (2018) Non-enzymatic electrochemical detection of urea on silver nanoparticles anchored nitrogen-doped single-walled carbon nanotube modified electrode. J Electrochem Soc 165:B3006–B3016
40.
Zurück zum Zitat Anderson K, Poulter B, Dudgeon J et al (2017) A highly sensitive nonenzymatic glucose biosensor based on the regulatory effect of glucose on electrochemical behaviors of colloidal silver nanoparticles on MoS2. Sensors 17:1807 Anderson K, Poulter B, Dudgeon J et al (2017) A highly sensitive nonenzymatic glucose biosensor based on the regulatory effect of glucose on electrochemical behaviors of colloidal silver nanoparticles on MoS2. Sensors 17:1807
41.
Zurück zum Zitat Lorestani F, Shahnavaz Z, Nia PM et al (2015) One-step preparation of silver-polyaniline nanotube composite for non-enzymatic hydrogen peroxide detection. Appl Surf Sci 347:816–823 Lorestani F, Shahnavaz Z, Nia PM et al (2015) One-step preparation of silver-polyaniline nanotube composite for non-enzymatic hydrogen peroxide detection. Appl Surf Sci 347:816–823
42.
Zurück zum Zitat Huang SS, Li J, Lin HG, Yu RQ (1995) Electropolymerization of 1-naphthylamine and the structure of the polymer film. Microchim Acta 117:145–152 Huang SS, Li J, Lin HG, Yu RQ (1995) Electropolymerization of 1-naphthylamine and the structure of the polymer film. Microchim Acta 117:145–152
43.
Zurück zum Zitat Riaz U, Ahmad S, Ashraf SM (2008) Effect of dopant on the nanostructured morphology of poly (1-naphthylamine) synthesized by template free method. Nanoscale Res Lett 3:45–48 Riaz U, Ahmad S, Ashraf SM (2008) Effect of dopant on the nanostructured morphology of poly (1-naphthylamine) synthesized by template free method. Nanoscale Res Lett 3:45–48
44.
Zurück zum Zitat Ding J, Zhang K, Wei G, Su Z (2015) Fabrication of polypyrrole nanoplates decorated with silver and gold nanoparticles for sensor applications. RSC Adv 5:69745–69752 Ding J, Zhang K, Wei G, Su Z (2015) Fabrication of polypyrrole nanoplates decorated with silver and gold nanoparticles for sensor applications. RSC Adv 5:69745–69752
45.
Zurück zum Zitat Prabhakar PK, Raj S, Anuradha PR et al (2011) Biocompatibility studies on polyaniline and polyaniline-silver nanoparticle coated polyurethane composite. Colloids Surf B Biointerfaces 86:146–153PubMed Prabhakar PK, Raj S, Anuradha PR et al (2011) Biocompatibility studies on polyaniline and polyaniline-silver nanoparticle coated polyurethane composite. Colloids Surf B Biointerfaces 86:146–153PubMed
46.
Zurück zum Zitat Tamboli MS, Kulkarni MV, Patil RH et al (2012) Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids Surf B Biointerfaces 92:35–41PubMed Tamboli MS, Kulkarni MV, Patil RH et al (2012) Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids Surf B Biointerfaces 92:35–41PubMed
47.
Zurück zum Zitat Riaz U, Ahmad S, Ashraf SM (2008) Pseudo template synthesis of poly (1-naphthylamine): effect of environment on nanostructured morphology. J Nanoparticle Res 10:1209–1214 Riaz U, Ahmad S, Ashraf SM (2008) Pseudo template synthesis of poly (1-naphthylamine): effect of environment on nanostructured morphology. J Nanoparticle Res 10:1209–1214
48.
Zurück zum Zitat Ciric-Marjanovic G, Marjanović B, Stamenković V et al (2002) Structure and stereochemistry of electrochemically synthesized poly-(1-naphthylamine) from neutral acetonitrile solution. J Serbian Chem Soc 67:867–877 Ciric-Marjanovic G, Marjanović B, Stamenković V et al (2002) Structure and stereochemistry of electrochemically synthesized poly-(1-naphthylamine) from neutral acetonitrile solution. J Serbian Chem Soc 67:867–877
49.
Zurück zum Zitat Na Z, Wang X, Yin D, Wang L (2017) Tin dioxide as a high-performance catalyst towards Ce(vi)/Ce(iii) redox reactions for redox flow battery applications. J Mater Chem A 5:5036–5043 Na Z, Wang X, Yin D, Wang L (2017) Tin dioxide as a high-performance catalyst towards Ce(vi)/Ce(iii) redox reactions for redox flow battery applications. J Mater Chem A 5:5036–5043
50.
Zurück zum Zitat Sherino B, Mohamad S, Abdul Halim SN, Abdul Manan NS (2018) Electrochemical detection of hydrogen peroxide on a new microporous Ni-metal organic framework material-carbon paste electrode. Sens Actuators, B Chem 254:1148–1156 Sherino B, Mohamad S, Abdul Halim SN, Abdul Manan NS (2018) Electrochemical detection of hydrogen peroxide on a new microporous Ni-metal organic framework material-carbon paste electrode. Sens Actuators, B Chem 254:1148–1156
51.
Zurück zum Zitat Abbasi A (2018) Hydrogen peroxide biosensor based on carbon paste modified electrode with hemoglobin and copper(II) oxide nanoparticles. Int J Electrochem Sci 13:3986–3996 Abbasi A (2018) Hydrogen peroxide biosensor based on carbon paste modified electrode with hemoglobin and copper(II) oxide nanoparticles. Int J Electrochem Sci 13:3986–3996
52.
Zurück zum Zitat Habibi B, Azhar FF, Fakkar J, Rezvani Z (2017) Ni–Al/layered double hydroxide/Ag nanoparticle composite modified carbon-paste electrode as a renewable electrode and novel electrochemical sensor for hydrogen peroxide. Anal Methods 9:1956–1964 Habibi B, Azhar FF, Fakkar J, Rezvani Z (2017) Ni–Al/layered double hydroxide/Ag nanoparticle composite modified carbon-paste electrode as a renewable electrode and novel electrochemical sensor for hydrogen peroxide. Anal Methods 9:1956–1964
53.
Zurück zum Zitat Mahanthappa M, Kottam N, Yellappa S (2018) Electrocatalytic performance of a zinc sulphide nanoparticles-modified carbon paste electrode for the simultaneous determination of acetaminophen, guanine and adenine. Anal Methods 10:1362–1371 Mahanthappa M, Kottam N, Yellappa S (2018) Electrocatalytic performance of a zinc sulphide nanoparticles-modified carbon paste electrode for the simultaneous determination of acetaminophen, guanine and adenine. Anal Methods 10:1362–1371
54.
Zurück zum Zitat Nia PM, Meng WP, Alias Y (2015) Hydrogen peroxide sensor: uniformly decorated silver nanoparticles on polypyrrole for wide detection range. Appl Surf Sci 357:1565–1572 Nia PM, Meng WP, Alias Y (2015) Hydrogen peroxide sensor: uniformly decorated silver nanoparticles on polypyrrole for wide detection range. Appl Surf Sci 357:1565–1572
55.
Zurück zum Zitat Shamkhalichenar H, Choi J (2017) An inkjet-printed non-enzymatic hydrogen peroxide sensor on paper. J Electrochem Soc 164:B3101–B3106 Shamkhalichenar H, Choi J (2017) An inkjet-printed non-enzymatic hydrogen peroxide sensor on paper. J Electrochem Soc 164:B3101–B3106
56.
Zurück zum Zitat Wang P, Xiao J, Guo M et al (2014) Voltammetric determination of 4-nitrophenol at graphite nanoflakes modified glassy carbon electrode. J Electrochem Soc 162:H72–H78 Wang P, Xiao J, Guo M et al (2014) Voltammetric determination of 4-nitrophenol at graphite nanoflakes modified glassy carbon electrode. J Electrochem Soc 162:H72–H78
57.
Zurück zum Zitat Kazici HC, Salman F, Caglar A et al (2018) Synthesis, characterization, and voltammetric hydrogen peroxide sensing on novel monometallic (Ag, Co/MWCNT) and bimetallic (AgCo/MWCNT) alloy nanoparticles. Fullerenes Nanotub Carbon Nanostruct 26:145–151 Kazici HC, Salman F, Caglar A et al (2018) Synthesis, characterization, and voltammetric hydrogen peroxide sensing on novel monometallic (Ag, Co/MWCNT) and bimetallic (AgCo/MWCNT) alloy nanoparticles. Fullerenes Nanotub Carbon Nanostruct 26:145–151
58.
Zurück zum Zitat Li Y, Zhang Y, Zhong Y, Li S (2015) Enzyme-free hydrogen peroxide sensor based on Au@Ag@C core-double shell nanocomposites. Appl Surf Sci 347:428–434 Li Y, Zhang Y, Zhong Y, Li S (2015) Enzyme-free hydrogen peroxide sensor based on Au@Ag@C core-double shell nanocomposites. Appl Surf Sci 347:428–434
59.
Zurück zum Zitat Habibi B, Azhar FF, Fakkar J, Rezvani Z, Aguirre MJ, Ruiz-león D et al (2017) Ni-Al/layered double hydroxide/Ag nanoparticles composite modified carbon-2 paste electrode as a renewable electrode and novel electrochemical sensor for 3 hydrogen peroxide. Anal Methods 42:3986–3996 Habibi B, Azhar FF, Fakkar J, Rezvani Z, Aguirre MJ, Ruiz-león D et al (2017) Ni-Al/layered double hydroxide/Ag nanoparticles composite modified carbon-2 paste electrode as a renewable electrode and novel electrochemical sensor for 3 hydrogen peroxide. Anal Methods 42:3986–3996
60.
Zurück zum Zitat Karthik R, Vinoth Kumar J, Chen SM et al (2018) Simple sonochemical synthesis of novel grass-like vanadium disulfide: a viable non-enzymatic electrochemical sensor for the detection of hydrogen peroxide. Ultrason Sonochem 48:473–481PubMed Karthik R, Vinoth Kumar J, Chen SM et al (2018) Simple sonochemical synthesis of novel grass-like vanadium disulfide: a viable non-enzymatic electrochemical sensor for the detection of hydrogen peroxide. Ultrason Sonochem 48:473–481PubMed
61.
Zurück zum Zitat Achari DS, Santhosh C, Deivasegamani R et al (2017) A non-enzymatic sensor for hydrogen peroxide based on the use of α-Fe2O3 nanoparticles deposited on the surface of NiO nanosheets. Microchim Acta 184:3223–3229 Achari DS, Santhosh C, Deivasegamani R et al (2017) A non-enzymatic sensor for hydrogen peroxide based on the use of α-Fe2O3 nanoparticles deposited on the surface of NiO nanosheets. Microchim Acta 184:3223–3229
62.
Zurück zum Zitat Ma P, Zhu H, Wei J, Zhang M (2015) Facile fabrication of Au nanoparticles immobilized on polyaniline nanofibers: high sensitive nonenzymatic hydrogen peroxide sensor. Nanosci Nanotechnol Lett 7:1–7 Ma P, Zhu H, Wei J, Zhang M (2015) Facile fabrication of Au nanoparticles immobilized on polyaniline nanofibers: high sensitive nonenzymatic hydrogen peroxide sensor. Nanosci Nanotechnol Lett 7:1–7
63.
Zurück zum Zitat Yang Z, Zheng X, Zheng J (2016) Non-enzymatic sensor based on a glassy carbon electrode modified with Ag nanoparticles/polyaniline/halloysite nanotube nanocomposites for hydrogen peroxide sensing. RSC Adv 6:58329–58335 Yang Z, Zheng X, Zheng J (2016) Non-enzymatic sensor based on a glassy carbon electrode modified with Ag nanoparticles/polyaniline/halloysite nanotube nanocomposites for hydrogen peroxide sensing. RSC Adv 6:58329–58335
64.
Zurück zum Zitat Chang G, Luo Y, Lu W et al (2012) Ag nanoparticles decorated polyaniline nanofibers: synthesis, characterization, and applications toward catalytic reduction of 4-nitrophenol and electrochemical detection of H2O2 and glucose. Catal Sci Technol 2:800–806 Chang G, Luo Y, Lu W et al (2012) Ag nanoparticles decorated polyaniline nanofibers: synthesis, characterization, and applications toward catalytic reduction of 4-nitrophenol and electrochemical detection of H2O2 and glucose. Catal Sci Technol 2:800–806
Metadaten
Titel
Silver nanoparticles-embedded poly(1-naphthylamine) nanospheres for low-cost non-enzymatic electrochemical H2O2 sensor
verfasst von
Femina Kanjirathamthadathil Saidu
Alex Joseph
Eldhose Vadakkechalil Varghese
George Vazhathara Thomas
Publikationsdatum
10.12.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 11/2020
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-019-03053-x

Weitere Artikel der Ausgabe 11/2020

Polymer Bulletin 11/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.