Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 3/2015

01.03.2015

Single Crystal Plasticity Finite Element Analysis of Cu6Sn5 Intermetallic

verfasst von: Soud Farhan Choudhury, Leila Ladani

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to the miniaturization of the solder joints in micro/nanoelectronic devices, the volume ratio of intermetallic (IMCs) materials has substantially increased. This increased ratio could affect the reliability of solder joints depending on the regime and the rate of the loading. Cu6Sn5 is the primary IMC layer in the solder joint, and the primary crack initiation is observed in Cu6Sn5 site in the literature. As the size of the joints becomes closer to the grain size, joints may only contain a few numbers of grains of Cu6Sn5. This manifests itself in statistical grain size effects, as well as anisotropy. Modeling these joints using bulk properties of Cu6Sn5 does not capture the actual behavior of these joints especially when plastic deformation is involved. Plastic deformation, starting at yield point, happens to be associated with the activation of slip systems. Deformation of a slip system of single crystal largely rests on the slip parameters such as critical resolved shear stress (CRSS), initial hardening modulus, and saturation stress (Stage I stress when large plastic flow occurs). However, no efforts have been made to capture the slip parameters of Cu6Sn5 experimentally or analytically because of the difficulties of using conventional mechanical tests to measure the slip parameters of HCP single crystals. Due to wide range of CRSS values, it becomes difficult to isolate a specific slip system in testing without activating the other slip systems. The crystal plasticity finite-element (CPFE) method takes into account the effect of anisotropy and slip system behavior in modeling materials. This work uses a combined strategy based upon experiments, modeling, and a comparative analysis to obtain slip system parameters that could predict the slip process of Cu6Sn5. Nanoindentation tests were performed on Cu6Sn5 single crystal to extract the load–displacement curves, and a CPFE nanoindentation model analysis along with custom user material was utilized to obtain set of crystal plasticity material parameters which can represent the plastic behavior of Cu6Sn5 IMC. These parameters were then used to predict shear yield strength and shear modulus of Cu6Sn5, and the findings were compared with the previously published values in the literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F. Ochoa, J.J. Williams, and N. Chawla: J. Electron. Mater., 2003, vol. 32, pp. 1414–20. F. Ochoa, J.J. Williams, and N. Chawla: J. Electron. Mater., 2003, vol. 32, pp. 1414–20.
2.
Zurück zum Zitat H. Zou, Q. Zhu, and Z. Zhang: J. Alloys Compd., 2008, vol. 461, pp. 410–17. H. Zou, Q. Zhu, and Z. Zhang: J. Alloys Compd., 2008, vol. 461, pp. 410–17.
3.
Zurück zum Zitat I. Panchenko, J. Grafe, M. Mueller, and K.-J. Wolter: IEEE 15th Electron. Packag. Technol. Conf. (EPTC 2013), 2013, vol. 318, pp. 318–23. I. Panchenko, J. Grafe, M. Mueller, and K.-J. Wolter: IEEE 15th Electron. Packag. Technol. Conf. (EPTC 2013), 2013, vol. 318, pp. 318–23.
4.
Zurück zum Zitat M.N. Islam, A. Sharif, and Y.C. Chan: J. Electron. Mater., 2005, vol. 34, pp. 143–49. M.N. Islam, A. Sharif, and Y.C. Chan: J. Electron. Mater., 2005, vol. 34, pp. 143–49.
5.
Zurück zum Zitat J.-M. Song, B.-R. Huang, C.-Y. Liu, Y.-S. Lai, Y.-T. Chiu, and T.-W. Huang: Mater. Sci. Eng. A, 2012, vol. 534, pp. 53–59. J.-M. Song, B.-R. Huang, C.-Y. Liu, Y.-S. Lai, Y.-T. Chiu, and T.-W. Huang: Mater. Sci. Eng. A, 2012, vol. 534, pp. 53–59.
6.
Zurück zum Zitat T. Laurila, V. Vuorinen, and J.K. Kivilahti: Mater. Sci. Eng. R Rep., 2005, vol. 49, pp. 1–60. T. Laurila, V. Vuorinen, and J.K. Kivilahti: Mater. Sci. Eng. R Rep., 2005, vol. 49, pp. 1–60.
7.
Zurück zum Zitat S.F. Choudhury and L. Ladani: in ASME 2013 Int. Tech. Conf. Exhib. Packag. Integr. Electron. Photonic Microsystems (ASME), 2013. S.F. Choudhury and L. Ladani: in ASME 2013 Int. Tech. Conf. Exhib. Packag. Integr. Electron. Photonic Microsystems (ASME), 2013.
8.
Zurück zum Zitat L. Jiang, H. Jiang, and N. Chawla: J. Electron. Mater., 2012, vol. 41, pp. 2083–88. L. Jiang, H. Jiang, and N. Chawla: J. Electron. Mater., 2012, vol. 41, pp. 2083–88.
9.
Zurück zum Zitat J.W. Christian and S. Mahajan: Prog. Mater Sci., 1995, vol. 39, pp. 1–157. J.W. Christian and S. Mahajan: Prog. Mater Sci., 1995, vol. 39, pp. 1–157.
10.
Zurück zum Zitat M.H. Yoo: Metall. Trans. A, 1981, vol. 12A, pp. 409–18. M.H. Yoo: Metall. Trans. A, 1981, vol. 12A, pp. 409–18.
11.
Zurück zum Zitat G. Timár and J.Q. da Fonseca: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5883–90. G. Timár and J.Q. da Fonseca: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5883–90.
12.
Zurück zum Zitat H. Wang, P.D. Wu, J. Wang, and C.N. Tomé: Int. J. Plast., 2013, vol. 49, pp. 36–52. H. Wang, P.D. Wu, J. Wang, and C.N. Tomé: Int. J. Plast., 2013, vol. 49, pp. 36–52.
13.
Zurück zum Zitat B. Eidel: Acta Mater., 2011, vol. 59, pp. 1761–71. B. Eidel: Acta Mater., 2011, vol. 59, pp. 1761–71.
14.
Zurück zum Zitat Y.S. Choi, M.A. Groeber, P.A. Shade, T.J. Turner, J.C. Schuren, D.M. Dimiduk, M.D. Uchic, and A.D. Rollett: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 6352–59. Y.S. Choi, M.A. Groeber, P.A. Shade, T.J. Turner, J.C. Schuren, D.M. Dimiduk, M.D. Uchic, and A.D. Rollett: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 6352–59.
15.
Zurück zum Zitat M.G. Lee, H. Lim, B.L. Adams, J.P. Hirth, and R.H. Wagoner: Int. J. Plast., 2010, vol. 26, pp. 925–38. M.G. Lee, H. Lim, B.L. Adams, J.P. Hirth, and R.H. Wagoner: Int. J. Plast., 2010, vol. 26, pp. 925–38.
16.
Zurück zum Zitat D. Esqué-de los Ojos, J. Očenášek, and J. Alcalá: Comput. Mater. Sci., 2014, vol. 86, pp. 186–92. D. Esqué-de los Ojos, J. Očenášek, and J. Alcalá: Comput. Mater. Sci., 2014, vol. 86, pp. 186–92.
17.
Zurück zum Zitat O. Casals and S. Forest: Comput. Mater. Sci., 2009, vol. 45, pp. 774–82. O. Casals and S. Forest: Comput. Mater. Sci., 2009, vol. 45, pp. 774–82.
18.
Zurück zum Zitat P. Darbandi, T.R. Bieler, F. Pourboghrat, and T. Lee: J. Electron. Mater., 2012, vol. 42, pp. 201–14. P. Darbandi, T.R. Bieler, F. Pourboghrat, and T. Lee: J. Electron. Mater., 2012, vol. 42, pp. 201–14.
19.
Zurück zum Zitat R.J. Asaro and A. Needleman: Acta Metall., 1985, vol. 33, pp. 923–53. R.J. Asaro and A. Needleman: Acta Metall., 1985, vol. 33, pp. 923–53.
20.
21.
Zurück zum Zitat R. Hill and J. R. Rice, J. Mech. Phys. Solids 20, pp. 401–13 (1972).CrossRef R. Hill and J. R. Rice, J. Mech. Phys. Solids 20, pp. 401–13 (1972).CrossRef
22.
25.
26.
Zurück zum Zitat D. Peirce, R. J. Asaro, and A. Needleman, Acta Metall. 30, 1087–1119 (1982).CrossRef D. Peirce, R. J. Asaro, and A. Needleman, Acta Metall. 30, 1087–1119 (1982).CrossRef
27.
Zurück zum Zitat U.F. Kocks: Metall. Trans., 1970, vol. 1, p. 1121–43. U.F. Kocks: Metall. Trans., 1970, vol. 1, p. 1121–43.
28.
Zurück zum Zitat A. Zamiri, T. R. Bieler, and F. Pourboghrat, J. Electron. Mater. 38: 231–40 (2008).CrossRef A. Zamiri, T. R. Bieler, and F. Pourboghrat, J. Electron. Mater. 38: 231–40 (2008).CrossRef
29.
Zurück zum Zitat P. Kratochvíl, P. Lukáč, and B. Sprušil, Czechoslov. J. Phys. 23, 621–26 (1973).CrossRef P. Kratochvíl, P. Lukáč, and B. Sprušil, Czechoslov. J. Phys. 23, 621–26 (1973).CrossRef
30.
Zurück zum Zitat H. E. Friedrich and B. L. Mordike, Magnesium Technology: Metallurgy, Design Data, Applications (Springer, 2006), p. 699. H. E. Friedrich and B. L. Mordike, Magnesium Technology: Metallurgy, Design Data, Applications (Springer, 2006), p. 699.
31.
Zurück zum Zitat Y. Yang, L. Wang, C. Zambaldi, P. Eisenlohr, R. Barabash, W. Liu, M.R. Stoudt, M.A. Crimp, and T.R. Bieler: JOM, 2011, vol. 63, pp. 66–73.CrossRef Y. Yang, L. Wang, C. Zambaldi, P. Eisenlohr, R. Barabash, W. Liu, M.R. Stoudt, M.A. Crimp, and T.R. Bieler: JOM, 2011, vol. 63, pp. 66–73.CrossRef
32.
Zurück zum Zitat P. A. Sabnis, S. Forest, N. K. Arakere, and V. A. Yastrebov, Int. J. Plast. 51, 200–217 (2013).CrossRef P. A. Sabnis, S. Forest, N. K. Arakere, and V. A. Yastrebov, Int. J. Plast. 51, 200–217 (2013).CrossRef
33.
Zurück zum Zitat L. Li, L. Shen, G. Proust, C. K. S. Moy, and G. Ranzi, Mater. Sci. Eng. A 579, 41–49 (2013).CrossRef L. Li, L. Shen, G. Proust, C. K. S. Moy, and G. Ranzi, Mater. Sci. Eng. A 579, 41–49 (2013).CrossRef
34.
Zurück zum Zitat S. F. Choudhury and L. Ladani, J. Electron. Mater. 43, 996–1004 (2014).CrossRef S. F. Choudhury and L. Ladani, J. Electron. Mater. 43, 996–1004 (2014).CrossRef
35.
Zurück zum Zitat C. Zambaldi, Y. Yang, T. R. Bieler, and D. Raabe, J. Mater. Res. 27, 356–67 (2011).CrossRef C. Zambaldi, Y. Yang, T. R. Bieler, and D. Raabe, J. Mater. Res. 27, 356–67 (2011).CrossRef
36.
37.
Zurück zum Zitat M. H. Yoo, S. R. Agnew, J. R. Morris, and K. M. Ho, Mater. Sci. Eng. A 321, pp. 87–92 (2001).CrossRef M. H. Yoo, S. R. Agnew, J. R. Morris, and K. M. Ho, Mater. Sci. Eng. A 321, pp. 87–92 (2001).CrossRef
38.
39.
Zurück zum Zitat X.-L. Nan, H.-Y. Wang, L. Zhang, J.-B. Li, and Q.-C. Jiang: Scripta Mater. 67, 443–46 (2012).CrossRef X.-L. Nan, H.-Y. Wang, L. Zhang, J.-B. Li, and Q.-C. Jiang: Scripta Mater. 67, 443–46 (2012).CrossRef
40.
41.
Zurück zum Zitat Y. B. Chun and C. H. J. Davies, Mater. Sci. Eng. A 528, 3489–95 (2011).CrossRef Y. B. Chun and C. H. J. Davies, Mater. Sci. Eng. A 528, 3489–95 (2011).CrossRef
42.
43.
Zurück zum Zitat A. Gangulee, G. C. Das, and M. B. Bever, Metall. Trans. 4, 2063–66 (1973).CrossRef A. Gangulee, G. C. Das, and M. B. Bever, Metall. Trans. 4, 2063–66 (1973).CrossRef
44.
Zurück zum Zitat M. Dao, N. Chollacoop, K. J. Van Vliet, T. a. Venkatesh, and S. Suresh, Acta Mater. 49, 3899–3918 (2001).CrossRef M. Dao, N. Chollacoop, K. J. Van Vliet, T. a. Venkatesh, and S. Suresh, Acta Mater. 49, 3899–3918 (2001).CrossRef
45.
Zurück zum Zitat A. K. Bhattacharya and W. D. Nix, Int. J. Solids Struct. 24, 881–91 (1988).CrossRef A. K. Bhattacharya and W. D. Nix, Int. J. Solids Struct. 24, 881–91 (1988).CrossRef
46.
Zurück zum Zitat N. T. S. Lee, V. B. C. Tan, and K. M. Lim, Appl. Phys. Lett. 88, 031913 (2006).CrossRef N. T. S. Lee, V. B. C. Tan, and K. M. Lim, Appl. Phys. Lett. 88, 031913 (2006).CrossRef
47.
Zurück zum Zitat U. Borg and J. W. Kysar, Int. J. Solids Struct. 44, 6382–97 (2007).CrossRef U. Borg and J. W. Kysar, Int. J. Solids Struct. 44, 6382–97 (2007).CrossRef
48.
Zurück zum Zitat F. Roters, P. Eisenlohr, L. Hantcherli, D. D. Tjahjanto, T. R. Bieler, and D. Raabe, Acta Mater. 58, 1152–1211. (2010).CrossRef F. Roters, P. Eisenlohr, L. Hantcherli, D. D. Tjahjanto, T. R. Bieler, and D. Raabe, Acta Mater. 58, 1152–1211. (2010).CrossRef
49.
Zurück zum Zitat J.-M. Song, Y.-L. Shen, C.-W. Su, Y.-S. Lai, and Y.-T. Chiu, Mater. Trans. 50, 1231–34 (2009).CrossRef J.-M. Song, Y.-L. Shen, C.-W. Su, Y.-S. Lai, and Y.-T. Chiu, Mater. Trans. 50, 1231–34 (2009).CrossRef
50.
Zurück zum Zitat M. Liu, C. Lu, and K. A. Tieu: in TMS 2014 Ann. Meet. Suppl. Proc., 2014, vol. 317, pp. 317–37 M. Liu, C. Lu, and K. A. Tieu: in TMS 2014 Ann. Meet. Suppl. Proc., 2014, vol. 317, pp. 317–37
51.
Zurück zum Zitat O. Casals, J. Ocenasek, and J. Alcala, Acta Mater. 55, 55–68 (2007).CrossRef O. Casals, J. Ocenasek, and J. Alcala, Acta Mater. 55, 55–68 (2007).CrossRef
52.
53.
Zurück zum Zitat K. L. Johnson and K. L. Johnson, Contact Mechanics (Cambridge University Press, 1987), pp. 1–452. K. L. Johnson and K. L. Johnson, Contact Mechanics (Cambridge University Press, 1987), pp. 1–452.
54.
Zurück zum Zitat Y. Liu, S. Varghese, J. Ma, M. Yoshino, H. Lu, and R. Komanduri, Int. J. Plast. 24, 1990–2015 (2008).CrossRef Y. Liu, S. Varghese, J. Ma, M. Yoshino, H. Lu, and R. Komanduri, Int. J. Plast. 24, 1990–2015 (2008).CrossRef
55.
Zurück zum Zitat W. G. Mao, Y. G. Shen, and C. Lu, J. Eur. Ceram. Soc. 31, 1865–71 (2011).CrossRef W. G. Mao, Y. G. Shen, and C. Lu, J. Eur. Ceram. Soc. 31, 1865–71 (2011).CrossRef
56.
57.
Zurück zum Zitat Q. K. Zhang, J. Tan, and Z. F. Zhang, J. Appl. Phys. 110, 014502 (2011).CrossRef Q. K. Zhang, J. Tan, and Z. F. Zhang, J. Appl. Phys. 110, 014502 (2011).CrossRef
Metadaten
Titel
Single Crystal Plasticity Finite Element Analysis of Cu6Sn5 Intermetallic
verfasst von
Soud Farhan Choudhury
Leila Ladani
Publikationsdatum
01.03.2015
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 3/2015
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-014-2696-0

Weitere Artikel der Ausgabe 3/2015

Metallurgical and Materials Transactions A 3/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.