Skip to main content
Erschienen in: Journal of Engineering Mathematics 1/2019

11.04.2019

Smoothed particle hydrodynamics simulation: a tool for accurate characterization of microfluidic devices

verfasst von: Edgar Andres Patino-Narino, Hugo Sakai Idagawa, Daniel Silva de Lara, Raluca Savu, Stanislav A. Moshkalev, Luiz Otavio Saraiva Ferreira

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work presents a two-dimensional (2D) model employing the mesh-free smoothed particle hydrodynamics (SPH) method for accurate characterization of microdevices. The simulator was validated by comparing analytical and numerical results from literature with the cases of Poiseuille, Couette, and biphase flow in microfluidic devices. Finally, a test case using two immiscible fluids in a cross-like device with three inputs and one output was computed. This device produces droplets in a flow-focusing configuration. The simulations produced similar flows when compared with theoretical, numerical, and experimental data reported in literature. When handling two liquid phases, such as water and oil, properties such as surface tension must be taken into account. These properties can be well modeled using the continuum surface force method, commonly applied for modeling capillarity in microdevice and microliquid applications. Thus, the implementation of the SPH method demonstrated that it represents a novel and promising alternative for simulation of emulsion formation in microfluidic devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nisar A, Afzulpurkar N, Mahaisavariya B, Tuantranont A (2008) MEMS-based micropumps in drug delivery and biomedical applications. Sens Actuators B 130(2):917–942CrossRef Nisar A, Afzulpurkar N, Mahaisavariya B, Tuantranont A (2008) MEMS-based micropumps in drug delivery and biomedical applications. Sens Actuators B 130(2):917–942CrossRef
2.
Zurück zum Zitat Cheng J, Kricka L, Sheldon E, Wilding P (1998) Sample preparation in microstructured devices. Microsyst Technol Chem Life Sci 194:215–231CrossRef Cheng J, Kricka L, Sheldon E, Wilding P (1998) Sample preparation in microstructured devices. Microsyst Technol Chem Life Sci 194:215–231CrossRef
3.
Zurück zum Zitat Filipovic N, Ivanovic M, Kojic M (2008) A comparative numerical study between dissipative particle dynamics and smoothed particle hydrodynamics when applied to simple unsteady flows in microfluidics. Microfluid Nanofluid 7(2):227–235CrossRef Filipovic N, Ivanovic M, Kojic M (2008) A comparative numerical study between dissipative particle dynamics and smoothed particle hydrodynamics when applied to simple unsteady flows in microfluidics. Microfluid Nanofluid 7(2):227–235CrossRef
4.
Zurück zum Zitat Gifford SC, Spillane AM, Vignes SM, Shevkoplyas SS (2014) Controlled incremental filtration: a simplified approach to design and fabrication of high-throughput microfluidic devices for selective enrichment of particles. Lab Chip 14(23):4496–505CrossRef Gifford SC, Spillane AM, Vignes SM, Shevkoplyas SS (2014) Controlled incremental filtration: a simplified approach to design and fabrication of high-throughput microfluidic devices for selective enrichment of particles. Lab Chip 14(23):4496–505CrossRef
5.
Zurück zum Zitat Ehrfeld W (2003) Electrochemistry and microsystems. Electrochim Acta 48(20–22):2857–2868CrossRef Ehrfeld W (2003) Electrochemistry and microsystems. Electrochim Acta 48(20–22):2857–2868CrossRef
6.
Zurück zum Zitat Xia H, Strachan BC, Gifford SC, Shevkoplyas SS (2016) A high-throughput microfluidic approach for 1000-fold leukocyte reduction of platelet-rich plasma. Sci Rep 6(1):35,943CrossRef Xia H, Strachan BC, Gifford SC, Shevkoplyas SS (2016) A high-throughput microfluidic approach for 1000-fold leukocyte reduction of platelet-rich plasma. Sci Rep 6(1):35,943CrossRef
7.
Zurück zum Zitat Andersson H, van den Berg A (2004) Microtechnologies and nanotechnologies for single-cell analysis. Curr Opin Biotechnol 15(1):44–9CrossRef Andersson H, van den Berg A (2004) Microtechnologies and nanotechnologies for single-cell analysis. Curr Opin Biotechnol 15(1):44–9CrossRef
8.
Zurück zum Zitat Dong B, Chen S, Zhou F, Chan CHY, Yi J, Zhang HF, Sun C (2016) Real-time functional analysis of inertial microfluidic devices via spectral domain optical coherence tomography. Sci Rep 6(1):33,250CrossRef Dong B, Chen S, Zhou F, Chan CHY, Yi J, Zhang HF, Sun C (2016) Real-time functional analysis of inertial microfluidic devices via spectral domain optical coherence tomography. Sci Rep 6(1):33,250CrossRef
9.
Zurück zum Zitat Berthier J, Silberzan P (2010) Microfluidics for biotechnology. Artech House Berthier J, Silberzan P (2010) Microfluidics for biotechnology. Artech House
10.
Zurück zum Zitat Shah RK, Shum HC, Rowat AC, Lee D, Agresti JJ, Utada AS, Ly Chu, Kim W, Fernandez-Nieves A, Martinez CJ, Weitz DA, Kim JW (2008) Designing emulsions using microfluidics. Mater Today 11(4):18–27CrossRef Shah RK, Shum HC, Rowat AC, Lee D, Agresti JJ, Utada AS, Ly Chu, Kim W, Fernandez-Nieves A, Martinez CJ, Weitz DA, Kim JW (2008) Designing emulsions using microfluidics. Mater Today 11(4):18–27CrossRef
11.
Zurück zum Zitat Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026CrossRef Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026CrossRef
12.
Zurück zum Zitat Amini H, Lee W, Di Carlo D (2014) Inertial microfluidic physics. Lab Chip 14(15):2739CrossRef Amini H, Lee W, Di Carlo D (2014) Inertial microfluidic physics. Lab Chip 14(15):2739CrossRef
13.
Zurück zum Zitat Kunstmann-Olsen C, Hoyland JD, Rubahn HG (2012) Influence of geometry on hydrodynamic focusing and long-range fluid behavior in PDMS microfluidic chips. Microfluid Nanofluid 12(5):795–803CrossRef Kunstmann-Olsen C, Hoyland JD, Rubahn HG (2012) Influence of geometry on hydrodynamic focusing and long-range fluid behavior in PDMS microfluidic chips. Microfluid Nanofluid 12(5):795–803CrossRef
14.
Zurück zum Zitat Hetsroni G, Mosyak A, Pogrebnyak E, Yarin LP (2005) Fluid flow in micro-channels. Int J Heat Mass Transf 48(10):1982–1998CrossRef Hetsroni G, Mosyak A, Pogrebnyak E, Yarin LP (2005) Fluid flow in micro-channels. Int J Heat Mass Transf 48(10):1982–1998CrossRef
15.
Zurück zum Zitat Spielman LGS (1968) Improving resolution in coulter counting by hydrodynamic focusing. J Colloid Interface Sci 26(2):175–182CrossRef Spielman LGS (1968) Improving resolution in coulter counting by hydrodynamic focusing. J Colloid Interface Sci 26(2):175–182CrossRef
16.
Zurück zum Zitat de Mello AJ, Edel JB (2007) Hydrodynamic focusing in microstructures: Improved detection efficiencies in subfemtoliter probe volumes. J Appl Phys 101(8):084,903CrossRef de Mello AJ, Edel JB (2007) Hydrodynamic focusing in microstructures: Improved detection efficiencies in subfemtoliter probe volumes. J Appl Phys 101(8):084,903CrossRef
17.
Zurück zum Zitat Shen M, Yamahata C, Gijs MAM (2008) A high-performance compact electromagnetic actuator for a PMMA ball-valve micropump. J Micromech Microeng 18(2):025,031CrossRef Shen M, Yamahata C, Gijs MAM (2008) A high-performance compact electromagnetic actuator for a PMMA ball-valve micropump. J Micromech Microeng 18(2):025,031CrossRef
18.
Zurück zum Zitat Bourouina T, Grandchamp J (1996) Modeling micropumps with electrical equivalent networks. J Micromech Microeng 6(4):398–404CrossRef Bourouina T, Grandchamp J (1996) Modeling micropumps with electrical equivalent networks. J Micromech Microeng 6(4):398–404CrossRef
19.
Zurück zum Zitat Jamalabadi MYA, DaqiqShirazi M, Kosar A, Shadloo MS (2017) Effect of injection angle, density ratio, and viscosity on droplet formation in a microfluidic T-junction. Theor Appl Mech Lett 7(4):243–251CrossRef Jamalabadi MYA, DaqiqShirazi M, Kosar A, Shadloo MS (2017) Effect of injection angle, density ratio, and viscosity on droplet formation in a microfluidic T-junction. Theor Appl Mech Lett 7(4):243–251CrossRef
20.
Zurück zum Zitat Clift RR, Grace JR, Weber ME (1978) Bubbles, drops and particles. Academic Press, New York Clift RR, Grace JR, Weber ME (1978) Bubbles, drops and particles. Academic Press, New York
21.
Zurück zum Zitat Bruus H (2008) Theoretical microfluidics. Oxford University Press, Oxford Bruus H (2008) Theoretical microfluidics. Oxford University Press, Oxford
22.
Zurück zum Zitat Zhang A, Ming F, Cao X (2014) Total Lagrangian particle method for the large-deformation analyses of solids and curved shells. Acta Mech 225(1):253–275MathSciNetMATHCrossRef Zhang A, Ming F, Cao X (2014) Total Lagrangian particle method for the large-deformation analyses of solids and curved shells. Acta Mech 225(1):253–275MathSciNetMATHCrossRef
23.
Zurück zum Zitat Taeibi-Rahni M, Karbaschi M, Miller R (2015) Computational methods for complex liquid-fluid interfaces. CRC Press, Boca RatonCrossRef Taeibi-Rahni M, Karbaschi M, Miller R (2015) Computational methods for complex liquid-fluid interfaces. CRC Press, Boca RatonCrossRef
25.
26.
Zurück zum Zitat Shadloo M, Oger G, Le Touzé D (2016) Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges. Comput Fluids 136:11–34MathSciNetMATHCrossRef Shadloo M, Oger G, Le Touzé D (2016) Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges. Comput Fluids 136:11–34MathSciNetMATHCrossRef
27.
Zurück zum Zitat Zhang ZL, Liu MB (2018) A decoupled finite particle method for modeling incompressible flows with free surfaces. Appl Math Model 60:606–633MathSciNetCrossRef Zhang ZL, Liu MB (2018) A decoupled finite particle method for modeling incompressible flows with free surfaces. Appl Math Model 60:606–633MathSciNetCrossRef
28.
Zurück zum Zitat Bonet J, Kulasegaram S (2000) Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int J Numer Methods Eng 47(6):1189–1214MATHCrossRef Bonet J, Kulasegaram S (2000) Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int J Numer Methods Eng 47(6):1189–1214MATHCrossRef
29.
Zurück zum Zitat Liu MB, Liu GR (2016) Particle methods for multi-scale and multi-physics. World Scientific, SingaporeMATHCrossRef Liu MB, Liu GR (2016) Particle methods for multi-scale and multi-physics. World Scientific, SingaporeMATHCrossRef
30.
Zurück zum Zitat Liu L, Yan H, Zhao G, Zhuang J (2016) Experimental studies on the terminal velocity of air bubbles in water and glycerol aqueous solution. Exp Therm Fluid Sci 78:254–265CrossRef Liu L, Yan H, Zhao G, Zhuang J (2016) Experimental studies on the terminal velocity of air bubbles in water and glycerol aqueous solution. Exp Therm Fluid Sci 78:254–265CrossRef
31.
Zurück zum Zitat Español P, Revenga M (2003) Smoothed dissipative particle dynamics. Phys Rev E 67(2):1–12CrossRef Español P, Revenga M (2003) Smoothed dissipative particle dynamics. Phys Rev E 67(2):1–12CrossRef
32.
Zurück zum Zitat Zhi-bin W, Rong C, Hong W, Qiang L, Xun Z, Shu-zhe L (2016) An overview of smoothed particle hydrodynamics for simulating multiphase flow. Appl Math Model 40:9625–9655MathSciNetCrossRef Zhi-bin W, Rong C, Hong W, Qiang L, Xun Z, Shu-zhe L (2016) An overview of smoothed particle hydrodynamics for simulating multiphase flow. Appl Math Model 40:9625–9655MathSciNetCrossRef
33.
Zurück zum Zitat Tartakovsky A, Meakin P (2005) Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys Rev E 72(2):026,301CrossRef Tartakovsky A, Meakin P (2005) Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys Rev E 72(2):026,301CrossRef
34.
Zurück zum Zitat Vázquez-Quesada A, Ellero M, Español P (2012) A SPH-based particle model for computational microrheology. Microfluid Nanofluid 13(2):249–260CrossRef Vázquez-Quesada A, Ellero M, Español P (2012) A SPH-based particle model for computational microrheology. Microfluid Nanofluid 13(2):249–260CrossRef
35.
Zurück zum Zitat Müller K, Fedosov DA, Gompper G (2015) Smoothed dissipative particle dynamics with angular momentum conservation. J Comput Phys 281:301–315MathSciNetMATHCrossRef Müller K, Fedosov DA, Gompper G (2015) Smoothed dissipative particle dynamics with angular momentum conservation. J Comput Phys 281:301–315MathSciNetMATHCrossRef
36.
Zurück zum Zitat Fedosov DA, Peltomäki M, Gompper G (2014) Deformation and dynamics of red blood cells in flow through cylindrical microchannels. Soft Matter 10(24):4258–4267CrossRef Fedosov DA, Peltomäki M, Gompper G (2014) Deformation and dynamics of red blood cells in flow through cylindrical microchannels. Soft Matter 10(24):4258–4267CrossRef
37.
Zurück zum Zitat Karunasena HCP, Senadeera W, Gu YT, Brown RJ (2014) A coupled SPH-DEM model for micro-scale structural deformations of plant cells during drying. Appl Math Model 38(15–16):3781–3801MATHCrossRef Karunasena HCP, Senadeera W, Gu YT, Brown RJ (2014) A coupled SPH-DEM model for micro-scale structural deformations of plant cells during drying. Appl Math Model 38(15–16):3781–3801MATHCrossRef
38.
Zurück zum Zitat Chen JK, Beraun JE, Carney TC (1999) A corrective smoothed particle method for boundary value problems in heat conduction. Int J Numer Methods Eng 46(2):231–252MATHCrossRef Chen JK, Beraun JE, Carney TC (1999) A corrective smoothed particle method for boundary value problems in heat conduction. Int J Numer Methods Eng 46(2):231–252MATHCrossRef
39.
Zurück zum Zitat Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38(10):1655–1679MathSciNetMATHCrossRef Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38(10):1655–1679MathSciNetMATHCrossRef
40.
Zurück zum Zitat Tartakovsky AM, Meakin P, Scheibe TD, Wood BD (2007) A smoothed particle hydrodynamics model for reactive transport and mineral precipitation in porous and fractured porous media. Water Resour Res 43(5):1–18CrossRef Tartakovsky AM, Meakin P, Scheibe TD, Wood BD (2007) A smoothed particle hydrodynamics model for reactive transport and mineral precipitation in porous and fractured porous media. Water Resour Res 43(5):1–18CrossRef
41.
Zurück zum Zitat Nugent S, Posch H (2000) Liquid drops and surface tension with smoothed particle applied mechanics. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 62(4 Pt A):4968–75 Nugent S, Posch H (2000) Liquid drops and surface tension with smoothed particle applied mechanics. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 62(4 Pt A):4968–75
42.
Zurück zum Zitat Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer Methods Fluids 33(3):333–353MATHCrossRef Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer Methods Fluids 33(3):333–353MATHCrossRef
43.
Zurück zum Zitat Wu J, Yu ST, Bn Jiang (1998) Simulation of two-fluid flows by the least-squares finite element method using a continuum surface tension model. Int J Numer Methods Eng 42(4):583–600CrossRef Wu J, Yu ST, Bn Jiang (1998) Simulation of two-fluid flows by the least-squares finite element method using a continuum surface tension model. Int J Numer Methods Eng 42(4):583–600CrossRef
44.
Zurück zum Zitat Liu MB, Liu GR (2004) Meshfree particle simulation of micro channel flows with surface tension. Comput Mech 35(5):332–341MATHCrossRef Liu MB, Liu GR (2004) Meshfree particle simulation of micro channel flows with surface tension. Comput Mech 35(5):332–341MATHCrossRef
45.
Zurück zum Zitat Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76MathSciNetMATHCrossRef Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76MathSciNetMATHCrossRef
46.
Zurück zum Zitat Tartakovsky AM, Panchenko A (2016) Pairwise force smoothed particle hydrodynamics model for multiphase flow: surface tension and contact line dynamics. J Comput Phys 305:1119–1146MathSciNetMATHCrossRef Tartakovsky AM, Panchenko A (2016) Pairwise force smoothed particle hydrodynamics model for multiphase flow: surface tension and contact line dynamics. J Comput Phys 305:1119–1146MathSciNetMATHCrossRef
47.
Zurück zum Zitat Violeau D, Rogers BD (2016) Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future. J Hydraul Res 1689(January):1–26CrossRef Violeau D, Rogers BD (2016) Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future. J Hydraul Res 1689(January):1–26CrossRef
48.
Zurück zum Zitat Mokos A, Rogers BD, Stansby PK, Dominguez JM (2015) Multi-phase SPH modelling of violent hydrodynamics on GPUs. Comput Phys Commun 196:304–316CrossRef Mokos A, Rogers BD, Stansby PK, Dominguez JM (2015) Multi-phase SPH modelling of violent hydrodynamics on GPUs. Comput Phys Commun 196:304–316CrossRef
49.
Zurück zum Zitat Grenier N, Le Touze D, Colagrossi A, Antuono M, Colicchio G (2013) Viscous bubbly flows simulation with an interface SPH model. Ocean Eng 69:88–102CrossRef Grenier N, Le Touze D, Colagrossi A, Antuono M, Colicchio G (2013) Viscous bubbly flows simulation with an interface SPH model. Ocean Eng 69:88–102CrossRef
50.
Zurück zum Zitat Xu X, Ouyang J, Jiang T, Li Q (2014) Numerical analysis of the impact of two droplets with a liquid film using an incompressible SPH method. J Eng Math 85(1):35–53MathSciNetMATHCrossRef Xu X, Ouyang J, Jiang T, Li Q (2014) Numerical analysis of the impact of two droplets with a liquid film using an incompressible SPH method. J Eng Math 85(1):35–53MathSciNetMATHCrossRef
51.
Zurück zum Zitat Shadloo MS, Yildiz M (2011) Numerical modeling of Kelvin–Helmholtz instability using smoothed particle hydrodynamics. Int J Numer Methods Eng 87(10):988–1006MathSciNetMATHCrossRef Shadloo MS, Yildiz M (2011) Numerical modeling of Kelvin–Helmholtz instability using smoothed particle hydrodynamics. Int J Numer Methods Eng 87(10):988–1006MathSciNetMATHCrossRef
52.
Zurück zum Zitat Koukouvinis PK, Anagnostopoulos JS, Papantonis DE (2013) Simulation of 2D wedge impacts on water using the SPH-ALE method. Acta Mech 224(11):2559–2575MATHCrossRef Koukouvinis PK, Anagnostopoulos JS, Papantonis DE (2013) Simulation of 2D wedge impacts on water using the SPH-ALE method. Acta Mech 224(11):2559–2575MATHCrossRef
53.
Zurück zum Zitat Shadloo MS, Zainali A, Yildiz M (2013) Simulation of single mode Rayleigh–Taylor instability by SPH method. Comput Mech 51(5):699–715MathSciNetMATHCrossRef Shadloo MS, Zainali A, Yildiz M (2013) Simulation of single mode Rayleigh–Taylor instability by SPH method. Comput Mech 51(5):699–715MathSciNetMATHCrossRef
54.
Zurück zum Zitat Adami S, Hu X, Adams N (2010) A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation. J Comput Phys 229(13):5011–5021MATHCrossRef Adami S, Hu X, Adams N (2010) A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation. J Comput Phys 229(13):5011–5021MATHCrossRef
55.
Zurück zum Zitat Hua J, Stene JF, Lin P (2008) Numerical simulation of 3D bubbles rising in viscous liquids using a front tracking method. J Comput Phys 227(6):3358–3382MathSciNetMATHCrossRef Hua J, Stene JF, Lin P (2008) Numerical simulation of 3D bubbles rising in viscous liquids using a front tracking method. J Comput Phys 227(6):3358–3382MathSciNetMATHCrossRef
56.
57.
Zurück zum Zitat Szewc K, Pozorski J, Tanire A (2011) Modeling of natural convection with smoothed particle hydrodynamics: non-Boussinesq formulation. Int J Heat Mass Transf 54(23–24):4807–4816MATHCrossRef Szewc K, Pozorski J, Tanire A (2011) Modeling of natural convection with smoothed particle hydrodynamics: non-Boussinesq formulation. Int J Heat Mass Transf 54(23–24):4807–4816MATHCrossRef
58.
Zurück zum Zitat Molteni D, Colagrossi A (2009) A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput Phys Commun 180(6):861–872MathSciNetMATHCrossRef Molteni D, Colagrossi A (2009) A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput Phys Commun 180(6):861–872MathSciNetMATHCrossRef
59.
Zurück zum Zitat Oger G, Marrone S, Le Touzé D, de Leffe M (2016) SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms. J Comput Phys 313:76–98MathSciNetMATHCrossRef Oger G, Marrone S, Le Touzé D, de Leffe M (2016) SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms. J Comput Phys 313:76–98MathSciNetMATHCrossRef
60.
Zurück zum Zitat Szewc K, Pozorski J, Minier JP (2013) Simulations of single bubbles rising through viscous liquids using smoothed particle hydrodynamics. Int J Multiph Flow 50:98–105CrossRef Szewc K, Pozorski J, Minier JP (2013) Simulations of single bubbles rising through viscous liquids using smoothed particle hydrodynamics. Int J Multiph Flow 50:98–105CrossRef
61.
Zurück zum Zitat Adami S, Hu XY, Adams NA (2013) A transport-velocity formulation for smoothed particle hydrodynamics. J Comput Phys 241:292–307MathSciNetMATHCrossRef Adami S, Hu XY, Adams NA (2013) A transport-velocity formulation for smoothed particle hydrodynamics. J Comput Phys 241:292–307MathSciNetMATHCrossRef
62.
Zurück zum Zitat Anderson JDJ (1995) Computational fluid dynamics: the basics with applications. McGraw-Hill, New York Anderson JDJ (1995) Computational fluid dynamics: the basics with applications. McGraw-Hill, New York
63.
Zurück zum Zitat Morris JP, Fox PJ, Zhu Y (1997) Modeling low reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226MATHCrossRef Morris JP, Fox PJ, Zhu Y (1997) Modeling low reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226MATHCrossRef
64.
Zurück zum Zitat Batchelor GK, Young AD (1968) An introduction to fluid mechanics, vol 35. Cambridge University Press, Cambridge Batchelor GK, Young AD (1968) An introduction to fluid mechanics, vol 35. Cambridge University Press, Cambridge
65.
66.
Zurück zum Zitat Adami S, Hu XY, Adams N (2012) A generalized wall boundary condition for smoothed particle hydrodynamics. J Comput Phys 231(21):7057–7075MathSciNetCrossRef Adami S, Hu XY, Adams N (2012) A generalized wall boundary condition for smoothed particle hydrodynamics. J Comput Phys 231(21):7057–7075MathSciNetCrossRef
67.
Zurück zum Zitat Hu XY, Adams NA (2007) An incompressible multi-phase SPH method. J Comput Phys 227(1):264–278MATHCrossRef Hu XY, Adams NA (2007) An incompressible multi-phase SPH method. J Comput Phys 227(1):264–278MATHCrossRef
68.
Zurück zum Zitat Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B (2009) An Hamiltonian interface SPH formulation for multi-fluid and free surface flows. J Comput Phys 228(22):8380–8393MathSciNetMATHCrossRef Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B (2009) An Hamiltonian interface SPH formulation for multi-fluid and free surface flows. J Comput Phys 228(22):8380–8393MathSciNetMATHCrossRef
69.
Zurück zum Zitat Shadloo MS, Rahmat A, Yildiz M (2013) A smoothed particle hydrodynamics study on the electrohydrodynamic deformation of a droplet suspended in a neutrally buoyant Newtonian fluid. Comput Mech 52(3):693–707MathSciNetMATHCrossRef Shadloo MS, Rahmat A, Yildiz M (2013) A smoothed particle hydrodynamics study on the electrohydrodynamic deformation of a droplet suspended in a neutrally buoyant Newtonian fluid. Comput Mech 52(3):693–707MathSciNetMATHCrossRef
70.
Zurück zum Zitat Klostermann J, Schaake K, Schwarze R (2013) Numerical simulation of a single rising bubble by VOF with surface compression. Int J Numer Methods Fluids 71(8):960–982MathSciNetCrossRef Klostermann J, Schaake K, Schwarze R (2013) Numerical simulation of a single rising bubble by VOF with surface compression. Int J Numer Methods Fluids 71(8):960–982MathSciNetCrossRef
71.
Zurück zum Zitat Ming FR, Sun PN, Zhang AM (2017) Numerical investigation of rising bubbles bursting at a free surface through a multiphase SPH model. Meccanica 52(11–12):2665–2684MathSciNetCrossRef Ming FR, Sun PN, Zhang AM (2017) Numerical investigation of rising bubbles bursting at a free surface through a multiphase SPH model. Meccanica 52(11–12):2665–2684MathSciNetCrossRef
72.
Zurück zum Zitat Saitoh TR, Makino J (2013) A density-independent formulation of smoothed particle hydrodynamics. Astrophys J 768(1):44CrossRef Saitoh TR, Makino J (2013) A density-independent formulation of smoothed particle hydrodynamics. Astrophys J 768(1):44CrossRef
73.
Zurück zum Zitat Gomez-Gesteira M, Rogers BD, Ra Dalrymple, Crespo AJ (2010) State-of-the-art of classical SPH for free-surface flows. J Hydraul Res 48(sup1):6–27CrossRef Gomez-Gesteira M, Rogers BD, Ra Dalrymple, Crespo AJ (2010) State-of-the-art of classical SPH for free-surface flows. J Hydraul Res 48(sup1):6–27CrossRef
75.
Zurück zum Zitat Zhang A, Sun P, Ming F (2015) An SPH modeling of bubble rising and coalescing in three dimensions. Comput Methods Appl Mech Eng 294(145):189–209MathSciNetMATHCrossRef Zhang A, Sun P, Ming F (2015) An SPH modeling of bubble rising and coalescing in three dimensions. Comput Methods Appl Mech Eng 294(145):189–209MathSciNetMATHCrossRef
76.
Zurück zum Zitat Sadeghi R, Shadloo MS, Hopp-Hirschler M, Hadjadj A, Nieken U (2018) Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media. Comput Math Appl 75(7):2445–2465MathSciNetMATHCrossRef Sadeghi R, Shadloo MS, Hopp-Hirschler M, Hadjadj A, Nieken U (2018) Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media. Comput Math Appl 75(7):2445–2465MathSciNetMATHCrossRef
77.
Zurück zum Zitat Yeganehdoust F, Yaghoubi M, Emdad H, Ordoubadi M (2016) Numerical study of multiphase droplet dynamics and contact angles by smoothed particle hydrodynamics. Appl Math Model 40(19–20):8493–8512MathSciNetCrossRef Yeganehdoust F, Yaghoubi M, Emdad H, Ordoubadi M (2016) Numerical study of multiphase droplet dynamics and contact angles by smoothed particle hydrodynamics. Appl Math Model 40(19–20):8493–8512MathSciNetCrossRef
78.
79.
Zurück zum Zitat Dalziel SB (2001) Toy models for Rayleigh–Taylor instability. In: 8th international workshop on the physics of compressible turbulent mixing. Lawrence Livermore National Laboratory Publication, UCRL-MI-146350, p Paper T10 Dalziel SB (2001) Toy models for Rayleigh–Taylor instability. In: 8th international workshop on the physics of compressible turbulent mixing. Lawrence Livermore National Laboratory Publication, UCRL-MI-146350, p Paper T10
80.
Zurück zum Zitat Goncharov VN (2002) Analytical model of nonlinear, single-mode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers. Phys Rev Lett 88(13):134,502CrossRef Goncharov VN (2002) Analytical model of nonlinear, single-mode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers. Phys Rev Lett 88(13):134,502CrossRef
81.
Zurück zum Zitat Abarzhi S, Nishihara K, Glimm J (2003) Rayleigh–Taylor and Richtmyer–Meshkov instabilities for fluids with a finite density ratio. Phys Lett A 317(5–6):470–476MATHCrossRef Abarzhi S, Nishihara K, Glimm J (2003) Rayleigh–Taylor and Richtmyer–Meshkov instabilities for fluids with a finite density ratio. Phys Lett A 317(5–6):470–476MATHCrossRef
82.
Zurück zum Zitat Amaya-Bower L, Lee T (2010) Single bubble rising dynamics for moderate Reynolds number using Lattice Boltzmann Method. Comput Fluids 39(7):1191–1207MATHCrossRef Amaya-Bower L, Lee T (2010) Single bubble rising dynamics for moderate Reynolds number using Lattice Boltzmann Method. Comput Fluids 39(7):1191–1207MATHCrossRef
83.
Zurück zum Zitat Zhang Q, Guo W (2015) Universality of finger growth in two-dimensional Rayleigh–Taylor and Richtmyer–Meshkov instabilities with all density ratios. J Fluid Mech 786:47–61MathSciNetMATHCrossRef Zhang Q, Guo W (2015) Universality of finger growth in two-dimensional Rayleigh–Taylor and Richtmyer–Meshkov instabilities with all density ratios. J Fluid Mech 786:47–61MathSciNetMATHCrossRef
84.
Zurück zum Zitat Abarzhi S (2003) The effect of the density ratio on the nonlinear dynamics of the unstable fluid interface. In: Center for turbulence research annual research briefs, pp 251–260 Abarzhi S (2003) The effect of the density ratio on the nonlinear dynamics of the unstable fluid interface. In: Center for turbulence research annual research briefs, pp 251–260
85.
Zurück zum Zitat Ramaprabhu P, Dimonte G (2005) Single-mode dynamics of the Rayleigh–Taylor instability at any density ratio. Phys Rev E Stat Nonlinear Soft Matter Phys 71(3):1–9CrossRef Ramaprabhu P, Dimonte G (2005) Single-mode dynamics of the Rayleigh–Taylor instability at any density ratio. Phys Rev E Stat Nonlinear Soft Matter Phys 71(3):1–9CrossRef
86.
Zurück zum Zitat Choi S, Sohn SI (2017) Multi-harmonic models for bubble evolution in the Rayleigh–Taylor instability. J Korean Math Soc 54(2):663–673MathSciNetMATHCrossRef Choi S, Sohn SI (2017) Multi-harmonic models for bubble evolution in the Rayleigh–Taylor instability. J Korean Math Soc 54(2):663–673MathSciNetMATHCrossRef
87.
Zurück zum Zitat Monaghan JJ, Rafiee A (2013) A simple SPH algorithm for multi-fluid flow with high density ratios. Int J Numer Methods Fluids 71(5):537–561MathSciNetCrossRef Monaghan JJ, Rafiee A (2013) A simple SPH algorithm for multi-fluid flow with high density ratios. Int J Numer Methods Fluids 71(5):537–561MathSciNetCrossRef
88.
Zurück zum Zitat Hysing S, Turek S, Kuzmin D, Parolini N, Burman E, Ganesan S, Tobiska L (2009) Quantitative benchmark computations of two-dimensional bubble dynamics. Int J Numer Methods Fluids 60:1259–1288MathSciNetMATHCrossRef Hysing S, Turek S, Kuzmin D, Parolini N, Burman E, Ganesan S, Tobiska L (2009) Quantitative benchmark computations of two-dimensional bubble dynamics. Int J Numer Methods Fluids 60:1259–1288MathSciNetMATHCrossRef
89.
Zurück zum Zitat Litvinov S, Ellero M, Hu X, Adams N (2010) A splitting scheme for highly dissipative smoothed particle dynamics. J Comput Phys 229(15):5457–5464MATHCrossRef Litvinov S, Ellero M, Hu X, Adams N (2010) A splitting scheme for highly dissipative smoothed particle dynamics. J Comput Phys 229(15):5457–5464MATHCrossRef
90.
Zurück zum Zitat Taylor GI (1934) The formation of emulsions in definable fields of flow. Proc R Soc Lond A: Math Phys Eng Sci 146(858):501–523CrossRef Taylor GI (1934) The formation of emulsions in definable fields of flow. Proc R Soc Lond A: Math Phys Eng Sci 146(858):501–523CrossRef
91.
Zurück zum Zitat Cheng L, Ribatski G, Thome JR (2008) Two-phase flow patterns and flow-pattern maps: fundamentals and applications. Appl Mech Rev 61(050):802 Cheng L, Ribatski G, Thome JR (2008) Two-phase flow patterns and flow-pattern maps: fundamentals and applications. Appl Mech Rev 61(050):802
92.
Zurück zum Zitat Dutta R (2008) Fundamentals of biochemical engineering. Ane Books India, New DelhiCrossRef Dutta R (2008) Fundamentals of biochemical engineering. Ane Books India, New DelhiCrossRef
93.
Zurück zum Zitat Shadloo MS, Zainali A, Sadek SH, Yildiz M (2011) Improved incompressible smoothed particle hydrodynamics method for simulating flow around bluff bodies. Comput Methods Appl Mech Eng 200(9–12):1008–1020MathSciNetMATHCrossRef Shadloo MS, Zainali A, Sadek SH, Yildiz M (2011) Improved incompressible smoothed particle hydrodynamics method for simulating flow around bluff bodies. Comput Methods Appl Mech Eng 200(9–12):1008–1020MathSciNetMATHCrossRef
94.
Zurück zum Zitat Zhou L, Cai ZW, Zong Z, Chen Z (2016) An SPH pressure correction algorithm for multiphase flows with large density ratio. Int J Numer Methods Fluids 81(12):765–788MathSciNetCrossRef Zhou L, Cai ZW, Zong Z, Chen Z (2016) An SPH pressure correction algorithm for multiphase flows with large density ratio. Int J Numer Methods Fluids 81(12):765–788MathSciNetCrossRef
95.
Zurück zum Zitat Duan G, Koshizuka S, Chen B (2015) A contoured continuum surface force model for particle methods. J Comput Phys 298:280–304MathSciNetMATHCrossRef Duan G, Koshizuka S, Chen B (2015) A contoured continuum surface force model for particle methods. J Comput Phys 298:280–304MathSciNetMATHCrossRef
96.
Zurück zum Zitat Breinlinger T, Polfer P, Hashibon A, Kraft T (2013) Surface tension and wetting effects with smoothed particle hydrodynamics. J Comput Phys 243:14–27MATHCrossRef Breinlinger T, Polfer P, Hashibon A, Kraft T (2013) Surface tension and wetting effects with smoothed particle hydrodynamics. J Comput Phys 243:14–27MATHCrossRef
Metadaten
Titel
Smoothed particle hydrodynamics simulation: a tool for accurate characterization of microfluidic devices
verfasst von
Edgar Andres Patino-Narino
Hugo Sakai Idagawa
Daniel Silva de Lara
Raluca Savu
Stanislav A. Moshkalev
Luiz Otavio Saraiva Ferreira
Publikationsdatum
11.04.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2019
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-019-09998-2

Weitere Artikel der Ausgabe 1/2019

Journal of Engineering Mathematics 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.