Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 10/2019

29.04.2019

Structural and physical properties of NbO2 and Nb2O5 thin films prepared by magnetron sputtering

verfasst von: Nazmul Hossain, Ozan Günes, Chunzi Zhang, Cyril Koughia, Yuanshi Li, Shi-Jie Wen, Rick Wong, Safa Kasap, Qiaoqin Yang

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

NbOx thin films have been deposited on silicon (100) and quartz substrates by magnetron sputtering using a metallic Nb target in an optimized argon–oxygen atmosphere. This work investigates the dependence of structure–property relations on the key deposition parameters towards establishing optimum deposition conditions for the growth of NbOx polycrystalline films. It is found that a sputtering condition corresponding to DC power density 9.87 W cm−2, a substrate temperature of 720 °C, low gas pressures of 8 mtorr, a target to substrate distance of 45 mm gives thin films with good homogeneity and a high degree of crystallinity in the case of both NbO2 and Nb2O5. X-ray diffraction (XRD) and Raman spectroscopy confirmed the tetragonal phase of NbO2 and orthorhombic phase of Nb2O5 for similar deposition temperatures. Scanning electron microscopy (SEM) observations indicate that NbO2 has a unique nanoslice structure while Nb2O5 has a flake-like structure. The optical transmittance of the films has been investigated and found to be dependent on the oxygen gas content during deposition; the optical transmittance decreases with increasing O2 gas content. Optical constants of the films were calculated by fitting a suitable thin film transmittance model to experimental transmittance spectra using a modified Swanepoel technique. The nanohardness and stress in the films were measured by nanoindentation and an optical profilometer respectively. Nanohardness and stress in the film show no large dependence on the oxygen gas content except at high oxygen gas content. The nanohardness value of NbO2 films is approximately 6 GPa, and the Young’s modulus is 150 GPa. The Nb2O5 films exhibit a nanohardness of 5.8–13 GPa and a Young’s modulus of 137–161 GPa.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
3.
6.
25.
Zurück zum Zitat J. Mistrik, S. Kasap, H.E. Ruda, C. Koughia, J. Singh, Optical properties of electronic materials, in Springer Handbook of Electronic and Photonic Materials, 2nd edn., ed. by S. Kasap, P. Capper (Springer, Heidelberg, 2017), pp. 47–83. https://doi.org/10.1007/978-3-319-48933-9. Chapter 3 J. Mistrik, S. Kasap, H.E. Ruda, C. Koughia, J. Singh, Optical properties of electronic materials, in Springer Handbook of Electronic and Photonic Materials, 2nd edn., ed. by S. Kasap, P. Capper (Springer, Heidelberg, 2017), pp. 47–83. https://​doi.​org/​10.​1007/​978-3-319-48933-9. Chapter 3
32.
Zurück zum Zitat R. Ghosh, M.K. Brennaman, T. Uher, M.-R. Ok, E.T. Samulski, L.E. McNeil, T.J. Meyer, R. Lopez, Nanoforest Nb2O5 photoanodes for dye-sensitized solar cells by pulsed laser deposition. ACS Appl. Mater. Interfaces 3(10), 3929–3935 (2011). https://doi.org/10.1021/am200805x CrossRef R. Ghosh, M.K. Brennaman, T. Uher, M.-R. Ok, E.T. Samulski, L.E. McNeil, T.J. Meyer, R. Lopez, Nanoforest Nb2O5 photoanodes for dye-sensitized solar cells by pulsed laser deposition. ACS Appl. Mater. Interfaces 3(10), 3929–3935 (2011). https://​doi.​org/​10.​1021/​am200805x CrossRef
35.
37.
Zurück zum Zitat S.O. Kasap, W.C. Tan, J. Singh, A.K. Ray, Fundamental optical properties of materials. In J. Singh (ed.) Optical Properties of Condensed Matter and Applications, 2nd edn (Wiley, Chichester, 2019) S.O. Kasap, W.C. Tan, J. Singh, A.K. Ray, Fundamental optical properties of materials. In J. Singh (ed.) Optical Properties of Condensed Matter and Applications, 2nd edn (Wiley, Chichester, 2019)
40.
Zurück zum Zitat S.O. Kasap, Optoelectronics and Photonics: Principles & Practices, 2nd edn. (Pearson, Upper Saddle River, 2013) S.O. Kasap, Optoelectronics and Photonics: Principles & Practices, 2nd edn. (Pearson, Upper Saddle River, 2013)
44.
Zurück zum Zitat N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials (Oxford University Press, New York, 1971) N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials (Oxford University Press, New York, 1971)
Metadaten
Titel
Structural and physical properties of NbO2 and Nb2O5 thin films prepared by magnetron sputtering
verfasst von
Nazmul Hossain
Ozan Günes
Chunzi Zhang
Cyril Koughia
Yuanshi Li
Shi-Jie Wen
Rick Wong
Safa Kasap
Qiaoqin Yang
Publikationsdatum
29.04.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 10/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01319-8

Weitere Artikel der Ausgabe 10/2019

Journal of Materials Science: Materials in Electronics 10/2019 Zur Ausgabe

Neuer Inhalt