Skip to main content
Erschienen in: Cellulose 12/2017

09.10.2017 | Original Paper

Structure characterization of cellulose nanofiber hydrogel as functions of concentration and ionic strength

verfasst von: Lihong Geng, Xiangfang Peng, Chengbo Zhan, Ali Naderi, Priyanka R. Sharma, Yimin Mao, Benjamin S. Hsiao

Erschienen in: Cellulose | Ausgabe 12/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carboxylated cellulose nanofibers (CNFs), having an average width of 7 nm and thickness of 1.5 nm, were produced by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation method. The fiber cross-sectional dimensions were determined using small-angle X-ray scattering (SAXS), transmission electron microscopy and atomic force microscopy techniques, where the rheological properties under different concentration and ionic strength were also investigated. The formation of hydrogel was evidenced by increasing the CNF concentration or ionic strength of the solvent (water), while the gel structure in ion-induced CNF hydrogels was found to be relatively inhomogeneous. The gelation behavior was closely related to the segmental aggregation of charged CNF, which could be quantitatively characterized by the correlation length (ξ) from the low-angle scattering profile and the scattering invariant (Q) in SAXS.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Allaire M, Yang L (2011) Biomolecular solution X-ray scattering at the national synchrotron light source. J Synchrotron Radiat 18:41–44PubMedCrossRef Allaire M, Yang L (2011) Biomolecular solution X-ray scattering at the national synchrotron light source. J Synchrotron Radiat 18:41–44PubMedCrossRef
Zurück zum Zitat Araki J (2013) Electrostatic or steric?—preparations and characterizations of well-dispersed systems containing rod-like nanowhiskers of crystalline polysaccharides. Soft Matter 9:4125CrossRef Araki J (2013) Electrostatic or steric?—preparations and characterizations of well-dispersed systems containing rod-like nanowhiskers of crystalline polysaccharides. Soft Matter 9:4125CrossRef
Zurück zum Zitat Boluk Y, Zhao LY, Incani V (2012) Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods. Langmuir 28:6114–6123PubMedCrossRef Boluk Y, Zhao LY, Incani V (2012) Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods. Langmuir 28:6114–6123PubMedCrossRef
Zurück zum Zitat Cherhal F, Cousin F, Capron I (2015) Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering. Langmuir 31:5596–5602PubMedCrossRef Cherhal F, Cousin F, Capron I (2015) Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering. Langmuir 31:5596–5602PubMedCrossRef
Zurück zum Zitat Cleuziou JP, Wernsdorfer W, Bouchiat V, Ondarcuhu T, Monthioux M (2006) Carbon nanotube superconducting quantum interference device. Nat Nanotechnol 1:53–59PubMedCrossRef Cleuziou JP, Wernsdorfer W, Bouchiat V, Ondarcuhu T, Monthioux M (2006) Carbon nanotube superconducting quantum interference device. Nat Nanotechnol 1:53–59PubMedCrossRef
Zurück zum Zitat Cohen Y, Ramon O, Kopelman IJ, Mizrahi S (1992) Characterization of inhomogeneous polyacrylamide hydrogels. J Polym Sci Part B Polym Phys 30:1055–1067CrossRef Cohen Y, Ramon O, Kopelman IJ, Mizrahi S (1992) Characterization of inhomogeneous polyacrylamide hydrogels. J Polym Sci Part B Polym Phys 30:1055–1067CrossRef
Zurück zum Zitat Debye P, Anderson HR, Brumberger H (1957) Scattering by an inhomogeneous solid. 2. The correlation function and its application. J Appl Phys 28:679–683CrossRef Debye P, Anderson HR, Brumberger H (1957) Scattering by an inhomogeneous solid. 2. The correlation function and its application. J Appl Phys 28:679–683CrossRef
Zurück zum Zitat Dong H, Snyder JF, Williams KS, Andzelm JW (2013) Cation-induced hydrogels of cellulose nanofibrils with tunable moduli. Biomacromolecules 14:3338–3345PubMedCrossRef Dong H, Snyder JF, Williams KS, Andzelm JW (2013) Cation-induced hydrogels of cellulose nanofibrils with tunable moduli. Biomacromolecules 14:3338–3345PubMedCrossRef
Zurück zum Zitat Dugan JM, Gough JE, Eichhorn SJ (2013) Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine 8:287–298PubMedCrossRef Dugan JM, Gough JE, Eichhorn SJ (2013) Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine 8:287–298PubMedCrossRef
Zurück zum Zitat Fall AB, Lindstrom SB, Sundman O, Odberg L, Wagberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332–11338PubMedCrossRef Fall AB, Lindstrom SB, Sundman O, Odberg L, Wagberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332–11338PubMedCrossRef
Zurück zum Zitat Fall AB, Lindström SB, Sprakel J, Wågberg L (2013) A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation. Soft Matter 9:1852–1863CrossRef Fall AB, Lindström SB, Sprakel J, Wågberg L (2013) A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation. Soft Matter 9:1852–1863CrossRef
Zurück zum Zitat Fukuzumi H, Saito T, Wata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165PubMedCrossRef Fukuzumi H, Saito T, Wata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165PubMedCrossRef
Zurück zum Zitat Fukuzumi H, Tanaka R, Saito T, Isogai A (2014) Dispersion stability and aggregation behavior of TEMPO-oxidized cellulose nanofibrils in water as a function of salt addition. Cellulose 21:1553–1559CrossRef Fukuzumi H, Tanaka R, Saito T, Isogai A (2014) Dispersion stability and aggregation behavior of TEMPO-oxidized cellulose nanofibrils in water as a function of salt addition. Cellulose 21:1553–1559CrossRef
Zurück zum Zitat Gaboriaud F, Nonat A, Chaumont D, Craievich A (1999) Aggregation and gel formation in basic silico-calco-alkaline solutions studied: a SAXS, SANS, and ELS study. J Phys Chem B 103:5775–5781CrossRef Gaboriaud F, Nonat A, Chaumont D, Craievich A (1999) Aggregation and gel formation in basic silico-calco-alkaline solutions studied: a SAXS, SANS, and ELS study. J Phys Chem B 103:5775–5781CrossRef
Zurück zum Zitat Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic press, Cambridge Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic press, Cambridge
Zurück zum Zitat Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687CrossRef Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687CrossRef
Zurück zum Zitat Hakansson KMO, Fall AB, Lundell F, Yu S, Krywka C, Roth SV, Santoro G, Kvick M, Wittberg LP, Wagberg L, Soderberg LD (2014) Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat Commun 5:1–10CrossRef Hakansson KMO, Fall AB, Lundell F, Yu S, Krywka C, Roth SV, Santoro G, Kvick M, Wittberg LP, Wagberg L, Soderberg LD (2014) Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat Commun 5:1–10CrossRef
Zurück zum Zitat Heinze T, Liebert T, Klufers P, Meister F (1999) Carboxymethylation of cellulose in unconventional media. Cellulose 6:153–165CrossRef Heinze T, Liebert T, Klufers P, Meister F (1999) Carboxymethylation of cellulose in unconventional media. Cellulose 6:153–165CrossRef
Zurück zum Zitat Hexemer A, Bras W, Glossinger J, Schaible E, Gann E, Kirian R, MacDowell A, Church M, Rude B, Padmore H (2010) A SAXS/WAXS/GISAXS beamline with multilayer monochromator. J Phys Conf Ser 247:1–11CrossRef Hexemer A, Bras W, Glossinger J, Schaible E, Gann E, Kirian R, MacDowell A, Church M, Rude B, Padmore H (2010) A SAXS/WAXS/GISAXS beamline with multilayer monochromator. J Phys Conf Ser 247:1–11CrossRef
Zurück zum Zitat Ho TTT, Zimmermann T, Hauert R, Caseri W (2011) Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes. Cellulose 18:1391–1406CrossRef Ho TTT, Zimmermann T, Hauert R, Caseri W (2011) Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes. Cellulose 18:1391–1406CrossRef
Zurück zum Zitat Ilavsky J (2012) Nika: software for two-dimensional data reduction. J Appl Crystallogr 45:324–328CrossRef Ilavsky J (2012) Nika: software for two-dimensional data reduction. J Appl Crystallogr 45:324–328CrossRef
Zurück zum Zitat Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85PubMedCrossRef Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85PubMedCrossRef
Zurück zum Zitat Jowkarderis L, van de Ven TM (2014) Intrinsic viscosity of aqueous suspensions of cellulose nanofibrils. Cellulose 21:2511–2517CrossRef Jowkarderis L, van de Ven TM (2014) Intrinsic viscosity of aqueous suspensions of cellulose nanofibrils. Cellulose 21:2511–2517CrossRef
Zurück zum Zitat Ma H, Burger C, Hsiao BS, Chu B (2011) Ultrafine polysaccharide nanofibrous membranes for water purification. Biomacromolecules 12:970–976PubMedCrossRef Ma H, Burger C, Hsiao BS, Chu B (2011) Ultrafine polysaccharide nanofibrous membranes for water purification. Biomacromolecules 12:970–976PubMedCrossRef
Zurück zum Zitat Ma H, Burger C, Hsiao BS, Chu B (2014) Fabrication and characterization of cellulose nanofiber based thin-film nanofibrous composite membranes. J Membr Sci 454:272–282CrossRef Ma H, Burger C, Hsiao BS, Chu B (2014) Fabrication and characterization of cellulose nanofiber based thin-film nanofibrous composite membranes. J Membr Sci 454:272–282CrossRef
Zurück zum Zitat Mao YM, Liu K, Zhan CB, Geng LH, Chu B, Hsiao BS (2017) Characterization of nanocellulose using small-angle neutron, X-ray, and dynamic light scattering techniques. J Phys Chem B 121:1340–1351PubMedCrossRef Mao YM, Liu K, Zhan CB, Geng LH, Chu B, Hsiao BS (2017) Characterization of nanocellulose using small-angle neutron, X-ray, and dynamic light scattering techniques. J Phys Chem B 121:1340–1351PubMedCrossRef
Zurück zum Zitat Naderi A, Lindström T, Pettersson T (2014a) The state of carboxymethylated nanofibrils after homogenization-aided dilution from concentrated suspensions: a rheological perspective. Cellulose 21:2357–2368CrossRef Naderi A, Lindström T, Pettersson T (2014a) The state of carboxymethylated nanofibrils after homogenization-aided dilution from concentrated suspensions: a rheological perspective. Cellulose 21:2357–2368CrossRef
Zurück zum Zitat Naderi A, Lindström T, Sundström J (2014b) Carboxymethylated nanofibrillated cellulose: rheological studies. Cellulose 21:1561–1571CrossRef Naderi A, Lindström T, Sundström J (2014b) Carboxymethylated nanofibrillated cellulose: rheological studies. Cellulose 21:1561–1571CrossRef
Zurück zum Zitat Naderi A, Lindström T, Sundström J, Pettersson T, Flodberg G, Erlandsson J (2015) Microfluidized carboxymethyl cellulose modified pulp: a nanofibrillated cellulose system with some attractive properties. Cellulose 22:1159–1173CrossRef Naderi A, Lindström T, Sundström J, Pettersson T, Flodberg G, Erlandsson J (2015) Microfluidized carboxymethyl cellulose modified pulp: a nanofibrillated cellulose system with some attractive properties. Cellulose 22:1159–1173CrossRef
Zurück zum Zitat Naderi A, Lindstrom T, Weise CF, Flodberg G, Sundstrom J, Junel K, Erlandsson J, Runebjork A (2016) Phosphorylated nanofibrillated cellulose: production and properties. Nord Pulp Pap Res J 31:20–29CrossRef Naderi A, Lindstrom T, Weise CF, Flodberg G, Sundstrom J, Junel K, Erlandsson J, Runebjork A (2016) Phosphorylated nanofibrillated cellulose: production and properties. Nord Pulp Pap Res J 31:20–29CrossRef
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose 1 beta from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082PubMedCrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose 1 beta from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082PubMedCrossRef
Zurück zum Zitat Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose 1(alpha), from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306PubMedCrossRef Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose 1(alpha), from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306PubMedCrossRef
Zurück zum Zitat Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose I-beta. Biomacromolecules 9:3133–3140PubMedCrossRef Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose I-beta. Biomacromolecules 9:3133–3140PubMedCrossRef
Zurück zum Zitat Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700PubMedCrossRef Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700PubMedCrossRef
Zurück zum Zitat Pei AH, Butchosa N, Berglund LA, Zhou Q (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9:2047–2055CrossRef Pei AH, Butchosa N, Berglund LA, Zhou Q (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9:2047–2055CrossRef
Zurück zum Zitat Perez DD, Montanari S, Vignon MR (2003) TEMPO-mediated oxidation of cellulose III. Biomacromolecules 4:1417–1425CrossRef Perez DD, Montanari S, Vignon MR (2003) TEMPO-mediated oxidation of cellulose III. Biomacromolecules 4:1417–1425CrossRef
Zurück zum Zitat Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691PubMedCrossRef Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691PubMedCrossRef
Zurück zum Zitat Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491PubMedCrossRef Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491PubMedCrossRef
Zurück zum Zitat Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809CrossRef Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809CrossRef
Zurück zum Zitat Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRef Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRef
Zurück zum Zitat Sirvio JA, Kolehmainen A, Visanko M, Liimatainen H, Niinimaki J, Hormi OEO (2014) Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments. ACS Appl Mater Interfaces 6:14384–14390PubMedCrossRef Sirvio JA, Kolehmainen A, Visanko M, Liimatainen H, Niinimaki J, Hormi OEO (2014) Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments. ACS Appl Mater Interfaces 6:14384–14390PubMedCrossRef
Zurück zum Zitat Su Y, Burger C, Hsiao BS, Chu B (2014) Characterization of TEMPO-oxidized cellulose nanofibers in aqueous suspension by small-angle X-ray scattering. J Appl Crystallogr 47:788–798CrossRef Su Y, Burger C, Hsiao BS, Chu B (2014) Characterization of TEMPO-oxidized cellulose nanofibers in aqueous suspension by small-angle X-ray scattering. J Appl Crystallogr 47:788–798CrossRef
Zurück zum Zitat Su Y, Burger C, Ma H, Chu B, Hsiao BS (2015) Exploring the nature of cellulose microfibrils. Biomacromolecules 16:1201–1209PubMedCrossRef Su Y, Burger C, Ma H, Chu B, Hsiao BS (2015) Exploring the nature of cellulose microfibrils. Biomacromolecules 16:1201–1209PubMedCrossRef
Zurück zum Zitat Tanaka R, Saito T, Ishii D, Isogai A (2014) Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose 21:1581–1589CrossRef Tanaka R, Saito T, Ishii D, Isogai A (2014) Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose 21:1581–1589CrossRef
Zurück zum Zitat Tatsumi D, Ishioka S, Matsumoto T (2002) Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspensions. J Soc Rheol Jpn 30:27–32CrossRef Tatsumi D, Ishioka S, Matsumoto T (2002) Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspensions. J Soc Rheol Jpn 30:27–32CrossRef
Zurück zum Zitat Uhlig M, Fall A, Wellert S, Lehmann M, Prevost S, Wagberg L, von Klitzing R, Nystrom G (2016) Two-dimensional aggregation and semidilute ordering in cellulose nanocrystals. Langmuir 32:442–450PubMedCrossRef Uhlig M, Fall A, Wellert S, Lehmann M, Prevost S, Wagberg L, von Klitzing R, Nystrom G (2016) Two-dimensional aggregation and semidilute ordering in cellulose nanocrystals. Langmuir 32:442–450PubMedCrossRef
Zurück zum Zitat Xiao JP, Pan XL, Zhang F, Li HB, Bao XH (2017) Size-dependence of carbon nanotube confinement in catalysis. Chem Sci 8:278–283PubMedCrossRef Xiao JP, Pan XL, Zhang F, Li HB, Bao XH (2017) Size-dependence of carbon nanotube confinement in catalysis. Chem Sci 8:278–283PubMedCrossRef
Zurück zum Zitat Xu XZ, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009PubMedCrossRef Xu XZ, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009PubMedCrossRef
Zurück zum Zitat Xu W, Chen Y, Zhan H, Wang JN (2016) High-strength carbon nanotube film from improving alignment and densification. Nano Lett 16:946–952PubMedCrossRef Xu W, Chen Y, Zhan H, Wang JN (2016) High-strength carbon nanotube film from improving alignment and densification. Nano Lett 16:946–952PubMedCrossRef
Zurück zum Zitat Zhang S, Deng H, Zhang Q, Fu Q (2014) Formation of conductive networks with both segregated and double-percolated characteristic in conductive polymer composites with balanced properties. ACS Appl Mater Interfaces 6:6835–6844PubMedCrossRef Zhang S, Deng H, Zhang Q, Fu Q (2014) Formation of conductive networks with both segregated and double-percolated characteristic in conductive polymer composites with balanced properties. ACS Appl Mater Interfaces 6:6835–6844PubMedCrossRef
Metadaten
Titel
Structure characterization of cellulose nanofiber hydrogel as functions of concentration and ionic strength
verfasst von
Lihong Geng
Xiangfang Peng
Chengbo Zhan
Ali Naderi
Priyanka R. Sharma
Yimin Mao
Benjamin S. Hsiao
Publikationsdatum
09.10.2017
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 12/2017
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1496-2

Weitere Artikel der Ausgabe 12/2017

Cellulose 12/2017 Zur Ausgabe