Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2022

16.05.2022 | Technical Article

Studies on Microstructure Evolution, Mechanical, and Corrosion Behaviors of Cryorolled 316L Steel

verfasst von: Rahul Singh, Sunkulp Goel, R. Jayaganthan, Abhishek Kumar

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this present work, the effect of cryorolling on microstructural evolutions, mechanical properties, magnetic properties, fracture mode, and corrosion behavior of 316L austenitic stainless steel was investigated. For this solution-treated 316L steel of thickness, 3 mm has been deformed to various amounts of plastic deformation (30, 50, 70, and 90% reduction in thickness). Microstructural characterization and phase change were done using optical microscopy, x-ray diffraction, field emission scanning electron microscopy equipped with electron backscatter diffraction detector, vibrating sample magnetometer techniques. Mechanical properties of the processed steel were examined using tensile and Vickers microhardness tests. The fracture mode of the fractured surfaces after the tensile test was also determined by SEM. In order to study the corrosion behavior, linear polarization and electrochemical impedance spectroscopy tests were performed. Results of the study showed that cryorolling leads to the transformation of parent austenitic phase to deformation-induced martensite (α′-martensite) phase, with the increase in percent deformation, which is also confirmed through magnetic characterization. Cryorolling too leads to improved yield strength, tensile strength, and microhardness values as well as a decrease in ductility of the steel. The yield strength, tensile strength, and hardness values increased from 398 to 1496 MPa, 781 to 1805 MPa, and 200 to 500 VHN, respectively. The fractography of fractured tensile samples shows the change in the fracture mode from a typical ductile fracture to a brittle fracture. Also, cryorolling over 316L affects its resistance to corrosion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Xiong, Y. Yue, Y. Lu, T. He, M. Fan, F. Ren, and W. Cao, Cryolling Impacts on Microstructure and Mechanical Properties of AISI 316 LN Austenitic Stainless Steel, Mater. Sci. Eng. A, 2018, 709, 270–276CrossRef Y. Xiong, Y. Yue, Y. Lu, T. He, M. Fan, F. Ren, and W. Cao, Cryolling Impacts on Microstructure and Mechanical Properties of AISI 316 LN Austenitic Stainless Steel, Mater. Sci. Eng. A, 2018, 709, 270–276CrossRef
3.
Zurück zum Zitat M. Sabzi, S.H.M. Anijdan, A.R. Bali Chalandar, N. Park, H.R. Jafarian, and A.R. Eivani, An Experimental Investigation on the Effect of Gas Tungsten Arc Welding Current Modes upon the Microstructure, Mechanical, and Fractography Properties of Welded Joints of Two Grades of AISI 316L and AISI310S Alloy Metal Sheets, Mater. Sci. Eng. A, 2022, 840, 142877CrossRef M. Sabzi, S.H.M. Anijdan, A.R. Bali Chalandar, N. Park, H.R. Jafarian, and A.R. Eivani, An Experimental Investigation on the Effect of Gas Tungsten Arc Welding Current Modes upon the Microstructure, Mechanical, and Fractography Properties of Welded Joints of Two Grades of AISI 316L and AISI310S Alloy Metal Sheets, Mater. Sci. Eng. A, 2022, 840, 142877CrossRef
4.
Zurück zum Zitat S.H.M. Anijdan, A.R. Eivani, N. Park, and H.R. Jafarian, The Effect of Pulse Current Changes in PCGTAW on Microstructural Evolution, Drastic Improvement in Mechanical Properties, and Fracture Mode of Dissimilar Welded Joint of AISI 316L-AISI 310S Stainless Steels, Mater. Sci. Eng. A, 2021, 823, 141700CrossRef S.H.M. Anijdan, A.R. Eivani, N. Park, and H.R. Jafarian, The Effect of Pulse Current Changes in PCGTAW on Microstructural Evolution, Drastic Improvement in Mechanical Properties, and Fracture Mode of Dissimilar Welded Joint of AISI 316L-AISI 310S Stainless Steels, Mater. Sci. Eng. A, 2021, 823, 141700CrossRef
5.
Zurück zum Zitat R. Singh, S. Goel, R. Verma, R. Jayaganthan, and A. Kumar, Mechanical Behaviour of 304 Austenitic Stainless Steel Processed by Room Temperature Rolling, IOP Conf. Ser. Mater. Sci. Eng. A, 2018, 330, 012017CrossRef R. Singh, S. Goel, R. Verma, R. Jayaganthan, and A. Kumar, Mechanical Behaviour of 304 Austenitic Stainless Steel Processed by Room Temperature Rolling, IOP Conf. Ser. Mater. Sci. Eng. A, 2018, 330, 012017CrossRef
6.
Zurück zum Zitat S. Tanhaei, Kh. Gheisari, and S.R. AlaviZaree, Effect of Cold Rolling on the Microstructural, Magnetic, Mechanical and Corrosion Properties of AISI 316L Austenitic Stainless Steel, Int. J. Miner. Metall. Mater., 2018, 25, 630–640CrossRef S. Tanhaei, Kh. Gheisari, and S.R. AlaviZaree, Effect of Cold Rolling on the Microstructural, Magnetic, Mechanical and Corrosion Properties of AISI 316L Austenitic Stainless Steel, Int. J. Miner. Metall. Mater., 2018, 25, 630–640CrossRef
7.
Zurück zum Zitat R. Singh, D. Sachan, S. Goel, R. Verma, R. Jayaganthan, and A. Kumar, Mechanical Behavior of 304 Austenitic Stainless Steel Processed by Cryogenic Rolling, Mater. Today Proc., 2018, 5, 16880–16886CrossRef R. Singh, D. Sachan, S. Goel, R. Verma, R. Jayaganthan, and A. Kumar, Mechanical Behavior of 304 Austenitic Stainless Steel Processed by Cryogenic Rolling, Mater. Today Proc., 2018, 5, 16880–16886CrossRef
8.
Zurück zum Zitat S. Goel, N. Keskar, R. Jayaganthan, I.V. Singh, D. Shrivastava, G.K. Dey, and N. Saibaba, Mechanical Behavior and Microstructural Characterizations of Ultrafine Grained Zircaloy-2 Processed by Cryorolling, Mater. Sci. Eng. A, 2014, 603, 23–29CrossRef S. Goel, N. Keskar, R. Jayaganthan, I.V. Singh, D. Shrivastava, G.K. Dey, and N. Saibaba, Mechanical Behavior and Microstructural Characterizations of Ultrafine Grained Zircaloy-2 Processed by Cryorolling, Mater. Sci. Eng. A, 2014, 603, 23–29CrossRef
9.
Zurück zum Zitat S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, V.I. Sololenko, G.A. Salishchev, and S.L. Semiatin, Formation of Nanostructures in Commercial-Purity Titanium via Cryorolling, Acta Mater., 2013, 61, 1167–1178CrossRef S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, V.I. Sololenko, G.A. Salishchev, and S.L. Semiatin, Formation of Nanostructures in Commercial-Purity Titanium via Cryorolling, Acta Mater., 2013, 61, 1167–1178CrossRef
10.
Zurück zum Zitat D. Guo, M. Li, Y. Shi, Z. Zhang, T. Ma, H. Zhang, and X. Zhang, Simultaneously Enhancing the Ductility and Strength of Cryorolled Zr via Tailoring Dislocation Configurations, Mater. Sci. Eng. A, 2012, 558, 611–615CrossRef D. Guo, M. Li, Y. Shi, Z. Zhang, T. Ma, H. Zhang, and X. Zhang, Simultaneously Enhancing the Ductility and Strength of Cryorolled Zr via Tailoring Dislocation Configurations, Mater. Sci. Eng. A, 2012, 558, 611–615CrossRef
11.
Zurück zum Zitat J. Das, Evolution of Nanostructure in α-Brass upon Cryorolling, Mater. Sci. Eng. A, 2011, 530, 675–679CrossRef J. Das, Evolution of Nanostructure in α-Brass upon Cryorolling, Mater. Sci. Eng. A, 2011, 530, 675–679CrossRef
12.
Zurück zum Zitat D. Singh, P.N. Rao, and R. Jayaganthan, Microstructures and Impact Toughness Behavior of Al 5083 Alloy Processed by Cryorolling and Afterwards Annealing, Int. J. Miner. Metall. Mater., 2013, 20, 759–770CrossRef D. Singh, P.N. Rao, and R. Jayaganthan, Microstructures and Impact Toughness Behavior of Al 5083 Alloy Processed by Cryorolling and Afterwards Annealing, Int. J. Miner. Metall. Mater., 2013, 20, 759–770CrossRef
13.
Zurück zum Zitat R. Singh, S.D. Yadav, N. Malviya, S. Goel, R. Jayaganthan, and A. Kumar, Finite Element Analysis and Mechanical Behavior of 316L Stainless Steel Processed by Room Temperature Rolling, Mater. Sci. Forum, 2019, 969, 508–516.CrossRef R. Singh, S.D. Yadav, N. Malviya, S. Goel, R. Jayaganthan, and A. Kumar, Finite Element Analysis and Mechanical Behavior of 316L Stainless Steel Processed by Room Temperature Rolling, Mater. Sci. Forum, 2019, 969, 508–516.CrossRef
14.
Zurück zum Zitat S. Kheiri, H. Mirzadeh, and M. Naghizadeh, Tailoring the Microstructure and Mechanical Properties of AISI 316L Austenitic Stainless Steel via Cold Rolling and Reversion Annealing, Mater. Sci. Eng. A, 2019, 759, 90–96CrossRef S. Kheiri, H. Mirzadeh, and M. Naghizadeh, Tailoring the Microstructure and Mechanical Properties of AISI 316L Austenitic Stainless Steel via Cold Rolling and Reversion Annealing, Mater. Sci. Eng. A, 2019, 759, 90–96CrossRef
15.
Zurück zum Zitat J. Li, B. Gao, Z. Huang, H. Zhou, Q. Mao, and Y. Li, Design for Strength-Ductility Synergy of 316L Stainless Steel with Heterogeneous Lamella Structure through Medium Cold Rolling and Annealing, Vaccum, 2018, 157, 128–135CrossRef J. Li, B. Gao, Z. Huang, H. Zhou, Q. Mao, and Y. Li, Design for Strength-Ductility Synergy of 316L Stainless Steel with Heterogeneous Lamella Structure through Medium Cold Rolling and Annealing, Vaccum, 2018, 157, 128–135CrossRef
16.
Zurück zum Zitat S. Sabooni, F. Karimzadeh, M.H. Enayati, and A.H.W. Ngan, The Role of Martensitic Transformation on Bimodal Grain Structure in Ultrafine Grained AISI 304L Stainless Steel, Mater. Sci. Eng. A, 2015, 636, 221–230CrossRef S. Sabooni, F. Karimzadeh, M.H. Enayati, and A.H.W. Ngan, The Role of Martensitic Transformation on Bimodal Grain Structure in Ultrafine Grained AISI 304L Stainless Steel, Mater. Sci. Eng. A, 2015, 636, 221–230CrossRef
17.
Zurück zum Zitat M. Eskandari, A. Najafizadeh, and A. Kermanpur, Effect of Strain Induced Martenstite on the Formation of Nanocrystalline 316L Stainless Steel after Cold Rolling and Annealing, Mater. Sci. Eng. A, 2009, 519, 46–50CrossRef M. Eskandari, A. Najafizadeh, and A. Kermanpur, Effect of Strain Induced Martenstite on the Formation of Nanocrystalline 316L Stainless Steel after Cold Rolling and Annealing, Mater. Sci. Eng. A, 2009, 519, 46–50CrossRef
18.
Zurück zum Zitat B. Roy, R. Kumar, and J. Das, Effect of Cryorolling on the Microstructure and Tensile Properties of Bulk Nano-Austenitic Stainless Steel, Mater. Sci. Eng. A, 2015, 631, 241–247CrossRef B. Roy, R. Kumar, and J. Das, Effect of Cryorolling on the Microstructure and Tensile Properties of Bulk Nano-Austenitic Stainless Steel, Mater. Sci. Eng. A, 2015, 631, 241–247CrossRef
19.
Zurück zum Zitat P. Mallick, N.K. Tewary, S.K. Ghosh, and P.P. Chattopadhyay, Effect of Cryogenic Deformation on Microstructure and Mechanical Properties of 304 Austenitic Stainless Steel, Mater. Charact., 2017, 133, 77–86CrossRef P. Mallick, N.K. Tewary, S.K. Ghosh, and P.P. Chattopadhyay, Effect of Cryogenic Deformation on Microstructure and Mechanical Properties of 304 Austenitic Stainless Steel, Mater. Charact., 2017, 133, 77–86CrossRef
20.
Zurück zum Zitat T. Kvackaj, A. Rozsypalova, R. Kocisko, J. Bidulska, P. Petrousek, M. Vlado, I. Pokorny, J. Sas, K.P. Weiss, and Ml.R.J.D. DuchekBidulskyDuchonSimcak, Influence of Processing Conditions on Properties of AISI 316LN Steel Grade, J. Mater. Eng. Perform., 2020, 29, 1509–1514CrossRef T. Kvackaj, A. Rozsypalova, R. Kocisko, J. Bidulska, P. Petrousek, M. Vlado, I. Pokorny, J. Sas, K.P. Weiss, and Ml.R.J.D. DuchekBidulskyDuchonSimcak, Influence of Processing Conditions on Properties of AISI 316LN Steel Grade, J. Mater. Eng. Perform., 2020, 29, 1509–1514CrossRef
21.
Zurück zum Zitat P. Petrousek, T. Kvackaj, R. Kocisko, J. Bidulska, M. Luptak, D. Manfredi, M. Actis, and R. Bidulsky, Influence of Cryorolling on Properties of L-PBF 316L Stainless Steel Tested at 298 K and 77 K, Acta Metall. Slovaca, 2019, 25, 283–290CrossRef P. Petrousek, T. Kvackaj, R. Kocisko, J. Bidulska, M. Luptak, D. Manfredi, M. Actis, and R. Bidulsky, Influence of Cryorolling on Properties of L-PBF 316L Stainless Steel Tested at 298 K and 77 K, Acta Metall. Slovaca, 2019, 25, 283–290CrossRef
22.
Zurück zum Zitat S. Chattopadhyay, G. Anand, S.G. Chowdhury, and I. Manna, Effect of Reverse Austenitic Transformation on Mechanical Property and Associated Texture Evolution in AISI 316 Austenitic Stainless Steel Processed by Low Temperature Rolling and Annealing, Mater. Sci. Eng. A, 2018, 734, 139–148CrossRef S. Chattopadhyay, G. Anand, S.G. Chowdhury, and I. Manna, Effect of Reverse Austenitic Transformation on Mechanical Property and Associated Texture Evolution in AISI 316 Austenitic Stainless Steel Processed by Low Temperature Rolling and Annealing, Mater. Sci. Eng. A, 2018, 734, 139–148CrossRef
23.
Zurück zum Zitat M. Kurc, M. Kciuk, and M. Basiaga, Influence of Cold Rolling on the Corrosion Resistance of Austenitic Steel, J. Achiev. Mater. Manuf. Eng., 2010, 38, 154–162 M. Kurc, M. Kciuk, and M. Basiaga, Influence of Cold Rolling on the Corrosion Resistance of Austenitic Steel, J. Achiev. Mater. Manuf. Eng., 2010, 38, 154–162
24.
Zurück zum Zitat S. Shukla, A.P. Patil, and V. Tandon, The Effect of Cold Work by Rolling on Electrochemical Behaviour of Cr-Mn Austenitic Stainless Steel in Chloride Environment, Mater. Res. Express, 2018, 5, 066535CrossRef S. Shukla, A.P. Patil, and V. Tandon, The Effect of Cold Work by Rolling on Electrochemical Behaviour of Cr-Mn Austenitic Stainless Steel in Chloride Environment, Mater. Res. Express, 2018, 5, 066535CrossRef
25.
Zurück zum Zitat G. Monrrabal, A. Bautista, S. Guzman, C. Gutierrez, and F. Valasco, Influence of the Cold Working Induced Martensite on the Electrochemical Behavior of AISI 304 Stainless Steel Surfaces, J. Mater. Res. Technol., 2019, 8, 1335–1346CrossRef G. Monrrabal, A. Bautista, S. Guzman, C. Gutierrez, and F. Valasco, Influence of the Cold Working Induced Martensite on the Electrochemical Behavior of AISI 304 Stainless Steel Surfaces, J. Mater. Res. Technol., 2019, 8, 1335–1346CrossRef
26.
Zurück zum Zitat V. Tandon, A.P. Patil, R.C. Rathod, and S. Shukla, Influence of Cold Work on Electrochemical Behavior of 316L ASS in PEMFC Environment, Mater. Res. Express, 2018, 5, 026528CrossRef V. Tandon, A.P. Patil, R.C. Rathod, and S. Shukla, Influence of Cold Work on Electrochemical Behavior of 316L ASS in PEMFC Environment, Mater. Res. Express, 2018, 5, 026528CrossRef
27.
Zurück zum Zitat U.K. Mudali, P. Shankar, S. Ningshen, R.K. Dayal, H.S. Khatak, and B. Raj, On the Pitting Corrosion Resistance of Nitrogen Alloyed Cold Worked Austenitic Stainless Steels, Corros. Sci., 2002, 44, 2183–2198CrossRef U.K. Mudali, P. Shankar, S. Ningshen, R.K. Dayal, H.S. Khatak, and B. Raj, On the Pitting Corrosion Resistance of Nitrogen Alloyed Cold Worked Austenitic Stainless Steels, Corros. Sci., 2002, 44, 2183–2198CrossRef
28.
Zurück zum Zitat B.R. Kumar, R. Singh, B. Mahto, P.K. De, N.R. Banddyopadhyay, and D.K. Bhattacharya, Effect of Texture on Corrosion Behavior of AISI 304L Stainless Steel, Mater. Charact., 2005, 54, 141–147CrossRef B.R. Kumar, R. Singh, B. Mahto, P.K. De, N.R. Banddyopadhyay, and D.K. Bhattacharya, Effect of Texture on Corrosion Behavior of AISI 304L Stainless Steel, Mater. Charact., 2005, 54, 141–147CrossRef
29.
Zurück zum Zitat J. Chen, Q. Xiao, Z. Lu, X. Ru, G. Han, Y. Tian, and T. Shoji, The Effects of Prior-Deformation on Anodic Dissolution Kinetics and Pitting Behavior of 316L Stainless Steel, Int. J. Electochem. Sci., 2016, 11, 1395–1415 J. Chen, Q. Xiao, Z. Lu, X. Ru, G. Han, Y. Tian, and T. Shoji, The Effects of Prior-Deformation on Anodic Dissolution Kinetics and Pitting Behavior of 316L Stainless Steel, Int. J. Electochem. Sci., 2016, 11, 1395–1415
30.
Zurück zum Zitat R.E. Schramm and R.P. Reed, Stacking Fault Energies of Seven Commercial Austenitic Stainless Steels, Metall. Trans. A, 1975, 6(7), 1345–1351CrossRef R.E. Schramm and R.P. Reed, Stacking Fault Energies of Seven Commercial Austenitic Stainless Steels, Metall. Trans. A, 1975, 6(7), 1345–1351CrossRef
31.
Zurück zum Zitat G.B. Olsen and M. Cohen, Kinetics of Strain Induced Martensitic Nucleation, Metall. Trans. A, 1975, 6, 791–795CrossRef G.B. Olsen and M. Cohen, Kinetics of Strain Induced Martensitic Nucleation, Metall. Trans. A, 1975, 6, 791–795CrossRef
32.
Zurück zum Zitat K. Sato, M. Ichinose, Y. Ohirotsu, and Y. Inoue, Effect of Deformation Induced Phase Transformation and Twinning on Mechanical Properties of Austenitic Fe-Mn-Al Alloy, ISIJ Int., 1989, 29, 868–877CrossRef K. Sato, M. Ichinose, Y. Ohirotsu, and Y. Inoue, Effect of Deformation Induced Phase Transformation and Twinning on Mechanical Properties of Austenitic Fe-Mn-Al Alloy, ISIJ Int., 1989, 29, 868–877CrossRef
33.
Zurück zum Zitat M. Hadji and R. Badji, Microstructure and Mechanical Properties of Austenitic Stainless Steels after Cold Rolling, J. Mater. Eng. Perform., 2002, 11, 145–151CrossRef M. Hadji and R. Badji, Microstructure and Mechanical Properties of Austenitic Stainless Steels after Cold Rolling, J. Mater. Eng. Perform., 2002, 11, 145–151CrossRef
34.
Zurück zum Zitat M. Sabzi and M. Farzam, Hadfield Manganese Austenitic Steel: A Review of Manufacturing Processes and Properties, Mater. Res. Express, 2019, 6(10), 1065c2CrossRef M. Sabzi and M. Farzam, Hadfield Manganese Austenitic Steel: A Review of Manufacturing Processes and Properties, Mater. Res. Express, 2019, 6(10), 1065c2CrossRef
35.
Zurück zum Zitat T.R. Tabrizi, M. Sabzi, S.H.M. Anijdan, A.R. Eivani, N. Park, and H.R. Jafarian, Comparing the Effect of Continuous and Pulsed Current in the GTAW Process of AISI 316L Stainless Steel Welded Joint: Microstructural Evolution, Phase Equilibrium, Mechanical Properties and Fracture Mode, J. Market. Res., 2021, 15, 199–212 T.R. Tabrizi, M. Sabzi, S.H.M. Anijdan, A.R. Eivani, N. Park, and H.R. Jafarian, Comparing the Effect of Continuous and Pulsed Current in the GTAW Process of AISI 316L Stainless Steel Welded Joint: Microstructural Evolution, Phase Equilibrium, Mechanical Properties and Fracture Mode, J. Market. Res., 2021, 15, 199–212
36.
Zurück zum Zitat S.H.M. Anijdan, M. Sabzi, M.G. Hasab, and A.R. Ghiyas, Optimization of Spot Welding Process Parameters in Dissimilar Joint of Dual Phase Steel DP600 and AISI 304 Stainless Steel to Achieve the Highest Level of Shear-Tensile Strength, Mater. Sci. Eng. A, 2018, 726, 120–125CrossRef S.H.M. Anijdan, M. Sabzi, M.G. Hasab, and A.R. Ghiyas, Optimization of Spot Welding Process Parameters in Dissimilar Joint of Dual Phase Steel DP600 and AISI 304 Stainless Steel to Achieve the Highest Level of Shear-Tensile Strength, Mater. Sci. Eng. A, 2018, 726, 120–125CrossRef
37.
Zurück zum Zitat C. Kim, Nondestructive Evaluation of Strain-Induced Phase Transformation and Damage Accumulation in Austenitic Stainless Steel Subjected to Cyclic Loading, Metals, 2018, 8, 14CrossRef C. Kim, Nondestructive Evaluation of Strain-Induced Phase Transformation and Damage Accumulation in Austenitic Stainless Steel Subjected to Cyclic Loading, Metals, 2018, 8, 14CrossRef
38.
Zurück zum Zitat M. Botshekan, S. Degallaix, Y. Desplanques, and J. Polak, Tensile and LCF Properties of AISI 316LN SS at 300 and 77 K, Fatigue Fract. Eng. Mater. Struct., 1998, 21, 651–660CrossRef M. Botshekan, S. Degallaix, Y. Desplanques, and J. Polak, Tensile and LCF Properties of AISI 316LN SS at 300 and 77 K, Fatigue Fract. Eng. Mater. Struct., 1998, 21, 651–660CrossRef
39.
Zurück zum Zitat M. Odnobokova, A. Belyakov, and R. Kaibyshev, Effect of Severe Cold or Warm Deformation on Microstructure Evolution and Tensile Behavior of a 316L Stainless Steel, Adv. Eng. Mater., 2015, 17, 1812–1820CrossRef M. Odnobokova, A. Belyakov, and R. Kaibyshev, Effect of Severe Cold or Warm Deformation on Microstructure Evolution and Tensile Behavior of a 316L Stainless Steel, Adv. Eng. Mater., 2015, 17, 1812–1820CrossRef
40.
Zurück zum Zitat X.Q. Zha, Y. Xiong, L.Q. Gao, X.Y. Zhang, F.Z. Ren, G.X. Wang, and W. Cao, Effect of Annealing on Microstructure and Mechanical Properties of Cryo-Rolled 316LN Austenite Stainless Steel, Mater. Res. Express, 2019, 6, 096506CrossRef X.Q. Zha, Y. Xiong, L.Q. Gao, X.Y. Zhang, F.Z. Ren, G.X. Wang, and W. Cao, Effect of Annealing on Microstructure and Mechanical Properties of Cryo-Rolled 316LN Austenite Stainless Steel, Mater. Res. Express, 2019, 6, 096506CrossRef
41.
Zurück zum Zitat Y. Xiong, T. He, J. Wang, Y. Lu, L. Chen, F. Ren, Y. Liu, and A. Volinsky, Cryorolling Effect on Microstructure and Mechanical Properties of Fe-25Cr-20Ni Austenitic Stainless Steel, Mater. Des., 2015, 88, 398–405CrossRef Y. Xiong, T. He, J. Wang, Y. Lu, L. Chen, F. Ren, Y. Liu, and A. Volinsky, Cryorolling Effect on Microstructure and Mechanical Properties of Fe-25Cr-20Ni Austenitic Stainless Steel, Mater. Des., 2015, 88, 398–405CrossRef
42.
Zurück zum Zitat J. Zheng, C. Li, S. He, B. Ma, and Y. Song, Microstructural and Tensile Behavior of Fe-36% Ni Alloy After cryorolling and Subsequent Annealing, Mater. Sci. Eng. A, 2016, 670, 275–279CrossRef J. Zheng, C. Li, S. He, B. Ma, and Y. Song, Microstructural and Tensile Behavior of Fe-36% Ni Alloy After cryorolling and Subsequent Annealing, Mater. Sci. Eng. A, 2016, 670, 275–279CrossRef
43.
Zurück zum Zitat H.R. Jafarian, M. Sabzi, S.H.M. Anijdan, A.R. Eivani, and N. Park, The Influence of Austenitization Temperature on Microstructural Developments, Mechanical Properties, Fracture Mode and Wear Mechanism of Hadfield High Manganese Steel, J. Market. Res., 2021, 10, 819–831 H.R. Jafarian, M. Sabzi, S.H.M. Anijdan, A.R. Eivani, and N. Park, The Influence of Austenitization Temperature on Microstructural Developments, Mechanical Properties, Fracture Mode and Wear Mechanism of Hadfield High Manganese Steel, J. Market. Res., 2021, 10, 819–831
44.
Zurück zum Zitat M. Sabzi, A. Obeydavi, and S.H.M. Anijdan, The Effect of Joint Shape Geometry on the Microstructural Evolution, Fracture Toughness, and Corrosion Behavior of the Welded Joints of a Hadfield Steel, Mech. Adv. Mater. Struct., 2018, 26(12), 1053–1063CrossRef M. Sabzi, A. Obeydavi, and S.H.M. Anijdan, The Effect of Joint Shape Geometry on the Microstructural Evolution, Fracture Toughness, and Corrosion Behavior of the Welded Joints of a Hadfield Steel, Mech. Adv. Mater. Struct., 2018, 26(12), 1053–1063CrossRef
45.
Zurück zum Zitat S.H.M. Anijdan, and M. Sabzi, The Effect of Heat Treatment Process Parameters on Mechanical Properties, Precipitation, Fatigue Life, and Fracture Mode of an Austenitic Mn Hadfield Steel, J. Mater. Eng. Perform., 2018, 27(10), 5246–5253CrossRef S.H.M. Anijdan, and M. Sabzi, The Effect of Heat Treatment Process Parameters on Mechanical Properties, Precipitation, Fatigue Life, and Fracture Mode of an Austenitic Mn Hadfield Steel, J. Mater. Eng. Perform., 2018, 27(10), 5246–5253CrossRef
46.
Zurück zum Zitat M. Sabzi, S.M. Far, and S.M. Dezfuli, Effect of Melting Temperature on Microstructural Evolutions, Behavior and Corrosion Morphology of Hadfield Austenitic Manganese Steel in the Casting Process, Int. J. Miner. Metall. Mater.Vol., 2018, 25, 1431CrossRef M. Sabzi, S.M. Far, and S.M. Dezfuli, Effect of Melting Temperature on Microstructural Evolutions, Behavior and Corrosion Morphology of Hadfield Austenitic Manganese Steel in the Casting Process, Int. J. Miner. Metall. Mater.Vol., 2018, 25, 1431CrossRef
47.
Zurück zum Zitat V. Tandon, A.P. Patil, and R.C. Rathod, Correlation of Martensite Content and Dislocation Density of Cold Worked 316L on Defect Densities of Passivating Film in Acidic Environment, Mater. Res. Express, 2018, 5, 086515CrossRef V. Tandon, A.P. Patil, and R.C. Rathod, Correlation of Martensite Content and Dislocation Density of Cold Worked 316L on Defect Densities of Passivating Film in Acidic Environment, Mater. Res. Express, 2018, 5, 086515CrossRef
Metadaten
Titel
Studies on Microstructure Evolution, Mechanical, and Corrosion Behaviors of Cryorolled 316L Steel
verfasst von
Rahul Singh
Sunkulp Goel
R. Jayaganthan
Abhishek Kumar
Publikationsdatum
16.05.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06993-0

Weitere Artikel der Ausgabe 12/2022

Journal of Materials Engineering and Performance 12/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.