Skip to main content
Erschienen in: Cognitive Neurodynamics 2/2021

01.07.2020 | Research Article

Synaptic dendritic activity modulates the single synaptic event

verfasst von: Vito Di Maio, Silvia Santillo, Francesco Ventriglia

Erschienen in: Cognitive Neurodynamics | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Synaptic transmission is the key system for the information transfer and elaboration among neurons. Nevertheless, a synapse is not a standing alone structure but it is a part of a population of synapses inputting the information from several neurons on a specific area of the dendritic tree of a single neuron. This population consists of excitatory and inhibitory synapses the inputs of which drive the postsynaptic membrane potential in the depolarizing (excitatory synapses) or depolarizing (inhibitory synapses) direction modulating in such a way the postsynaptic membrane potential. The postsynaptic response of a single synapse depends on several biophysical factors the most important of which is the value of the membrane potential at which the response occurs. The concurrence in a specific time window of inputs by several synapses located in a specific area of the dendritic tree can, consequently, modulate the membrane potential such to severely influence the single postsynaptic response. The degree of modulation operated by the synaptic population depends on the number of synapses active, on the relative proportion between excitatory and inbibitory synapses belonging to the population and on their specific mean firing frequencies. In the present paper we show results obtained by the simulation of the activity of a single Glutamatergic excitatory synapse under the influence of two different populations composed of the same proportion of excitatory and inhibitory synapses but having two different sizes (total number of synapses). The most relevant conclusion of the present simulations is that the information transferred by the single synapse is not and independent simple transition between a pre- and a postsynaptic neuron but is the result of the cooperation of all the synapses which concurrently try to transfer the information to the postsynaptic neuron in a given time window. This cooperativeness is mainly operated by a simple mechanism of modulation of the postsynaptic membrane potential which influences the amplitude of the different components forming the postsynaptic excitatory response.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Arac D, Boucard AA, Ozkan E, Strop P, Newell E, Südhof TC, Brunger AT (2007) Structures of neuroligin-1 and the neuroligin-1/neurexin-1 beta complex reveal specific protein-protein and protein-ca 2+ interactions. Neuron 56:992–1003PubMed Arac D, Boucard AA, Ozkan E, Strop P, Newell E, Südhof TC, Brunger AT (2007) Structures of neuroligin-1 and the neuroligin-1/neurexin-1 beta complex reveal specific protein-protein and protein-ca 2+ interactions. Neuron 56:992–1003PubMed
Zurück zum Zitat Beierlein M (2014) Chapter 17–cable properties and information processing in dendrites. In: Byrne JH, Heidelberger R, Waxham MN (eds) From Molecules to Networks, 3rd edn. Academic Press, Boston, pp 509–529 Beierlein M (2014) Chapter 17–cable properties and information processing in dendrites. In: Byrne JH, Heidelberger R, Waxham MN (eds) From Molecules to Networks, 3rd edn. Academic Press, Boston, pp 509–529
Zurück zum Zitat Bliss T, Collingridge G (2013) Expression of nmda receptor-dependent ltp in the hippocampus: bridging the divide. Mol Brain 6:1–14 Bliss T, Collingridge G (2013) Expression of nmda receptor-dependent ltp in the hippocampus: bridging the divide. Mol Brain 6:1–14
Zurück zum Zitat Eberhard BuhK, Halasy Hand, Somogyi P (1994) Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368:823–828 Eberhard BuhK, Halasy Hand, Somogyi P (1994) Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368:823–828
Zurück zum Zitat Clements JD (1996) Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci 19:163–171PubMed Clements JD (1996) Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci 19:163–171PubMed
Zurück zum Zitat Di Maio V (2019) The origins of variability in the responses of the glutamatergic synapse. Biomed J Sci Techn Res 23:17662–17666 https://doi.org/10.26717/BJSTR.2019.23.003947 Di Maio V (2019) The origins of variability in the responses of the glutamatergic synapse. Biomed J Sci Techn Res 23:17662–17666 https://​doi.​org/​10.​26717/​BJSTR.​2019.​23.​003947
Zurück zum Zitat Di Maio V, Santillo S (2020) Information processing and synaptic transmission. In: Vinjamuri DR (ed) Advances in Neural Signal Processing. IntechOpen, London Di Maio V, Santillo S (2020) Information processing and synaptic transmission. In: Vinjamuri DR (ed) Advances in Neural Signal Processing. IntechOpen, London
Zurück zum Zitat Di Maio V, Ventriglia F, Santillo S (2016a) AMPA/NMDA cooperativity and integration during a single synaptic event. J Comput Neurosci 41:127–142PubMed Di Maio V, Ventriglia F, Santillo S (2016a) AMPA/NMDA cooperativity and integration during a single synaptic event. J Comput Neurosci 41:127–142PubMed
Zurück zum Zitat Di Maio V, Ventriglia F, Santillo S (2016b) A model of cooperative effect of ampa and nmda receptors in glutamatergic synapses. Cogn Neurodyn 10:315–325PubMedPubMedCentral Di Maio V, Ventriglia F, Santillo S (2016b) A model of cooperative effect of ampa and nmda receptors in glutamatergic synapses. Cogn Neurodyn 10:315–325PubMedPubMedCentral
Zurück zum Zitat Dingledine R, Borges K, Bowie D, Traynelis S (1999) The gutamate receptor ion channels. Pharmacol Rev 51:7–61PubMed Dingledine R, Borges K, Bowie D, Traynelis S (1999) The gutamate receptor ion channels. Pharmacol Rev 51:7–61PubMed
Zurück zum Zitat Dobrunz LE, Stevens CF (1997) Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18:995–1008PubMed Dobrunz LE, Stevens CF (1997) Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18:995–1008PubMed
Zurück zum Zitat Forti L, Bossi M, Bergamaschi A, Villa A, Malgaroli A (1997) Loose path recording of single quanta at individual hippocampal synapses. Nature 388:874–878PubMed Forti L, Bossi M, Bergamaschi A, Villa A, Malgaroli A (1997) Loose path recording of single quanta at individual hippocampal synapses. Nature 388:874–878PubMed
Zurück zum Zitat Glavinovic MI (1999) Monte carlo simulation of vesicular release, spatiotemporal distribution of glutamate in synaptic cleft and generation of postsynaptic currents. Pflügers Arch : Eur J Physiol 437:462–470 Glavinovic MI (1999) Monte carlo simulation of vesicular release, spatiotemporal distribution of glutamate in synaptic cleft and generation of postsynaptic currents. Pflügers Arch : Eur J Physiol 437:462–470
Zurück zum Zitat Gulyás AI, Megías M, Emri Z, Freund TF (1999) Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the ca1 area of the rat hippocampus. J Neusci 19:10082–10097 Gulyás AI, Megías M, Emri Z, Freund TF (1999) Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the ca1 area of the rat hippocampus. J Neusci 19:10082–10097
Zurück zum Zitat Hanse E, Gustafsson B (2001) Quantal variability at glutamatergic synapses in area ca1 of the rat neonatal hippocampus. J Physiol 531:467–480PubMedPubMedCentral Hanse E, Gustafsson B (2001) Quantal variability at glutamatergic synapses in area ca1 of the rat neonatal hippocampus. J Physiol 531:467–480PubMedPubMedCentral
Zurück zum Zitat Jahr C, Stevens C (1990) Voltage dependence of nmda-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10:3178–3182PubMedPubMedCentral Jahr C, Stevens C (1990) Voltage dependence of nmda-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10:3178–3182PubMedPubMedCentral
Zurück zum Zitat Klausberger T, Magill PJ, Marton LF, Roberts JDB, Cobden PM, Buzsáki G, Somogyi P (2003) Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421:844–848PubMed Klausberger T, Magill PJ, Marton LF, Roberts JDB, Cobden PM, Buzsáki G, Somogyi P (2003) Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421:844–848PubMed
Zurück zum Zitat Kupper J, Ascher P, Neyton J (1998) Internal \(mg^{2+}\) block of recombinant nmda channels mutated within the selectivity filter and expressed in xenopus oocytes. J Physiol 507:1–12PubMedPubMedCentral Kupper J, Ascher P, Neyton J (1998) Internal \(mg^{2+}\) block of recombinant nmda channels mutated within the selectivity filter and expressed in xenopus oocytes. J Physiol 507:1–12PubMedPubMedCentral
Zurück zum Zitat Larkman AU, Jack JJ (1995) Synaptic plasticity: hippocampal ltp. Current Opinion Neurobiology 5:324–334 Larkman AU, Jack JJ (1995) Synaptic plasticity: hippocampal ltp. Current Opinion Neurobiology 5:324–334
Zurück zum Zitat Liu G, Choi S, Tsien RW (1999) Variability of neurotransmitter concentration and nonsaturation of postsynaptic ampa receptors at synapses in hippocampal cultures and slices. Neuron 22:395–409PubMed Liu G, Choi S, Tsien RW (1999) Variability of neurotransmitter concentration and nonsaturation of postsynaptic ampa receptors at synapses in hippocampal cultures and slices. Neuron 22:395–409PubMed
Zurück zum Zitat Lu WY, Man HY, Ju W, Trimble WS, MacDonald JF, Wang YT (2001) Activation of synaptic nmda receptors induces membrane insertion of new ampa receptors and ltp in cultured hippocampal neurons. Neuron 29:243–54PubMed Lu WY, Man HY, Ju W, Trimble WS, MacDonald JF, Wang YT (2001) Activation of synaptic nmda receptors induces membrane insertion of new ampa receptors and ltp in cultured hippocampal neurons. Neuron 29:243–54PubMed
Zurück zum Zitat Majewska A, Tashiro A, Yuste R (2000) Regulation of spine calcium dynamics by rapid spine motility. J Neurosci 20:8262–8268PubMedPubMedCentral Majewska A, Tashiro A, Yuste R (2000) Regulation of spine calcium dynamics by rapid spine motility. J Neurosci 20:8262–8268PubMedPubMedCentral
Zurück zum Zitat Megías M, Emri Z, Freund TF, Gulyás AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal ca1 pyramidal cells. Neuroscience 102:527–540PubMed Megías M, Emri Z, Freund TF, Gulyás AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal ca1 pyramidal cells. Neuroscience 102:527–540PubMed
Zurück zum Zitat Meldolesi J (1995) Long-term potentiation. The cell biology connection. Curr Biol 5(9):1006–1008PubMed Meldolesi J (1995) Long-term potentiation. The cell biology connection. Curr Biol 5(9):1006–1008PubMed
Zurück zum Zitat Nicoll R, Schmitz D (2005) Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 6:863–876PubMed Nicoll R, Schmitz D (2005) Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 6:863–876PubMed
Zurück zum Zitat Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64:313–353PubMed Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64:313–353PubMed
Zurück zum Zitat Rall W, Rinzel J (1973) Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys J 13:648–688PubMedPubMedCentral Rall W, Rinzel J (1973) Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys J 13:648–688PubMedPubMedCentral
Zurück zum Zitat Rudy CC, Hunsberger HC, Weitzner DS, Reed MN (2015) Synapses and alzheimers disease. Aging Dis 6:131–148 https://doi.org/10.14336/AD.2014.0423PubMedPubMedCentral Rudy CC, Hunsberger HC, Weitzner DS, Reed MN (2015) Synapses and alzheimers disease. Aging Dis 6:131–148 https://​doi.​org/​10.​14336/​AD.​2014.​0423PubMedPubMedCentral
Zurück zum Zitat Tønnesen J, Rózsa G, Katona B, Nägerl U (2014) Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci 17:678–685PubMed Tønnesen J, Rózsa G, Katona B, Nägerl U (2014) Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci 17:678–685PubMed
Zurück zum Zitat Traynelis S, Wollmuth L, McBain C, Menniti F, Vance K, Ogden K, Hansen K, Yuan H, Myers S, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496PubMedPubMedCentral Traynelis S, Wollmuth L, McBain C, Menniti F, Vance K, Ogden K, Hansen K, Yuan H, Myers S, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496PubMedPubMedCentral
Zurück zum Zitat Vargas-Caballero MI, Robinson H (2004) Fast and slow voltage-dependent dynamics of magnesium block in the nmda receptor: the asymmetric trapping block model. J Neuroscit 24:6171–6180 Vargas-Caballero MI, Robinson H (2004) Fast and slow voltage-dependent dynamics of magnesium block in the nmda receptor: the asymmetric trapping block model. J Neuroscit 24:6171–6180
Zurück zum Zitat Ventriglia F (2011) Effect of filaments within the synaptic cleft on the response of excitatory synapses simulated by computer experiments. Biosystems 104:14–22PubMed Ventriglia F (2011) Effect of filaments within the synaptic cleft on the response of excitatory synapses simulated by computer experiments. Biosystems 104:14–22PubMed
Zurück zum Zitat Ventriglia F, Di Maio V (2000a) A brownian model of glutamate diffusion in excitatory synapses of hippocampus. Biosystems 58:67–74PubMed Ventriglia F, Di Maio V (2000a) A brownian model of glutamate diffusion in excitatory synapses of hippocampus. Biosystems 58:67–74PubMed
Zurück zum Zitat Ventriglia F, Di Maio V (2000b) A brownian simulation model of glutamate synaptic diffusion in the femtosecond time scale. Biol Cybern 83:93–109PubMed Ventriglia F, Di Maio V (2000b) A brownian simulation model of glutamate synaptic diffusion in the femtosecond time scale. Biol Cybern 83:93–109PubMed
Zurück zum Zitat Ventriglia F, Di Maio V (2002) Stochastic fluctuation of the synaptic function. Biosystems 67:287–294PubMed Ventriglia F, Di Maio V (2002) Stochastic fluctuation of the synaptic function. Biosystems 67:287–294PubMed
Zurück zum Zitat Ventriglia F, Di Maio V (2003a) Stochastic fluctuation of the quantal epsc amplitude in computer simulated excitatory synapses of hippocampus. Biosystems 71:195–204PubMed Ventriglia F, Di Maio V (2003a) Stochastic fluctuation of the quantal epsc amplitude in computer simulated excitatory synapses of hippocampus. Biosystems 71:195–204PubMed
Zurück zum Zitat Ventriglia F, Di Maio V (2003b) Synaptic fusion pore structure and ampa receptors activation according to brownian simulation of glutamate diffusion. Biol Cybern 88:201–209PubMed Ventriglia F, Di Maio V (2003b) Synaptic fusion pore structure and ampa receptors activation according to brownian simulation of glutamate diffusion. Biol Cybern 88:201–209PubMed
Zurück zum Zitat Ventriglia F, Di Maio V (2013a) Effects of ampars trafficking and glutamate-receptor binding probability on stochastic variability of epsc. Biosystems 112:298–304PubMed Ventriglia F, Di Maio V (2013a) Effects of ampars trafficking and glutamate-receptor binding probability on stochastic variability of epsc. Biosystems 112:298–304PubMed
Zurück zum Zitat Ventriglia F, Di Maio V (2013b) Glutamate-ampa interaction in a model of synaptic transmission. Brain Res 1536:168–176PubMed Ventriglia F, Di Maio V (2013b) Glutamate-ampa interaction in a model of synaptic transmission. Brain Res 1536:168–176PubMed
Zurück zum Zitat Zito K, Scheuss V (2009) Nmda receptor function and physiological modulation. In: Squire LR (ed) Encyclopedia of neuroscience, vol 6. Academic Press, New York, pp 1157–1164 Zito K, Scheuss V (2009) Nmda receptor function and physiological modulation. In: Squire LR (ed) Encyclopedia of neuroscience, vol 6. Academic Press, New York, pp 1157–1164
Zurück zum Zitat Zuber B, Nikonenko I, Klauser P, Muller D, Dobochet J (2005) The mammallian central nervous synaptic cleft contains a high density of periodically organized complexes. Proc Natl Acad Sci USA 102:19192–19197PubMed Zuber B, Nikonenko I, Klauser P, Muller D, Dobochet J (2005) The mammallian central nervous synaptic cleft contains a high density of periodically organized complexes. Proc Natl Acad Sci USA 102:19192–19197PubMed
Metadaten
Titel
Synaptic dendritic activity modulates the single synaptic event
verfasst von
Vito Di Maio
Silvia Santillo
Francesco Ventriglia
Publikationsdatum
01.07.2020
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 2/2021
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-020-09607-4

Weitere Artikel der Ausgabe 2/2021

Cognitive Neurodynamics 2/2021 Zur Ausgabe

Neuer Inhalt