Skip to main content

2017 | OriginalPaper | Buchkapitel

17. Technologies for the Bio-conversion of GHGs into High Added Value Products: Current State and Future Prospects

verfasst von : Sara Cantera, Osvaldo D. Frutos, Juan Carlos López, Raquel Lebrero, Raúl Muñoz Torre

Erschienen in: Carbon Footprint and the Industrial Life Cycle

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Today, methane (CH4) and nitrous oxide (N2O) emissions represent 20% of the total greenhouse gas (GHG) inventory worldwide. CH4 is the second most important GHG emitted nowadays based on both its global warming potential (25 times higher than that of CO2) and its emission rates, while N2O is the main O3-depleting substance emitted in this 21st century. However, despite their environmental relevance and the forthcoming stricter legislation on atmospheric GHG emissions, the development of cost-efficient and environmentally friendly GHG treatment technologies is still limited. In this context, an active bio-technological abatement of CH4 and N2O emissions combined with the production of high added value products can become a profitable alternative to mitigate GHGs emissions. The feasible revalorization of diluted CH4 emissions from landfills has been recently tested in bioreactors with the production of ectoine, a microbial molecule with a high retail value in the cosmetic industry (approximately $1300 kg−1), as well as with the generation of polyhydroxyalkanoates (PHAs), a commodity with potential to replace conventional petroleum-derived polymers. This CH4 bio-refinery approach can be also based on the biogas produced from anaerobic digestion, therefore improving the economic viability of this waste management technology. The N2O contained in emissions from nitric acid production processes can be also considered as a potential substrate for the production of PHAs, with the subsequent increase in the cost-effectiveness of the abatement strategies of this GHG. On the other hand, the off-gas N2O abatement from diluted wastewater treatment plant emissions has been recently confirmed, although at the expense of a high input of electron donor due to the need to first deplete the O2 transferred from the emission. This chapter constitutes a critical review of the state-of-the-art of the potential and research niches of bio-technologies applied in a CH4 and N2O bio-refinery approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Avalos Ramirez, A., García-Aguilar, B. P., Jones, J. P., & Heitz, M. (2012). Improvement of methane biofiltration by the addition of non-ionic surfactants to biofilters packed with inert materials. Process Biochemistry, 47(1), 76–82. doi:10.1016/j.procbio.2011.10.007 Avalos Ramirez, A., García-Aguilar, B. P., Jones, J. P., & Heitz, M. (2012). Improvement of methane biofiltration by the addition of non-ionic surfactants to biofilters packed with inert materials. Process Biochemistry, 47(1), 76–82. doi:10.​1016/​j.​procbio.​2011.​10.​007
Zurück zum Zitat Bowman, J. P., Jimenez, L., Rosario, I., Hazen, T. C., & Sayler, G. S. (1993). Characterization of the methanotrophic bacterial community present in a trichloroethylene-contaminated subsurface groundwater site. Applied and Environmental Microbiology, 59(8), 2380–2387. Bowman, J. P., Jimenez, L., Rosario, I., Hazen, T. C., & Sayler, G. S. (1993). Characterization of the methanotrophic bacterial community present in a trichloroethylene-contaminated subsurface groundwater site. Applied and Environmental Microbiology, 59(8), 2380–2387.
Zurück zum Zitat Bugnicourt, E., Cinelli, P., Lazzeri, A., & Alvarez, V. (2014). Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polymer Letters, 8(11), 791–808. doi:10.3144/expresspolymlett.2014.82.CrossRef Bugnicourt, E., Cinelli, P., Lazzeri, A., & Alvarez, V. (2014). Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polymer Letters, 8(11), 791–808. doi:10.​3144/​expresspolymlett​.​2014.​82.CrossRef
Zurück zum Zitat Burgess, B. K., & Lowe, D. J. (1996). Mechanism of molybdenum nitrogenase. Chemical Reviews, 96(7), 2983–3012. doi:10.1021/cr950055x Burgess, B. K., & Lowe, D. J. (1996). Mechanism of molybdenum nitrogenase. Chemical Reviews, 96(7), 2983–3012. doi:10.​1021/​cr950055x
Zurück zum Zitat But, S. Y., Rozova, O. N., Khmelenina, V. N., Reshetnikov, A. S., & Trotsenko, Y. A. (2012). Properties of recombinant ATP-dependent fructokinase from the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. Biochemistry (Moscow), 77(4), 372–377. doi:10.1134/S0006297912040086 But, S. Y., Rozova, O. N., Khmelenina, V. N., Reshetnikov, A. S., & Trotsenko, Y. A. (2012). Properties of recombinant ATP-dependent fructokinase from the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. Biochemistry (Moscow), 77(4), 372–377. doi:10.​1134/​S000629791204008​6
Zurück zum Zitat Cal, A. J., Sikkema, W. D., Ponce, M. I., Franqui-Villanueva, D., Riiff, T. J., Orts, W. J., & Lee, C. C. et al. (2016). Methanotrophic production of polyhydroxybutyrate-co-hydroxyvalerate with high hydroxyvalerate content. International Journal of Biological Macromolecules, 87, 302–307. doi:10.1016/j.ijbiomac.2016.02.056 Cal, A. J., Sikkema, W. D., Ponce, M. I., Franqui-Villanueva, D., Riiff, T. J., Orts, W. J., & Lee, C. C. et al. (2016). Methanotrophic production of polyhydroxybutyrate-co-hydroxyvalerate with high hydroxyvalerate content. International Journal of Biological Macromolecules, 87, 302–307. doi:10.​1016/​j.​ijbiomac.​2016.​02.​056
Zurück zum Zitat Caldwell, S. L., Laidler, J. R., Brewer, E. A., Eberly, J. O., Sandborgh, S. C., & Colwell, F. S. (2008). Anaerobic oxidation of methane: Mechanisms, bioenergetics, and the ecology of associated microorganisms. Environmental Science and Technology. doi:10.1021/es800120b Caldwell, S. L., Laidler, J. R., Brewer, E. A., Eberly, J. O., Sandborgh, S. C., & Colwell, F. S. (2008). Anaerobic oxidation of methane: Mechanisms, bioenergetics, and the ecology of associated microorganisms. Environmental Science and Technology. doi:10.​1021/​es800120b
Zurück zum Zitat Cantera, S., Estrada, J. M., Lebrero, R., García-Encina, P. A., & Muñoz, R. (2015). Comparative performance evaluation of conventional and two-phase hydrophobic stirred tank reactors for methane abatement: Mass transfer and biological considerations. Biotechnology and Bioengineering, 113(6), 1203–1212. doi:10.1002/bit.25897.CrossRef Cantera, S., Estrada, J. M., Lebrero, R., García-Encina, P. A., & Muñoz, R. (2015). Comparative performance evaluation of conventional and two-phase hydrophobic stirred tank reactors for methane abatement: Mass transfer and biological considerations. Biotechnology and Bioengineering, 113(6), 1203–1212. doi:10.​1002/​bit.​25897.CrossRef
Zurück zum Zitat Cantera, S., Lebrero, R., García-Encina, P. A., & Muñoz, R. (2016a). Evaluation of the influence of methane and copper concentration and methane mass transport on the community structure and biodegradation kinetics of methanotrophic cultures. Journal of Environmental Management, 171, 11–20. Cantera, S., Lebrero, R., García-Encina, P. A., & Muñoz, R. (2016a). Evaluation of the influence of methane and copper concentration and methane mass transport on the community structure and biodegradation kinetics of methanotrophic cultures. Journal of Environmental Management, 171, 11–20.
Zurück zum Zitat Cantera, S., Lebrero, R., Sadornil, L., García-Encina, P. A., & Muñoz, R. (2016b). Valorization of CH4 emissions into high-added-value products: Assessing the production of ectoine coupled with CH4 abatement. Journal of Environmental Management, 182, 160–165. Cantera, S., Lebrero, R., Sadornil, L., García-Encina, P. A., & Muñoz, R. (2016b). Valorization of CH4 emissions into high-added-value products: Assessing the production of ectoine coupled with CH4 abatement. Journal of Environmental Management, 182, 160–165.
Zurück zum Zitat Carlsen, H. N., Joergensen, L., & Degn, H. (1991). Inhibition by ammonia of methane utilization in Methylococcus capsulatus (Bath). Applied Microbiology and Biotechnology, 35(1), 124–127. doi:10.1007/BF00180649 Carlsen, H. N., Joergensen, L., & Degn, H. (1991). Inhibition by ammonia of methane utilization in Methylococcus capsulatus (Bath). Applied Microbiology and Biotechnology, 35(1), 124–127. doi:10.​1007/​BF00180649
Zurück zum Zitat Castilho, L. R., Mitchell, D. A., & Freire, D. M. G. (2009). Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresource Technology, 100(23), 5996–6009. doi:10.1016/j.biortech.2009.03.088 Castilho, L. R., Mitchell, D. A., & Freire, D. M. G. (2009). Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresource Technology, 100(23), 5996–6009. doi:10.​1016/​j.​biortech.​2009.​03.​088
Zurück zum Zitat Chen, G.-Q. (2009). A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chemical Society Reviews, 38(8), 2434–2446. doi:10.1039/b812677c Chen, G.-Q. (2009). A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chemical Society Reviews, 38(8), 2434–2446. doi:10.​1039/​b812677c
Zurück zum Zitat Chen, G.-Q. (2010a). Plastics completely synthesized by bacteria: Polyhydroxyalkanoates. In G. Q. Chen (Ed.), Plastics from Bacteria: Natural Functions and Applications (1st edn, pp. 17–38). Heidelberg: Springer. Chen, G.-Q. (2010a). Plastics completely synthesized by bacteria: Polyhydroxyalkanoates. In G. Q. Chen (Ed.), Plastics from Bacteria: Natural Functions and Applications (1st edn, pp. 17–38). Heidelberg: Springer.
Zurück zum Zitat Chen, G.-Q. (2010b). Plastics completely synthesized by bacteria: Polyhydroxyalkanoates. Plastics from Bacteria: Natural Functions and Applications, 14, 121–132. doi:10.1007/978-3-642-03287_5 Chen, G.-Q. (2010b). Plastics completely synthesized by bacteria: Polyhydroxyalkanoates. Plastics from Bacteria: Natural Functions and Applications, 14, 121–132. doi:10.​1007/​978-3-642-03287_​5
Zurück zum Zitat Chiemchaisri, W., Wu, J. S., & Visvanathan, C. (2001). Methanotrophic production of extracellular polysaccharide in landfill cover soils. Water Science and Technology, 43, 151–158. Chiemchaisri, W., Wu, J. S., & Visvanathan, C. (2001). Methanotrophic production of extracellular polysaccharide in landfill cover soils. Water Science and Technology, 43, 151–158.
Zurück zum Zitat Cui, M., Ma, A., Qi, H., Zhuang, X., & Zhuang, G. (2015). Anaerobic oxidation of methane: An “active” microbial process. MicrobiologyOpen, 4(1), 1–11. doi:10.1002/mbo3.232 Cui, M., Ma, A., Qi, H., Zhuang, X., & Zhuang, G. (2015). Anaerobic oxidation of methane: An “active” microbial process. MicrobiologyOpen, 4(1), 1–11. doi:10.​1002/​mbo3.​232
Zurück zum Zitat de Dieu Ndikubwimana, J. & Lee, B. H. (2014). Enhanced production techniques, properties and uses of coenzyme Q10. Biotechnology Letters, 36(10), 1917–1926. doi:10.1007/S10529-014-1587-1 de Dieu Ndikubwimana, J. & Lee, B. H. (2014). Enhanced production techniques, properties and uses of coenzyme Q10. Biotechnology Letters, 36(10), 1917–1926. doi:10.​1007/​S10529-014-1587-1
Zurück zum Zitat den Camp, H. J. M. O., Islam, T., Stott, M. B., Harhangi, H. R., Hynes, A., Schouten, S., … Dunfield, P. F. (2009). Minireview environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environmental Microbiology Reports, 1(5), 293–306. doi:10.1111/j.1758-2229.2009.00022.x den Camp, H. J. M. O., Islam, T., Stott, M. B., Harhangi, H. R., Hynes, A., Schouten, S., … Dunfield, P. F. (2009). Minireview environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environmental Microbiology Reports, 1(5), 293–306. doi:10.​1111/​j.​1758-2229.​2009.​00022.​x
Zurück zum Zitat Desloover, J., Puig, S., Virdis, B., Clauwaert, P., Boeckx, P., Verstraete, W., & Boon, N. (2011). Biocathodic nitrous oxide removal in bioelectrochemical systems. Environmental Science & Technology, 45(24), 10557–10566. doi:10.1021/es202047x Desloover, J., Puig, S., Virdis, B., Clauwaert, P., Boeckx, P., Verstraete, W., & Boon, N. (2011). Biocathodic nitrous oxide removal in bioelectrochemical systems. Environmental Science & Technology, 45(24), 10557–10566. doi:10.​1021/​es202047x
Zurück zum Zitat Desloover, J., Roobroeck, D., Heylen, K., Puig, S. S., Boeckx, P., Verstraete, W., & Boon, N. (2014). Pathway of nitrous oxide consumption in isolated Pseudomonas stutzeri strains under anoxic and oxic conditions. Environmental Microbiology, 16(10), 3143–3152. doi:10.1111/1462-2920.12404 Desloover, J., Roobroeck, D., Heylen, K., Puig, S. S., Boeckx, P., Verstraete, W., & Boon, N. (2014). Pathway of nitrous oxide consumption in isolated Pseudomonas stutzeri strains under anoxic and oxic conditions. Environmental Microbiology, 16(10), 3143–3152. doi:10.​1111/​1462-2920.​12404
Zurück zum Zitat Doi, Y., Kitamura, S., & Abe, H. (1995). Microbial synthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules, 28(14), 4822–4828. doi:10.1021/ma00118a007 Doi, Y., Kitamura, S., & Abe, H. (1995). Microbial synthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules, 28(14), 4822–4828. doi:10.​1021/​ma00118a007
Zurück zum Zitat Estrada, J. M., Lebrero, R., Quijano, G., Pérez, R., Figueroa-González, I., García-Encina, P. A., & Muñoz, R. (2014). Methane abatement in a gas-recycling biotrickling filter: Evaluating innovative operational strategies to overcome mass transfer limitations. Chemical Engineering Journal, 253, 385–393. doi:10.1016/j.cej.2014.05.053 Estrada, J. M., Lebrero, R., Quijano, G., Pérez, R., Figueroa-González, I., García-Encina, P. A., & Muñoz, R. (2014). Methane abatement in a gas-recycling biotrickling filter: Evaluating innovative operational strategies to overcome mass transfer limitations. Chemical Engineering Journal, 253, 385–393. doi:10.​1016/​j.​cej.​2014.​05.​053
Zurück zum Zitat Estrada, J. M., Rodríguez, E., Quijano, G., & Muñoz, R. (2012). Influence of gaseous VOC concentration on the diversity and biodegradation performance of microbial communities. Bioprocess and Biosystems Engineering, 35(9), 1477–1488. doi:10.1007/S00449-012-0737-x Estrada, J. M., Rodríguez, E., Quijano, G., & Muñoz, R. (2012). Influence of gaseous VOC concentration on the diversity and biodegradation performance of microbial communities. Bioprocess and Biosystems Engineering, 35(9), 1477–1488. doi:10.​1007/​S00449-012-0737-x
Zurück zum Zitat European Environment Agency. (2015). European environment—State and outlook 2015: Assessment of global megatrends. European Environment. doi:10.2800/45773 European Environment Agency. (2015). European environment—State and outlook 2015: Assessment of global megatrends. European Environment. doi:10.​2800/​45773
Zurück zum Zitat Flemming, H. C., Neu, T. R., & Wozniak, D. J. (2007). The EPS matrix: The “house of biofilm cells.” Journal of Bacteriology, 189(22), 7945–7947. doi:10.1128/JB.00858-07 Flemming, H. C., Neu, T. R., & Wozniak, D. J. (2007). The EPS matrix: The “house of biofilm cells.” Journal of Bacteriology, 189(22), 7945–7947. doi:10.​1128/​JB.​00858-07
Zurück zum Zitat Frutos, O. D., Arvelo, I. A., Pérez, R., Quijano, G., & Muñoz, R. (2014). Continuous nitrous oxide abatement in a novel denitrifying off-gas bioscrubber. Applied Microbiology and Biotechnology, 99(8), 3695–3706. doi:10.1007/s00253-014-6329-8 Frutos, O. D., Arvelo, I. A., Pérez, R., Quijano, G., & Muñoz, R. (2014). Continuous nitrous oxide abatement in a novel denitrifying off-gas bioscrubber. Applied Microbiology and Biotechnology, 99(8), 3695–3706. doi:10.​1007/​s00253-014-6329-8
Zurück zum Zitat Frutos, O. D., Cortes, I., Arnaiz, E., Lebrero, R., & Muñoz, R. (2016a). Biological nitrous oxide abatement by paracoccus denitrificans in bubble column and airlift reactors, 54, 289–294. doi:10.3303/CET1654049 Frutos, O. D., Cortes, I., Arnaiz, E., Lebrero, R., & Muñoz, R. (2016a). Biological nitrous oxide abatement by paracoccus denitrificans in bubble column and airlift reactors, 54, 289–294. doi:10.​3303/​CET1654049
Zurück zum Zitat Frutos, O. D., Quijano, G., Pérez, R., & Muñoz, R. (2016b). Simultaneous biological nitrous oxide abatement and wastewater treatment in a denitrifying off-gas bioscrubber. Chemical Engineering Journal, 288, 28–37. doi:10.1016/j.cej.2015.11.088 Frutos, O. D., Quijano, G., Pérez, R., & Muñoz, R. (2016b). Simultaneous biological nitrous oxide abatement and wastewater treatment in a denitrifying off-gas bioscrubber. Chemical Engineering Journal, 288, 28–37. doi:10.​1016/​j.​cej.​2015.​11.​088
Zurück zum Zitat Frutos OD, Cortes I, Cantera S, Arnaiz E, Lebrero R, Muñoz R (Under review). Nitrous oxide abatement coupled to biopolymer production as a model GHG biorefinery for cost-effective climate change mitigation. Frutos OD, Cortes I, Cantera S, Arnaiz E, Lebrero R, Muñoz R (Under review). Nitrous oxide abatement coupled to biopolymer production as a model GHG biorefinery for cost-effective climate change mitigation.
Zurück zum Zitat Galego, N., Rozsa, C., Sánchez, R., Fung, J., Vázquez, A., & Santo Tomás, J. (2000). Characterization and application of poly(3-hydroxyalkanoates) family as composite biomaterials. Polymer Testing, 19(5), 485–492. doi:10.1016/0142-9418(99)00011-2 Galego, N., Rozsa, C., Sánchez, R., Fung, J., Vázquez, A., & Santo Tomás, J. (2000). Characterization and application of poly(3-hydroxyalkanoates) family as composite biomaterials. Polymer Testing, 19(5), 485–492. doi:10.​1016/​0142-9418(99)00011-2
Zurück zum Zitat Girard, M., Ramirez, A. A., Buelna, G., & Heitz, M. (2011). Biofiltration of methane at low concentrations representative of the piggery industry-Influence of the methane and nitrogen concentrations. Chemical Engineering Journal, 168(1), 151–158. doi:10.1016/j.cej.2010.12.054 Girard, M., Ramirez, A. A., Buelna, G., & Heitz, M. (2011). Biofiltration of methane at low concentrations representative of the piggery industry-Influence of the methane and nitrogen concentrations. Chemical Engineering Journal, 168(1), 151–158. doi:10.​1016/​j.​cej.​2010.​12.​054
Zurück zum Zitat Hanson, R. S., & Hanson, T. E. (1996). Methanotrophic bacteria. Microbiological Reviews, 60(2), 439–471. Hanson, R. S., & Hanson, T. E. (1996). Methanotrophic bacteria. Microbiological Reviews, 60(2), 439–471.
Zurück zum Zitat Harding, K. G., Dennis, J. S., von Blottnitz, H., & Harrison, S. T. L. (2007). Environmental analysis of plastic production processes: Comparing petroleum-based polypropylene and polyethylene with biologically-based poly-3-hydroxybutyric acid using life cycle analysis. Journal of Biotechnology, 130(1), 57–66. doi:10.1016/j.jbiotec.2007.02.012 Harding, K. G., Dennis, J. S., von Blottnitz, H., & Harrison, S. T. L. (2007). Environmental analysis of plastic production processes: Comparing petroleum-based polypropylene and polyethylene with biologically-based poly-3-hydroxybutyric acid using life cycle analysis. Journal of Biotechnology, 130(1), 57–66. doi:10.​1016/​j.​jbiotec.​2007.​02.​012
Zurück zum Zitat Helm, J., Wendlandt, K.-D., Jechorek, M., & Stottmeister, U. (2008). Potassium deficiency results in accumulation of ultra-high molecular weight poly-beta-hydroxybutyrate in a methane-utilizing mixed culture. Journal of Applied Microbiology, 105(4), 1054–1061. doi:10.1111/j.1365-2672.2008.03831.x Helm, J., Wendlandt, K.-D., Jechorek, M., & Stottmeister, U. (2008). Potassium deficiency results in accumulation of ultra-high molecular weight poly-beta-hydroxybutyrate in a methane-utilizing mixed culture. Journal of Applied Microbiology, 105(4), 1054–1061. doi:10.​1111/​j.​1365-2672.​2008.​03831.​x
Zurück zum Zitat Hernández, J., Gómez-Cuervo, S., & Omil, F. (2015). EPS and SMP as stability indicators during the biofiltration of diffuse methane emissions. Water, Air, & Soil Pollution, 226(10), 343. doi:10.1007/s11270-015-2576-2 Hernández, J., Gómez-Cuervo, S., & Omil, F. (2015). EPS and SMP as stability indicators during the biofiltration of diffuse methane emissions. Water, Air, & Soil Pollution, 226(10), 343. doi:10.​1007/​s11270-015-2576-2
Zurück zum Zitat Hilger, H. A., Cranford, D. F., & Barlaz, M. A. (2000). Methane oxidation and microbial exopolymer production in landfill cover soil. Soil Biology and Biochemistry, 32(4), 457–467. doi:10.1016/S0038-0717(99)00101-7 Hilger, H. A., Cranford, D. F., & Barlaz, M. A. (2000). Methane oxidation and microbial exopolymer production in landfill cover soil. Soil Biology and Biochemistry, 32(4), 457–467. doi:10.​1016/​S0038-0717(99)00101-7
Zurück zum Zitat Hood, M. C. (2011). Design and operation of a biofilter for treatment of swine house pit ventilation exhaust. Master science thesis, North Carolina State University Hood, M. C. (2011). Design and operation of a biofilter for treatment of swine house pit ventilation exhaust. Master science thesis, North Carolina State University
Zurück zum Zitat Jahnke, L. L., & Nicholst, P. D. (1986). Methyl sterol and cyclopropane fatty acid composition of Methylococcus capsulatus grown at low oxygen tensions. Journal of Bacteriology, 167(1), 238–242.CrossRef Jahnke, L. L., & Nicholst, P. D. (1986). Methyl sterol and cyclopropane fatty acid composition of Methylococcus capsulatus grown at low oxygen tensions. Journal of Bacteriology, 167(1), 238–242.CrossRef
Zurück zum Zitat Kennelly, C., Gerrity, S., Collins, G., & Clifford, E. (2014). Liquid phase optimisation in a horizontal flow biofilm reactor (HFBR) technology for the removal of methane at low temperatures. Chemical Engineering Journal, 242, 144–154. doi:10.1016/j.cej.2013.12.071 Kennelly, C., Gerrity, S., Collins, G., & Clifford, E. (2014). Liquid phase optimisation in a horizontal flow biofilm reactor (HFBR) technology for the removal of methane at low temperatures. Chemical Engineering Journal, 242, 144–154. doi:10.​1016/​j.​cej.​2013.​12.​071
Zurück zum Zitat Khmelenina, V. N., Kalyuzhnaya, M. G., Starostina, N. G., Suzina, N. E., & Trotsenko, Y. A. (1997). Isolation and characterization of halotolerant alkaliphilic methanotrophic bacteria from Tuva soda lakes. Current Microbiology, 35(5), 257–261. doi:10.1007/s002849900249 Khmelenina, V. N., Kalyuzhnaya, M. G., Starostina, N. G., Suzina, N. E., & Trotsenko, Y. A. (1997). Isolation and characterization of halotolerant alkaliphilic methanotrophic bacteria from Tuva soda lakes. Current Microbiology, 35(5), 257–261. doi:10.​1007/​s002849900249
Zurück zum Zitat Khmelenina, Y. N., Eshinimaev, B. T., Kalyuzhnaya, M. G., & Trotsenko, Y. A. (2000). Potential activity of methane and ammonium oxidation by methanotrophic communities from the soda lakes of southern Transbaikal. Microbiology, 69(4), 460–465. doi:10.1007/BF02756771 Khmelenina, Y. N., Eshinimaev, B. T., Kalyuzhnaya, M. G., & Trotsenko, Y. A. (2000). Potential activity of methane and ammonium oxidation by methanotrophic communities from the soda lakes of southern Transbaikal. Microbiology, 69(4), 460–465. doi:10.​1007/​BF02756771
Zurück zum Zitat Kim, J.-B., Cho, K.-S., Jeong, S.-K., Nam, S.-W., Do Jeong, H., & Kim, J. K. (2008). Identification and characterization of a pigment-producing denitrifying bacterium. Biotechnology and Bioprocess Engineering, 13(2), 217–223. doi:10.1007/s12257-007-0201-y Kim, J.-B., Cho, K.-S., Jeong, S.-K., Nam, S.-W., Do Jeong, H., & Kim, J. K. (2008). Identification and characterization of a pigment-producing denitrifying bacterium. Biotechnology and Bioprocess Engineering, 13(2), 217–223. doi:10.​1007/​s12257-007-0201-y
Zurück zum Zitat Kirti, K., Amita, S., Priti, S., Kumar, A. M., & Jyoti, S. (2014). Colorful world of microbes: Carotenoids and their applications. Advances in Biology, 2014(1), 1–13. doi:10.1155/2014/837891 Kirti, K., Amita, S., Priti, S., Kumar, A. M., & Jyoti, S. (2014). Colorful world of microbes: Carotenoids and their applications. Advances in Biology, 2014(1), 1–13. doi:10.​1155/​2014/​837891
Zurück zum Zitat Knief, C. (2015). Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Frontiers in Microbiology, 6, 1346. doi:10.3389/fmicb.2015.01346 Knief, C. (2015). Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Frontiers in Microbiology, 6, 1346. doi:10.​3389/​fmicb.​2015.​01346
Zurück zum Zitat Koller, M., Atlić, A., Dias, M., Reiterer, A., Braunegg, G., & Atli, A. (2010). Microbial PHA production from waste raw materials. In Plastics from bacteria: Natural functions and applications (pp. 85–119). Heidelberg: Springer. doi:10.1007/978-3-642-03287-5_5 Koller, M., Atlić, A., Dias, M., Reiterer, A., Braunegg, G., & Atli, A. (2010). Microbial PHA production from waste raw materials. In Plastics from bacteria: Natural functions and applications (pp. 85–119). Heidelberg: Springer. doi:10.​1007/​978-3-642-03287-5_​5
Zurück zum Zitat Kraakman, N. J. R., Rocha-Rios, J., & Van Loosdrecht, M. C. M. (2011). Review of mass transfer aspects for biological gas treatment. Applied Microbiology and Biotechnology, 91(4), 873. doi:10.1007/s00253-011-3365-5 Kraakman, N. J. R., Rocha-Rios, J., & Van Loosdrecht, M. C. M. (2011). Review of mass transfer aspects for biological gas treatment. Applied Microbiology and Biotechnology, 91(4), 873. doi:10.​1007/​s00253-011-3365-5
Zurück zum Zitat Lang, Y., Bai, L., Ren, Y., Zhang, L., & Nagata, S. (2011). Production of ectoine through a combined process that uses both growing and resting cells of Halomonas salina DSM 5928T. Extremophiles, 15(2), 303–310. doi:10.1007/s00792-011-0360-9 Lang, Y., Bai, L., Ren, Y., Zhang, L., & Nagata, S. (2011). Production of ectoine through a combined process that uses both growing and resting cells of Halomonas salina DSM 5928T. Extremophiles, 15(2), 303–310. doi:10.​1007/​s00792-011-0360-9
Zurück zum Zitat Lebrero, R., Hernández, L., Pérez, R., Estrada, J. M., & Muñoz, R. (2015). Two-liquid phase partitioning biotrickling filters for methane abatement: Exploring the potential of hydrophobic methanotrophs. Journal of Environmental Management, 151, 124–131. doi:10.1016/j.jenvman.2014.12.016 Lebrero, R., Hernández, L., Pérez, R., Estrada, J. M., & Muñoz, R. (2015). Two-liquid phase partitioning biotrickling filters for methane abatement: Exploring the potential of hydrophobic methanotrophs. Journal of Environmental Management, 151, 124–131. doi:10.​1016/​j.​jenvman.​2014.​12.​016
Zurück zum Zitat Lebrero, R., Lopez, J. C., Lehtinen, I., Perez, R., Quijano, G., & Muñoz, R. (2016). Exploring the potential of fungi for methane abatement: Performance evaluation of a fungal-bacterial biofilter. Chemosphere, 144, 97–106. doi:10.1016/j.chemosphere.2015.08.017 Lebrero, R., Lopez, J. C., Lehtinen, I., Perez, R., Quijano, G., & Muñoz, R. (2016). Exploring the potential of fungi for methane abatement: Performance evaluation of a fungal-bacterial biofilter. Chemosphere, 144, 97–106. doi:10.​1016/​j.​chemosphere.​2015.​08.​017
Zurück zum Zitat López, J. C., Quijano, G., Pérez, R., & Muñoz, R. (2014). Assessing the influence of CH4 concentration during culture enrichment on the biodegradation kinetics and population structure. Journal of Environmental Management, 146, 116–123. doi:10.1016/j.jenvman.2014.06.026 López, J. C., Quijano, G., Pérez, R., & Muñoz, R. (2014). Assessing the influence of CH4 concentration during culture enrichment on the biodegradation kinetics and population structure. Journal of Environmental Management, 146, 116–123. doi:10.​1016/​j.​jenvman.​2014.​06.​026
Zurück zum Zitat López, J. C., Quijano, G., Souza, T. S. O., Estrada, J. M., Lebrero, R., & Muñoz, R. (2013). Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: State of the art and challenges. Applied Microbiology and Biotechnology, 97(6), 2277–2303. doi:10.1007/s00253-013-4734-z López, J. C., Quijano, G., Souza, T. S. O., Estrada, J. M., Lebrero, R., & Muñoz, R. (2013). Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: State of the art and challenges. Applied Microbiology and Biotechnology, 97(6), 2277–2303. doi:10.​1007/​s00253-013-4734-z
Zurück zum Zitat Malashenko, I. P., Pirog, T. P., Romanovskaia, V. A, Sokolov, I. G., & Gringerg, T. A. (2001). Search for methanotrophic producers of exopolysaccharides. Prikladnaia Biokhimiia I Mikrobiologiia, 37(6), 702–705. doi:10.1023/A:1012307202011 Malashenko, I. P., Pirog, T. P., Romanovskaia, V. A, Sokolov, I. G., & Gringerg, T. A. (2001). Search for methanotrophic producers of exopolysaccharides. Prikladnaia Biokhimiia I Mikrobiologiia, 37(6), 702–705. doi:10.​1023/​A:​1012307202011
Zurück zum Zitat Matsumoto, T., Yamamura, H., Hayakawa, J., Watanabe, Y., & Harayama, S. (2014). Influence of extracellular polysaccharides (EPS) produced by two different green unicellular algae on membrane filtration in an algae-based biofuel production process. Water Science and Technology, 69(9), 1919–1925. http://wst.iwaponline.com/content/69/9/1919.abstract Matsumoto, T., Yamamura, H., Hayakawa, J., Watanabe, Y., & Harayama, S. (2014). Influence of extracellular polysaccharides (EPS) produced by two different green unicellular algae on membrane filtration in an algae-based biofuel production process. Water Science and Technology, 69(9), 1919–1925. http://​wst.​iwaponline.​com/​content/​69/​9/​1919.​abstract
Zurück zum Zitat McDonald, I. R., Bodrossy, L., Chen, Y., & Murrell, J. C. (2008). Molecular ecology techniques for the study of aerobic methanotrophs. Applied and Environmental Microbiology, 74(5), 1305–1315. doi:10.1128/AEM.02233-07 McDonald, I. R., Bodrossy, L., Chen, Y., & Murrell, J. C. (2008). Molecular ecology techniques for the study of aerobic methanotrophs. Applied and Environmental Microbiology, 74(5), 1305–1315. doi:10.​1128/​AEM.​02233-07
Zurück zum Zitat Ménard, C., Ramirez, A. A., Nikiema, J., & Heitz, M. (2012). Effect of trace gases, toluene and chlorobenzene, on methane biofiltration: An experimental study. Chemical Engineering Journal, 204–205, 8–15. doi:10.1016/j.cej.2012.07.070 Ménard, C., Ramirez, A. A., Nikiema, J., & Heitz, M. (2012). Effect of trace gases, toluene and chlorobenzene, on methane biofiltration: An experimental study. Chemical Engineering Journal, 204205, 8–15. doi:10.​1016/​j.​cej.​2012.​07.​070
Zurück zum Zitat Modin, O., Fukushi, K., Nakajima, F., & Yamamoto, K. (2008). A membrane biofilm reactor achieves aerobic methane oxidation coupled to denitrification (AME-D) with high efficiency. Water Science and Technology, 58(1), 83–87. doi:10.2166/wst.2008.648 Modin, O., Fukushi, K., Nakajima, F., & Yamamoto, K. (2008). A membrane biofilm reactor achieves aerobic methane oxidation coupled to denitrification (AME-D) with high efficiency. Water Science and Technology, 58(1), 83–87. doi:10.​2166/​wst.​2008.​648
Zurück zum Zitat Morris, G., & Harding, S. (2009). Polysaccharides, microbial. In M. Schaechter (Ed.), Encyclopedia of microbiology (3rd ed., pp. 482–494). New York: Elsevier.CrossRef Morris, G., & Harding, S. (2009). Polysaccharides, microbial. In M. Schaechter (Ed.), Encyclopedia of microbiology (3rd ed., pp. 482–494). New York: Elsevier.CrossRef
Zurück zum Zitat Muñoz, R., Daugulis, A. J., Hernández, M., & Quijano, G. (2012). Recent advances in two-phase partitioning bioreactors for the treatment of volatile organic compounds. Biotechnology Advances, 30(6), 1707–1720. doi:10.1016/j.biotechadv.2012.08.009 Muñoz, R., Daugulis, A. J., Hernández, M., & Quijano, G. (2012). Recent advances in two-phase partitioning bioreactors for the treatment of volatile organic compounds. Biotechnology Advances, 30(6), 1707–1720. doi:10.​1016/​j.​biotechadv.​2012.​08.​009
Zurück zum Zitat Murrell, J. C., McDonald, I. R., & Gilbert, B. (2000). Regulation of expression of methane monooxygenases by copper ions. Trends in Microbiology, 8(5), 221–225. doi:10.1016/S0966-842X(00)01739-X Murrell, J. C., McDonald, I. R., & Gilbert, B. (2000). Regulation of expression of methane monooxygenases by copper ions. Trends in Microbiology, 8(5), 221–225. doi:10.​1016/​S0966-842X(00)01739-X
Zurück zum Zitat Myung, J., Flanagan, J. C. A., Waymouth, R. M., & Criddle, C. S. (2015a). Methane or methanol-oxidation dependent synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by obligate type II methanotrophs. Process Biochemistry, 51(5), 561–567. doi:10.1016/j.procbio.2016.02.005 Myung, J., Flanagan, J. C. A., Waymouth, R. M., & Criddle, C. S. (2015a). Methane or methanol-oxidation dependent synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by obligate type II methanotrophs. Process Biochemistry, 51(5), 561–567. doi:10.​1016/​j.​procbio.​2016.​02.​005
Zurück zum Zitat Myung, J., Galega, W. M., Van Nostrand, J. D., Yuan, T., Zhou, J., & Criddle, C. S. (2015b). Long-term cultivation of a stable Methylocystis-dominated methanotrophic enrichment enabling tailored production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Bioresource Technology, 198, 811–818. doi:10.1016/j.biortech.2015.09.094. Myung, J., Galega, W. M., Van Nostrand, J. D., Yuan, T., Zhou, J., & Criddle, C. S. (2015b). Long-term cultivation of a stable Methylocystis-dominated methanotrophic enrichment enabling tailored production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Bioresource Technology, 198, 811–818. doi:10.​1016/​j.​biortech.​2015.​09.​094.
Zurück zum Zitat Myung, J. (2016). Expanding the range of polyhydroxyalkanoates synthesized by methanotrophic bacteria through the utilization of omega-hydroxyalkanoate co-substrates. In Recovery of resources and energy using methane-utilizing bacteria: Synthesis and regeneration of biodegradable, tailorable bioplastics and production of nitrous oxide. Dissertation, Stanford University (California, US). Myung, J. (2016). Expanding the range of polyhydroxyalkanoates synthesized by methanotrophic bacteria through the utilization of omega-hydroxyalkanoate co-substrates. In Recovery of resources and energy using methane-utilizing bacteria: Synthesis and regeneration of biodegradable, tailorable bioplastics and production of nitrous oxide. Dissertation, Stanford University (California, US).
Zurück zum Zitat Myung, J., Kim, M., Pan, M., Criddle, C. S., & Tang, S. (2016). Low energy emulsion-based fermentation enabling accelerated methane mass transfer and growth of poly(3-hydroxybutyrate)-accumulating methanotrophs. Bioresource Technology, 207, 302–307. doi:10.1016/j.biortech.2016.02.029 Myung, J., Kim, M., Pan, M., Criddle, C. S., & Tang, S. (2016). Low energy emulsion-based fermentation enabling accelerated methane mass transfer and growth of poly(3-hydroxybutyrate)-accumulating methanotrophs. Bioresource Technology, 207, 302–307. doi:10.​1016/​j.​biortech.​2016.​02.​029
Zurück zum Zitat Nath, A., Dixit, M., Bandiya, A., Chavda, S., & Desai, A. J. (2008). Enhanced PHB production and scale up studies using cheese whey in fed batch culture of Methylobacterium sp. ZP24. Bioresource Technology, 99(13), 5749–5755. doi:10.1016/j.biortech.2007.10.017 Nath, A., Dixit, M., Bandiya, A., Chavda, S., & Desai, A. J. (2008). Enhanced PHB production and scale up studies using cheese whey in fed batch culture of Methylobacterium sp. ZP24. Bioresource Technology, 99(13), 5749–5755. doi:10.​1016/​j.​biortech.​2007.​10.​017
Zurück zum Zitat Nikiema, J., Brzezinski, R., & Heitz, M. (2007). Elimination of methane generated from landfills by biofiltration: a review. Reviews in Environmental Science and Biotechnology, 6(4), 261–284. doi:10.1007/s11157-006-9114-z Nikiema, J., Brzezinski, R., & Heitz, M. (2007). Elimination of methane generated from landfills by biofiltration: a review. Reviews in Environmental Science and Biotechnology, 6(4), 261–284. doi:10.​1007/​s11157-006-9114-z
Zurück zum Zitat Nikiema, J., & Heitz, M. (2009). The influence of the gas flow rate during methane biofiltration on an inorganic packing material. Canadian Journal of Chemical Engineering, 87(1), 136–142. doi:10.1002/cjce.20131 Nikiema, J., & Heitz, M. (2009). The influence of the gas flow rate during methane biofiltration on an inorganic packing material. Canadian Journal of Chemical Engineering, 87(1), 136–142. doi:10.​1002/​cjce.​20131
Zurück zum Zitat Nwodo, U. U., Green, E., & Okoh, A. I. (2012). Bacterial exopolysaccharides: Functionality and prospects. International Journal of Molecular Sciences, 13(11), 14002–14015. doi:10.3390/ijms131114002 Nwodo, U. U., Green, E., & Okoh, A. I. (2012). Bacterial exopolysaccharides: Functionality and prospects. International Journal of Molecular Sciences, 13(11), 14002–14015. doi:10.​3390/​ijms131114002
Zurück zum Zitat Park, S., Lee, C. H., Ryu, C. R., & Sung, K. (2009). Biofiltration for reducing methane emissions from modern sanitary landfills at the low methane generation stage. Water, Air, and Soil Pollution, 196(1–4), 19–27. doi:10.1007/s11270-008-9754-4 Park, S., Lee, C. H., Ryu, C. R., & Sung, K. (2009). Biofiltration for reducing methane emissions from modern sanitary landfills at the low methane generation stage. Water, Air, and Soil Pollution, 196(1–4), 19–27. doi:10.​1007/​s11270-008-9754-4
Zurück zum Zitat Pastor, J. M., Salvador, M., Argandoña, M., Bernal, V., Reina-Bueno, M., Csonka, L. N., et al. (2010). Ectoines in cell stress protection: Uses and biotechnological production. Biotechnology Advances, 28(6), 782–801. doi:10.1016/j.biotechadv.2010.06.005 Pastor, J. M., Salvador, M., Argandoña, M., Bernal, V., Reina-Bueno, M., Csonka, L. N., et al. (2010). Ectoines in cell stress protection: Uses and biotechnological production. Biotechnology Advances, 28(6), 782–801. doi:10.​1016/​j.​biotechadv.​2010.​06.​005
Zurück zum Zitat Pérez-Ramírez, J., Kapteijn, F., Schöffel, K., & Moulijn, J. A. (2003). Formation and control of N2O in nitric acid production: Where do we stand today? Applied Catalysis B: Environmental, 44(2), 117–151. doi:10.1016/S0926-3373(03)00026-2 Pérez-Ramírez, J., Kapteijn, F., Schöffel, K., & Moulijn, J. A. (2003). Formation and control of N2O in nitric acid production: Where do we stand today? Applied Catalysis B: Environmental, 44(2), 117–151. doi:10.​1016/​S0926-3373(03)00026-2
Zurück zum Zitat Pieja, A. J., Rostkowski, K. H., & Criddle, C. S. (2011a). Distribution and selection of poly-3-hydroxybutyrate production capacity in methanotrophic proteobacteria. Microbial Ecology, 62(3), 564–573. doi:10.1007/s00248-011-9873-0 Pieja, A. J., Rostkowski, K. H., & Criddle, C. S. (2011a). Distribution and selection of poly-3-hydroxybutyrate production capacity in methanotrophic proteobacteria. Microbial Ecology, 62(3), 564–573. doi:10.​1007/​s00248-011-9873-0
Zurück zum Zitat Pieja, A. J., Sundstrom, E. R., & Criddle, C. S. (2011b). Poly-3-hydroxybutyrate metabolism in the type II methanotroph methylocystis parvus OBBP. Applied and Environmental Microbiology, 77(17), 6012–6019. doi:10.1128/AEM.00509-11 Pieja, A. J., Sundstrom, E. R., & Criddle, C. S. (2011b). Poly-3-hydroxybutyrate metabolism in the type II methanotroph methylocystis parvus OBBP. Applied and Environmental Microbiology, 77(17), 6012–6019. doi:10.​1128/​AEM.​00509-11
Zurück zum Zitat Pieja, A. J., Sundstrom, E. R., & Criddle, C. S. (2012). Cyclic, alternating methane and nitrogen limitation increases PHB production in a methanotrophic community. Bioresource Technology, 107, 385–392. doi:10.1016/j.biortech.2011.12.044 Pieja, A. J., Sundstrom, E. R., & Criddle, C. S. (2012). Cyclic, alternating methane and nitrogen limitation increases PHB production in a methanotrophic community. Bioresource Technology, 107, 385–392. doi:10.​1016/​j.​biortech.​2011.​12.​044
Zurück zum Zitat Rahnama, F., Vasheghani-Farahania, E., Yazdian F, & Shojaosadati, S. A. (2012). PHB production by Methylocystis hirsuta from natural gas in a bubble column and a vertical loop bioreactor. Biochemical Engineering Journal, 65, 51–56. doi:10.1016/j.bej.2012.03.014 Rahnama, F., Vasheghani-Farahania, E., Yazdian F, & Shojaosadati, S. A. (2012). PHB production by Methylocystis hirsuta from natural gas in a bubble column and a vertical loop bioreactor. Biochemical Engineering Journal, 65, 51–56. doi:10.​1016/​j.​bej.​2012.​03.​014
Zurück zum Zitat Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science, 326, 123–125. doi:10.1126/science.1176985 Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science, 326, 123–125. doi:10.​1126/​science.​1176985
Zurück zum Zitat Reshetnikov, A. S., Mustakhimov, I. I., Khmelenina, V. N., & Trotsenko, Y. A. (2005). Cloning, purification, and characterization of diaminobutyrate acetyltransferase from the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. Biochemistry (Moscow), 70(8), 878–883. doi:10.1007/s10541-005-0197-x Reshetnikov, A. S., Mustakhimov, I. I., Khmelenina, V. N., & Trotsenko, Y. A. (2005). Cloning, purification, and characterization of diaminobutyrate acetyltransferase from the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. Biochemistry (Moscow), 70(8), 878–883. doi:10.​1007/​s10541-005-0197-x
Zurück zum Zitat Rocha-Rios, J., Bordel, S., Hernández, S., & Revah, S. (2009). Methane degradation in two-phase partition bioreactors. Chemical Engineering Journal, 152(1), 289–292. doi:10.1016/j.cej.2009.04.028 Rocha-Rios, J., Bordel, S., Hernández, S., & Revah, S. (2009). Methane degradation in two-phase partition bioreactors. Chemical Engineering Journal, 152(1), 289–292. doi:10.​1016/​j.​cej.​2009.​04.​028
Zurück zum Zitat Rocha-Rios, J., Kraakman, N. J. R., Kleerebezem, R., Revah, S., Kreutzer, M. T., & van Loosdrecht, M. C. M. (2013). A capillary bioreactor to increase methane transfer and oxidation through Taylor flow formation and transfer vector addition. Chemical Engineering Journal, 217, 91–98. doi:10.1016/j.cej.2012.11.065 Rocha-Rios, J., Kraakman, N. J. R., Kleerebezem, R., Revah, S., Kreutzer, M. T., & van Loosdrecht, M. C. M. (2013). A capillary bioreactor to increase methane transfer and oxidation through Taylor flow formation and transfer vector addition. Chemical Engineering Journal, 217, 91–98. doi:10.​1016/​j.​cej.​2012.​11.​065
Zurück zum Zitat Rocha-Rios, J., Quijano, G., Thalasso, F., Revah, S., & Muñoz, R. (2011). Methane biodegradation in a two-phase partition internal loop airlift reactor with gas recirculation. Journal of Chemical Technology and Biotechnology, 86(3), 353–360. doi:10.1002/jctb.2523 Rocha-Rios, J., Quijano, G., Thalasso, F., Revah, S., & Muñoz, R. (2011). Methane biodegradation in a two-phase partition internal loop airlift reactor with gas recirculation. Journal of Chemical Technology and Biotechnology, 86(3), 353–360. doi:10.​1002/​jctb.​2523
Zurück zum Zitat Rostkowski, K. H., Criddle, C. S., & Lepech, M. D. (2012). Cradle-to-gate life cycle assessment for a cradle-to-cradle cycle: Biogas-to-bioplastic (and back). Environmental Science and Technology, 46(18), 9822–9829. doi:10.1021/es204541w Rostkowski, K. H., Criddle, C. S., & Lepech, M. D. (2012). Cradle-to-gate life cycle assessment for a cradle-to-cradle cycle: Biogas-to-bioplastic (and back). Environmental Science and Technology, 46(18), 9822–9829. doi:10.​1021/​es204541w
Zurück zum Zitat Sarwat, F., Qader, S. A. U., Aman, A., & Ahmed, N. (2008). Production & characterization of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713. International Journal of Biological Sciences, 4(6), 379–386.CrossRef Sarwat, F., Qader, S. A. U., Aman, A., & Ahmed, N. (2008). Production & characterization of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713. International Journal of Biological Sciences, 4(6), 379–386.CrossRef
Zurück zum Zitat Sauer, T., & Galinski, E. A. (1998). Bacterial milking: A novel bioprocess for production of compatible solutes. Biotechnolnogy and Bioengineering, 57(3), 306–313.CrossRef Sauer, T., & Galinski, E. A. (1998). Bacterial milking: A novel bioprocess for production of compatible solutes. Biotechnolnogy and Bioengineering, 57(3), 306–313.CrossRef
Zurück zum Zitat Scheutz, C., Kjeldsen, P., Bogner, J. E., De Visscher, A., Gebert, J., Hilger, H. A., et al. (2009). Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Management & Research, 27(5), 409–455. doi:10.1177/0734242X09339325 Scheutz, C., Kjeldsen, P., Bogner, J. E., De Visscher, A., Gebert, J., Hilger, H. A., et al. (2009). Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Management & Research, 27(5), 409–455. doi:10.​1177/​0734242X09339325​
Zurück zum Zitat Semrau, J. D. (2011). Bioremediation via methanotrophy: Overview of recent findings and suggestions for future research. Frontiers in Microbiology, 2(10), 1–7. doi:10.3389/fmicb.2011.00209 Semrau, J. D. (2011). Bioremediation via methanotrophy: Overview of recent findings and suggestions for future research. Frontiers in Microbiology, 2(10), 1–7. doi:10.​3389/​fmicb.​2011.​00209
Zurück zum Zitat Shen, L., Haufe, J., & Patel, M. K. (2009). Product overview and market projection of emerging bio-based plastics. Group Science, Technology and Society, 6, 41. doi:10.1002/9780470697474.ch1 Shen, L., Haufe, J., & Patel, M. K. (2009). Product overview and market projection of emerging bio-based plastics. Group Science, Technology and Society, 6, 41. doi:10.​1002/​9780470697474.​ch1
Zurück zum Zitat Strong, P. J., Kalyuzhnaya, M., Silverman, J., & Clarke, W. P. (2016). A methanotroph-based biorefinery: Potential scenarios for generating multiple products from a single fermentation. Bioresource Technology, 215, 314–323. doi:10.1016/j.biortech.2016.04.099 Strong, P. J., Kalyuzhnaya, M., Silverman, J., & Clarke, W. P. (2016). A methanotroph-based biorefinery: Potential scenarios for generating multiple products from a single fermentation. Bioresource Technology, 215, 314–323. doi:10.​1016/​j.​biortech.​2016.​04.​099
Zurück zum Zitat Strong, P. J., Xie, S., & Clarke, W. P. (2015). Methane as a resource: Can the methanotrophs add value? Environmental Science and Technology, 49(7), 4001–4018.CrossRef Strong, P. J., Xie, S., & Clarke, W. P. (2015). Methane as a resource: Can the methanotrophs add value? Environmental Science and Technology, 49(7), 4001–4018.CrossRef
Zurück zum Zitat Sun, F., Dong, W., Shao, M., Lv, X., Li, J., Peng, L., et al. (2013). Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor: Treatment performance and the effect of oxygen ventilation. Bioresource Technology, 145, 2–9. doi:10.1016/j.biortech.2013.03.115 Sun, F., Dong, W., Shao, M., Lv, X., Li, J., Peng, L., et al. (2013). Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor: Treatment performance and the effect of oxygen ventilation. Bioresource Technology, 145, 2–9. doi:10.​1016/​j.​biortech.​2013.​03.​115
Zurück zum Zitat Sundstrom, E. R., & Criddle, C. S. (2015). Optimization of methanotrophic growth and production of poly(3-hydroxybutyrate) in a high-throughput microbioreactor system. Applied and Environmental Microbiology, 81(14), 4767–4773. doi:10.1128/aem.00025-15 Sundstrom, E. R., & Criddle, C. S. (2015). Optimization of methanotrophic growth and production of poly(3-hydroxybutyrate) in a high-throughput microbioreactor system. Applied and Environmental Microbiology, 81(14), 4767–4773. doi:10.​1128/​aem.​00025-15
Zurück zum Zitat Timmers, P. H., Suarez-Zuluaga, D. A., Van Rossem, M., Diender, M., Stams, A. J., & Plugge, C. M. (2016). Suppl.: Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater source. ISME Journal, 10, 1400–1412. doi:10.1017/CBO9781107415324.004 Timmers, P. H., Suarez-Zuluaga, D. A., Van Rossem, M., Diender, M., Stams, A. J., & Plugge, C. M. (2016). Suppl.: Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater source. ISME Journal, 10, 1400–1412. doi:10.​1017/​CBO9781107415324​.​004
Zurück zum Zitat Van Der Ha, D., Nachtergaele, L., Kerckhof, F. M., Rameiyanti, D., Bossier, P., Verstraete, W., & Boon, N. (2012). Conversion of biogas to bioproducts by algae and methane oxidizing bacteria. Environmental Science and Technology, 46(24), 13425–13431. doi:10.1021/es303929s Van Der Ha, D., Nachtergaele, L., Kerckhof, F. M., Rameiyanti, D., Bossier, P., Verstraete, W., & Boon, N. (2012). Conversion of biogas to bioproducts by algae and methane oxidizing bacteria. Environmental Science and Technology, 46(24), 13425–13431. doi:10.​1021/​es303929s
Zurück zum Zitat Wei, X. M., Su, Y., Zhang, H. T., Chen, M., & He, R. (2015). Responses of methanotrophic activity, community and EPS production to CH4 and O2 concentrations in waste biocover soils. Waste Management, 42, 118–127. doi:10.1016/j.wasman.2015.04.005 Wei, X. M., Su, Y., Zhang, H. T., Chen, M., & He, R. (2015). Responses of methanotrophic activity, community and EPS production to CH4 and O2 concentrations in waste biocover soils. Waste Management, 42, 118–127. doi:10.​1016/​j.​wasman.​2015.​04.​005
Zurück zum Zitat Wendlandt, K. D., Jechorek, M., Helm, J., & Stottmeister, U. (2001). Producing poly-3-hydroxybutyrate with a high molecular mass from methane. Journal of Biotechnology, 86(2), 127–133. doi:10.1016/S0168-1656(00)00408-9 Wendlandt, K. D., Jechorek, M., Helm, J., & Stottmeister, U. (2001). Producing poly-3-hydroxybutyrate with a high molecular mass from methane. Journal of Biotechnology, 86(2), 127–133. doi:10.​1016/​S0168-1656(00)00408-9
Zurück zum Zitat Whittenbury, R. D. H. (1981). The methylotrophic bacteria. In M. P. Tarr, H. Stolp, H. G. Trüper, A. Balows, & H. G. Schlegel (Eds.), The prokaryotes: A handbook on habitats, isolation, and identification of bacteria (pp. 894–902). Berlin: Springer.CrossRef Whittenbury, R. D. H. (1981). The methylotrophic bacteria. In M. P. Tarr, H. Stolp, H. G. Trüper, A. Balows, & H. G. Schlegel (Eds.), The prokaryotes: A handbook on habitats, isolation, and identification of bacteria (pp. 894–902). Berlin: Springer.CrossRef
Zurück zum Zitat Wilshusen, J. H., Hettiaratchi, J. P. A., De Visscher, A., & Saint-Fort, R. (2004a). Methane oxidation and formation of EPS in compost: Effect of oxygen concentration. Environmental Pollution, 129(2), 305–314. doi:10.1016/j.envpol.2003.10.015 Wilshusen, J. H., Hettiaratchi, J. P. A., De Visscher, A., & Saint-Fort, R. (2004a). Methane oxidation and formation of EPS in compost: Effect of oxygen concentration. Environmental Pollution, 129(2), 305–314. doi:10.​1016/​j.​envpol.​2003.​10.​015
Zurück zum Zitat Wilshusen, J. H., Hettiaratchi, J. P. A., & Stein, V. B. (2004b). Long-term behavior of passively aerated compost methanotrophic biofilter columns. Waste Management, 24(7), 643–653. doi:10.1016/j.wasman.2003.12.006 Wilshusen, J. H., Hettiaratchi, J. P. A., & Stein, V. B. (2004b). Long-term behavior of passively aerated compost methanotrophic biofilter columns. Waste Management, 24(7), 643–653. doi:10.​1016/​j.​wasman.​2003.​12.​006
Zurück zum Zitat Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L., & Siegrist, H. (2012). Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research, 46(4), 1027–1037. doi:10.1016/j.watres.2011.11.080 Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L., & Siegrist, H. (2012). Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research, 46(4), 1027–1037. doi:10.​1016/​j.​watres.​2011.​11.​080
Zurück zum Zitat Yoshida, H., Kotani, Y., Ochiai, K., & Araki, K. (1998). Production of ubiquinone-10 using bacteria. The Journal of General and Applied Microbiology, 44(1), 19–26. doi:10.2323/jgam.44.19 Yoshida, H., Kotani, Y., Ochiai, K., & Araki, K. (1998). Production of ubiquinone-10 using bacteria. The Journal of General and Applied Microbiology, 44(1), 19–26. doi:10.​2323/​jgam.​44.​19
Zurück zum Zitat Zhang, L. H., Lang, Y. J., & Nagata, S. (2009). Efficient production of ectoine using ectoine-excreting strain. Extremophiles, 13(4), 717–724. doi:10.1007/s00792-009-0262-2 Zhang, L. H., Lang, Y. J., & Nagata, S. (2009). Efficient production of ectoine using ectoine-excreting strain. Extremophiles, 13(4), 717–724. doi:10.​1007/​s00792-009-0262-2
Zurück zum Zitat Zhang, T., Zhou, J., Wang, X., & Zhang, Y. (2015). Coupled effects of methane monooxygenase and nitrogen source on growth and poly-β-hydroxybutyrate (PHB) production of Methylosinus trichosporium OB3b. Journal of Environmental Sciences (China), 52(2017), 49–57. doi:10.1016/j.jes.2016.03.001 Zhang, T., Zhou, J., Wang, X., & Zhang, Y. (2015). Coupled effects of methane monooxygenase and nitrogen source on growth and poly-β-hydroxybutyrate (PHB) production of Methylosinus trichosporium OB3b. Journal of Environmental Sciences (China), 52(2017), 49–57. doi:10.​1016/​j.​jes.​2016.​03.​001
Zurück zum Zitat Zhang, Y., Xin, J., Chen, L., Song, H., & Xia, C. (2008). Biosynthesis of poly-3-hydroxybutyrate with a high molecular weight by methanotroph from methane and methanol. Journal of Natural Gas Chemistry, 17(1), 103–109. doi:10.1016/S1003-9953(08)60034-1 Zhang, Y., Xin, J., Chen, L., Song, H., & Xia, C. (2008). Biosynthesis of poly-3-hydroxybutyrate with a high molecular weight by methanotroph from methane and methanol. Journal of Natural Gas Chemistry, 17(1), 103–109. doi:10.​1016/​S1003-9953(08)60034-1
Zurück zum Zitat Zumft, W. G. (1997). Cell biology and molecular basis of denitrification†. Microbiology and Molecular Biology Reviews: MMBR, 61(4), 533–616. Zumft, W. G. (1997). Cell biology and molecular basis of denitrification†. Microbiology and Molecular Biology Reviews: MMBR, 61(4), 533–616.
Metadaten
Titel
Technologies for the Bio-conversion of GHGs into High Added Value Products: Current State and Future Prospects
verfasst von
Sara Cantera
Osvaldo D. Frutos
Juan Carlos López
Raquel Lebrero
Raúl Muñoz Torre
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-54984-2_17