Skip to main content

25.11.2020

Temporal instability characteristics of Rayleigh–Taylor and Kelvin–Helmholtz mechanisms of an inviscid cylindrical interface

verfasst von: M. Vadivukkarasan

Erschienen in: Meccanica | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The stability characteristics of an inviscid, incompressible and immiscible cylindrical interface are examined using linear temporal theory. The cylindrical interface is subjected to two instability mechanisms, namely Rayleigh–Taylor (R–T) and Kelvin–Helmholtz (K–H) instabilities. The combined action of R–T and K–H in the presence of surface tension is investigated for a hollow jet in an unbounded liquid medium and reported. The problem includes the motion in an axial direction (K–H mechanism) and the radial direction (R–T mechanism) to destabilize the interface. The instability behavior is described by a few operating parameters, namely, Bond number (Bo), Weber number (We) and Atwood number (A). Here, Bond number is attributed to R–T instability whereas Weber number is attributed to K–H instability. The temporal analysis reveals that the Bond number plays a significant role in determining the dominant growth rate, most unstable axial wavenumber and cut-off axial wavenumber. Furthermore, it is also shown through dimensionless energy budget arguments, even a small amount of energy in the radial motion causes the most unstable wavenumber associated with primary atomization to increase significantly.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhou Ye (2017a) Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I Phys Rep 720:1–136MathSciNetMATH Zhou Ye (2017a) Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I Phys Rep 720:1–136MathSciNetMATH
2.
Zurück zum Zitat Zhou Ye (2017b) Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II Phys Rep 723:1–160MathSciNetMATH Zhou Ye (2017b) Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II Phys Rep 723:1–160MathSciNetMATH
3.
Zurück zum Zitat Zhou Ye, Clark Timothy T, Clark Daniel S, Gail Glendinning S, Aaron Skinner M, Huntington Channing M, Hurricane Omar A, Dimits Andris M, Remington Bruce A (2019) Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities. Phys Plasmas 26(8):080901CrossRef Zhou Ye, Clark Timothy T, Clark Daniel S, Gail Glendinning S, Aaron Skinner M, Huntington Channing M, Hurricane Omar A, Dimits Andris M, Remington Bruce A (2019) Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities. Phys Plasmas 26(8):080901CrossRef
5.
Zurück zum Zitat Vadivukkarasan M, Dhivyaraja K, Panchagnula MV (2020) Breakup morphology of expelled respiratory liquid: from the perspective of hydrodynamic instabilities. Phys Fluids 32(9):094101CrossRef Vadivukkarasan M, Dhivyaraja K, Panchagnula MV (2020) Breakup morphology of expelled respiratory liquid: from the perspective of hydrodynamic instabilities. Phys Fluids 32(9):094101CrossRef
7.
Zurück zum Zitat Plesset MS, Prosperetti A (1977) Bubble dynamics and cavitation. Ann Rev Fluid Mech 9(1):145–185CrossRef Plesset MS, Prosperetti A (1977) Bubble dynamics and cavitation. Ann Rev Fluid Mech 9(1):145–185CrossRef
8.
Zurück zum Zitat Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Dover Publications, MineolaMATH Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Dover Publications, MineolaMATH
9.
Zurück zum Zitat Santangelo PJ, Sojka PE (1995) A holographic investigation of the near-nozzle structure of an effervescent atomizer-produced spray. Atomiz Sprays 5:137–155CrossRef Santangelo PJ, Sojka PE (1995) A holographic investigation of the near-nozzle structure of an effervescent atomizer-produced spray. Atomiz Sprays 5:137–155CrossRef
10.
Zurück zum Zitat Chen F, Xu A, Zhang Y, Zeng Q (2020) Morphological and non-equilibrium analysis of coupled Rayleigh–Taylor–Kelvin–Helmholtz instability. Phys Fluids 32(10):104111CrossRef Chen F, Xu A, Zhang Y, Zeng Q (2020) Morphological and non-equilibrium analysis of coupled Rayleigh–Taylor–Kelvin–Helmholtz instability. Phys Fluids 32(10):104111CrossRef
11.
Zurück zum Zitat Hoshoudy GA, Awasthi MK (2020) Compressibility effects on the Kelvin–Helmholtz and Rayleigh–Taylor instabilities between two immiscible fluids flowing through a porous medium. Eur Phys J Plus 135(2):169CrossRef Hoshoudy GA, Awasthi MK (2020) Compressibility effects on the Kelvin–Helmholtz and Rayleigh–Taylor instabilities between two immiscible fluids flowing through a porous medium. Eur Phys J Plus 135(2):169CrossRef
12.
Zurück zum Zitat Wang LF, Xue C, Ye WH, Li YJ (2009) Destabilizing effect of density gradient on the Kelvin–Helmholtz instability. Phys Plasmas 16(11):112104CrossRef Wang LF, Xue C, Ye WH, Li YJ (2009) Destabilizing effect of density gradient on the Kelvin–Helmholtz instability. Phys Plasmas 16(11):112104CrossRef
13.
Zurück zum Zitat Wang LF, Ye WH, Li YJ (2010) Combined effect of the density and velocity gradients in the combination of Kelvin–Helmholtz and Rayleigh–Taylor instabilities. Phys Plasmas 17(4):042103CrossRef Wang LF, Ye WH, Li YJ (2010) Combined effect of the density and velocity gradients in the combination of Kelvin–Helmholtz and Rayleigh–Taylor instabilities. Phys Plasmas 17(4):042103CrossRef
14.
Zurück zum Zitat Ye WH, Wang LF, Xue C, Fan ZF, He XT (2011) Competitions between Rayleigh–Taylor instability and Kelvin–Helmholtz instability with continuous density and velocity profiles. Phys Plasmas 18:022704CrossRef Ye WH, Wang LF, Xue C, Fan ZF, He XT (2011) Competitions between Rayleigh–Taylor instability and Kelvin–Helmholtz instability with continuous density and velocity profiles. Phys Plasmas 18:022704CrossRef
15.
Zurück zum Zitat Krechetnikov R (2009) Rayleigh–Taylor and Richtmyer–Meshkov instabilities of flat and curved interfaces. J Fluid Mech 625:387–410MathSciNetCrossRef Krechetnikov R (2009) Rayleigh–Taylor and Richtmyer–Meshkov instabilities of flat and curved interfaces. J Fluid Mech 625:387–410MathSciNetCrossRef
16.
Zurück zum Zitat Krechetnikov R (2010) Stability of liquid sheet edges. Phys Fluids 22(9):092101CrossRef Krechetnikov R (2010) Stability of liquid sheet edges. Phys Fluids 22(9):092101CrossRef
17.
Zurück zum Zitat Awasthi MK, Agarwal S (2020) Instability of a radially moving cylindrical surface: a viscous potential flow approach. J Fluids Eng 142(9):094501CrossRef Awasthi MK, Agarwal S (2020) Instability of a radially moving cylindrical surface: a viscous potential flow approach. J Fluids Eng 142(9):094501CrossRef
18.
Zurück zum Zitat Chen XM, Schrock VE, Peterson PF (1997) Rayleigh–Taylor instability of cylindrical jets with radial motion. Nucl Eng Des 177:121–129CrossRef Chen XM, Schrock VE, Peterson PF (1997) Rayleigh–Taylor instability of cylindrical jets with radial motion. Nucl Eng Des 177:121–129CrossRef
19.
Zurück zum Zitat Zeng RH, Tao JJ, Sun YB (2020) Three-dimensional viscous Rayleigh–Taylor instability at the cylindrical interface. Phys Rev E 102:023112CrossRef Zeng RH, Tao JJ, Sun YB (2020) Three-dimensional viscous Rayleigh–Taylor instability at the cylindrical interface. Phys Rev E 102:023112CrossRef
20.
Zurück zum Zitat Vadivukkarasan M (2020) Transition from absolute to convective instability in a compound jet. Eur J Mech B/Fluids 84:186–192MathSciNetCrossRef Vadivukkarasan M (2020) Transition from absolute to convective instability in a compound jet. Eur J Mech B/Fluids 84:186–192MathSciNetCrossRef
21.
Zurück zum Zitat Yang HQ (1992) Asymmetric instability of a liquid jet. Phys Fluids 4:681–689CrossRef Yang HQ (1992) Asymmetric instability of a liquid jet. Phys Fluids 4:681–689CrossRef
22.
Zurück zum Zitat Vadivukkarasan M, Panchagnula MV (2016) Helical modes in combined Rayleigh–Taylor and Kelvin–Helmholtz instability of a cylindrical interface. Int J Spray Comb Dyn 8:219–234CrossRef Vadivukkarasan M, Panchagnula MV (2016) Helical modes in combined Rayleigh–Taylor and Kelvin–Helmholtz instability of a cylindrical interface. Int J Spray Comb Dyn 8:219–234CrossRef
23.
Zurück zum Zitat Vadivukkarasan M, Panchagnula MV (2020) Destabilization characteristics of three dimensional Rayleigh–Taylor mechanism on a cylindrical interface. Meccanica 55(1):69–86MathSciNetCrossRef Vadivukkarasan M, Panchagnula MV (2020) Destabilization characteristics of three dimensional Rayleigh–Taylor mechanism on a cylindrical interface. Meccanica 55(1):69–86MathSciNetCrossRef
25.
26.
Zurück zum Zitat Vadivukkarasan M, Panchagnula MV (2017) Combined Rayleigh–Taylor and Kelvin–Helmholtz instabilities on an annular liquid sheet. J Fluid Mech 812:152–177MathSciNetCrossRef Vadivukkarasan M, Panchagnula MV (2017) Combined Rayleigh–Taylor and Kelvin–Helmholtz instabilities on an annular liquid sheet. J Fluid Mech 812:152–177MathSciNetCrossRef
27.
Zurück zum Zitat Lasheras JC, Villermaux E, Hopfinger EJ (1998) Break-up and atomization of a round water jet by a high-speed annular air jet. J Fluid Mech 357:351–379CrossRef Lasheras JC, Villermaux E, Hopfinger EJ (1998) Break-up and atomization of a round water jet by a high-speed annular air jet. J Fluid Mech 357:351–379CrossRef
28.
Zurück zum Zitat Marmottant P, Villermaux E (2004) On spray formation. J Fluid Mech 498:73–111CrossRef Marmottant P, Villermaux E (2004) On spray formation. J Fluid Mech 498:73–111CrossRef
30.
Metadaten
Titel
Temporal instability characteristics of Rayleigh–Taylor and Kelvin–Helmholtz mechanisms of an inviscid cylindrical interface
verfasst von
M. Vadivukkarasan
Publikationsdatum
25.11.2020
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 1/2021
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-020-01275-2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.