Skip to main content

2016 | OriginalPaper | Buchkapitel

5. The Characterization of Atomically Precise Nanoclusters Using X-Ray Absorption Spectroscopy

verfasst von : Lisa Bovenkamp-Langlois, Martha W. Schaefer

Erschienen in: X-ray and Neutron Techniques for Nanomaterials Characterization

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The XAS toolbox (EXAFS, XANES, theoretical calculations, in situ measurements) is used in a variety of applications to determine the structure and electronic properties of atomically precise nanoclusters (APNCs). The analysis using the EXAFS part of the XAS spectrum involves models that are based on atomic packing (e.g., fcc, icosahedra) or surface effects. Theoretical methods based on DFT can improve the understanding of disorder effects on the EXAFS measurements. In comparative experiments, the effect of solvation and of the ligands (density of ligands, different ligands) is discussed. It was found that the strength of the Au–thiol bonding can lead to relaxation effects that reduce the contraction of Au–Au bonds in the core. Changes in structure could be observed for solvation and catalytic reaction with the application of in situ measurements in specifically designed reactors. Even though EXAFS is a powerful method with a number of advantages, such as that no long-range order is necessary, all kinds of materials can be investigated, nondestructively. The analysis of EXAFS data is quite challenging, however, and effects such as structural disorder, if the sample is a mixture of components (not pure) or if the APNCs have several binding ligands, can distort the results. The use of l-DOS based on theoretical XANES calculations that can give information about electronic properties of APNCs is also challenging. In complement with XPS experiments, however, consistent answers can be found.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bazin D, Rehr JJ (2003) Limits and advantages of x-ray absorption near edge structure for nanometer scale metallic clusters. J Phys Chem B 107(45):12398–12402. doi:10.1021/Jp0223051CrossRef Bazin D, Rehr JJ (2003) Limits and advantages of x-ray absorption near edge structure for nanometer scale metallic clusters. J Phys Chem B 107(45):12398–12402. doi:10.1021/Jp0223051CrossRef
2.
Zurück zum Zitat Benfield RE, Filipponi A, Morgante N, Schmid G (1999) Structural characterisation of the giant organometallic platinum cluster Pt309(phen*)36O30 using EXAFS. J Organomet Chem 573(1–2):299–304. doi:10.1016/S0022-328x(98)00878-XCrossRef Benfield RE, Filipponi A, Morgante N, Schmid G (1999) Structural characterisation of the giant organometallic platinum cluster Pt309(phen*)36O30 using EXAFS. J Organomet Chem 573(1–2):299–304. doi:10.1016/S0022-328x(98)00878-XCrossRef
3.
Zurück zum Zitat Menard LD, Xu HP, Gao SP, Twesten RD, Harper AS, Song Y, Wang GL, Douglas AD, Yang JC, Frenkel AI, Murray RW, Nuzzo RG (2006) Metal core bonding motifs of monodisperse icosahedral Au13 and larger Au monolayer-protected clusters as revealed by X-ray absorption spectroscopy and transmission electron microscopy. J Phys Chem B 110(30):14564–14573. doi:10.1021/Jp060740fCrossRef Menard LD, Xu HP, Gao SP, Twesten RD, Harper AS, Song Y, Wang GL, Douglas AD, Yang JC, Frenkel AI, Murray RW, Nuzzo RG (2006) Metal core bonding motifs of monodisperse icosahedral Au13 and larger Au monolayer-protected clusters as revealed by X-ray absorption spectroscopy and transmission electron microscopy. J Phys Chem B 110(30):14564–14573. doi:10.1021/Jp060740fCrossRef
4.
Zurück zum Zitat Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R (2008) Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc 130(18):5883. doi:10.1021/ja801173rCrossRef Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R (2008) Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc 130(18):5883. doi:10.1021/ja801173rCrossRef
5.
Zurück zum Zitat MacDonald MA, Chevrier DM, Zhang P, Qian H, Jin R (2011) The structure and bonding of Au25(SR)18 nanoclusters from EXAFS: the interplay of metallic and molecular behavior. J Phys Chem C 115(31):15282–15287. doi:10.1021/jp204922m MacDonald MA, Chevrier DM, Zhang P, Qian H, Jin R (2011) The structure and bonding of Au25(SR)18 nanoclusters from EXAFS: the interplay of metallic and molecular behavior. J Phys Chem C 115(31):15282–15287. doi:10.1021/jp204922m
6.
Zurück zum Zitat Qian HF, Jin RC (2009) Controlling nanoparticles with atomic precision: the case of Au144(SCH2CH2Ph)60. Nano Lett 9(12):4083–4087. doi:10.1021/nl902300yCrossRef Qian HF, Jin RC (2009) Controlling nanoparticles with atomic precision: the case of Au144(SCH2CH2Ph)60. Nano Lett 9(12):4083–4087. doi:10.1021/nl902300yCrossRef
7.
Zurück zum Zitat Schaaff TG, Shafigullin MN, Khoury JT, Vezmar I, Whetten RL (2001) Properties of a ubiquitous 29 kDa Au:SR cluster compound. J Phys Chem B 105(37):8785–8796. doi:10.1021/jp011122wCrossRef Schaaff TG, Shafigullin MN, Khoury JT, Vezmar I, Whetten RL (2001) Properties of a ubiquitous 29 kDa Au:SR cluster compound. J Phys Chem B 105(37):8785–8796. doi:10.1021/jp011122wCrossRef
8.
Zurück zum Zitat Jin RC (2010) Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2(3):343–362. doi:10.1039/B9nr00160cCrossRef Jin RC (2010) Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2(3):343–362. doi:10.1039/B9nr00160cCrossRef
9.
Zurück zum Zitat Modrow H (2004) Tuning nanoparticle properties – the X-ray absorption spectroscopic point of view. Appl Spectrosc Rev 39(2):183–290. doi:10.1081/Asr-120030955CrossRef Modrow H (2004) Tuning nanoparticle properties – the X-ray absorption spectroscopic point of view. Appl Spectrosc Rev 39(2):183–290. doi:10.1081/Asr-120030955CrossRef
10.
Zurück zum Zitat Benfield RE, Grandjean D, Kroll M, Pugin R, Sawitowski T, Schmid G (2001) Structure and bonding of gold metal clusters, colloids, and nanowires studied by EXAFS, XANES, and WAXS. J Phys Chem B 105(10):1961–1970. doi:10.1021/Jp0028812CrossRef Benfield RE, Grandjean D, Kroll M, Pugin R, Sawitowski T, Schmid G (2001) Structure and bonding of gold metal clusters, colloids, and nanowires studied by EXAFS, XANES, and WAXS. J Phys Chem B 105(10):1961–1970. doi:10.1021/Jp0028812CrossRef
11.
Zurück zum Zitat Schmid G (1985) Developments in transition-metal cluster chemistry – the way to large clusters. Struct Bond 62:51–85. doi:10.1007/BFb0009185CrossRef Schmid G (1985) Developments in transition-metal cluster chemistry – the way to large clusters. Struct Bond 62:51–85. doi:10.1007/BFb0009185CrossRef
12.
Zurück zum Zitat Frenkel AI, Nemzer S, Pister I, Soussan L, Harris T, Sun Y, Rafailovich MH (2005) Size-controlled synthesis and characterization of thiol-stabilized gold nanoparticles. J Chem Phys 123(18):184701. doi:10.1063/1.2126666CrossRef Frenkel AI, Nemzer S, Pister I, Soussan L, Harris T, Sun Y, Rafailovich MH (2005) Size-controlled synthesis and characterization of thiol-stabilized gold nanoparticles. J Chem Phys 123(18):184701. doi:10.1063/1.2126666CrossRef
13.
Zurück zum Zitat Deheer WA (1993) The physics of simple metal-clusters – experimental aspects and simple-models. Rev Mod Phys 65(3):611–676. doi:10.1103/RevModPhys.65.611CrossRef Deheer WA (1993) The physics of simple metal-clusters – experimental aspects and simple-models. Rev Mod Phys 65(3):611–676. doi:10.1103/RevModPhys.65.611CrossRef
14.
Zurück zum Zitat Hakkinen H, Walter M, Gronbeck H (2006) Divide and protect: capping gold nanoclusters with molecular gold-thiolate rings. J Phys Chem B 110(20):9927–9931. doi:10.1021/Jp0619787CrossRef Hakkinen H, Walter M, Gronbeck H (2006) Divide and protect: capping gold nanoclusters with molecular gold-thiolate rings. J Phys Chem B 110(20):9927–9931. doi:10.1021/Jp0619787CrossRef
15.
Zurück zum Zitat Jiang D-e (2011) Staple fitness: a concept to understand and predict the structures of thiolated gold nanoclusters. Chem Eur J 17(44):12289–12293. doi:10.1002/chem.201102391CrossRef Jiang D-e (2011) Staple fitness: a concept to understand and predict the structures of thiolated gold nanoclusters. Chem Eur J 17(44):12289–12293. doi:10.1002/chem.201102391CrossRef
16.
Zurück zum Zitat Benfield RE (1992) Mean coordination numbers and the nonmetal metal transition in clusters. J Chem Soc Faraday Trans 88(8):1107–1110. doi:10.1039/Ft9928801107CrossRef Benfield RE (1992) Mean coordination numbers and the nonmetal metal transition in clusters. J Chem Soc Faraday Trans 88(8):1107–1110. doi:10.1039/Ft9928801107CrossRef
17.
Zurück zum Zitat Frenkel A (2007) Solving the 3D structure of metal nanoparticles. Zeitschrift Fur Kristallographie 222(11):605–611. doi:10.1524/zkri.2007.222.11.605 Frenkel A (2007) Solving the 3D structure of metal nanoparticles. Zeitschrift Fur Kristallographie 222(11):605–611. doi:10.1524/zkri.2007.222.11.605
18.
Zurück zum Zitat Heaven MW, Dass A, White PS, Holt KM, Murray RW (2008) Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J Am Chem Soc 130(12):3754–3755. doi:10.1021/ja800561bCrossRef Heaven MW, Dass A, White PS, Holt KM, Murray RW (2008) Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J Am Chem Soc 130(12):3754–3755. doi:10.1021/ja800561bCrossRef
19.
Zurück zum Zitat Qian H, Eckenhoff WT, Zhu Y, Pintauer T, Jin R (2010) Total structure determination of thiolate-protected Au38 nanoparticles. J Am Chem Soc 132(24):8280–8281. doi:10.1021/ja103592zCrossRef Qian H, Eckenhoff WT, Zhu Y, Pintauer T, Jin R (2010) Total structure determination of thiolate-protected Au38 nanoparticles. J Am Chem Soc 132(24):8280–8281. doi:10.1021/ja103592zCrossRef
20.
Zurück zum Zitat Lopez-Acevedo O, Akola J, Whetten RL, Gronbeck H, Hakkinen H (2009) Structure and bonding in the ubiquitous icosahedral metallic gold cluster Au144(SR)60. J Phys Chem C 113(13):5035–5038. doi:10.1021/jp8115098 Lopez-Acevedo O, Akola J, Whetten RL, Gronbeck H, Hakkinen H (2009) Structure and bonding in the ubiquitous icosahedral metallic gold cluster Au144(SR)60. J Phys Chem C 113(13):5035–5038. doi:10.1021/jp8115098
21.
Zurück zum Zitat Shivhare A, Chevrier DM, Purves RW, Scott RWJ (2013) Following the thermal activation of Au25(SR)18 clusters for catalysis by X-ray absorption spectroscopy. J Phys Chem C 117(39):20007–20016. doi:10.1021/jp4063687CrossRef Shivhare A, Chevrier DM, Purves RW, Scott RWJ (2013) Following the thermal activation of Au25(SR)18 clusters for catalysis by X-ray absorption spectroscopy. J Phys Chem C 117(39):20007–20016. doi:10.1021/jp4063687CrossRef
22.
Zurück zum Zitat Myers VS, Weir MG, Carino EV, Yancey DF, Pande S, Crooks RM (2011) Dendrimer-encapsulated nanoparticles: new synthetic and characterization methods and catalytic applications. Chem Sci 2(9):1632–1646. doi:10.1039/C1sc00256bCrossRef Myers VS, Weir MG, Carino EV, Yancey DF, Pande S, Crooks RM (2011) Dendrimer-encapsulated nanoparticles: new synthetic and characterization methods and catalytic applications. Chem Sci 2(9):1632–1646. doi:10.1039/C1sc00256bCrossRef
23.
Zurück zum Zitat Behrens P (1992) X-ray absorption-spectroscopy in chemistry 2. X-ray absorption near edge structure. TrAC-Trend Anal Chem 11(7):237–244. doi:10.1016/0165-9936(92)87056-PCrossRef Behrens P (1992) X-ray absorption-spectroscopy in chemistry 2. X-ray absorption near edge structure. TrAC-Trend Anal Chem 11(7):237–244. doi:10.1016/0165-9936(92)87056-PCrossRef
24.
Zurück zum Zitat Zhu Y, Qian HF, Drake BA, Jin RC (2010) Atomically precise Au25(SR)18 nanoparticles as catalysts for the selective hydrogenation of α, β-unsaturated ketones and aldehydes. Angew Chem Int Ed 49(7):1295–1298. doi:10.1002/anie.200906249 Zhu Y, Qian HF, Drake BA, Jin RC (2010) Atomically precise Au25(SR)18 nanoparticles as catalysts for the selective hydrogenation of α, β-unsaturated ketones and aldehydes. Angew Chem Int Ed 49(7):1295–1298. doi:10.1002/anie.200906249
25.
Zurück zum Zitat Christensen SL, MacDonald MA, Chatt A, Zhang P, Qian H, Jin R (2012) Dopant location, local structure, and electronic properties of Au24Pt(SR)18 nanoclusters. J Phys Chem C 116(51):26932–26937. doi:10.1021/jp310183xCrossRef Christensen SL, MacDonald MA, Chatt A, Zhang P, Qian H, Jin R (2012) Dopant location, local structure, and electronic properties of Au24Pt(SR)18 nanoclusters. J Phys Chem C 116(51):26932–26937. doi:10.1021/jp310183xCrossRef
26.
Zurück zum Zitat Negishi Y, Iwai T, Ide M (2010) Continuous modulation of electronic structure of stable thiolate-protected Au25 cluster by Ag doping. Chem Commun 46(26):4713–4715. doi:10.1039/C0CC01021ACrossRef Negishi Y, Iwai T, Ide M (2010) Continuous modulation of electronic structure of stable thiolate-protected Au25 cluster by Ag doping. Chem Commun 46(26):4713–4715. doi:10.1039/C0CC01021ACrossRef
27.
Zurück zum Zitat Negishi Y, Igarashi K, Munakata K, Ohgake W, Nobusada K (2012) Palladium doping of magic gold cluster Au38(SC2H4Ph)24: formation of Pd2Au36(SC2H4Ph)24 with higher stability than Au38(SC2H4Ph)24. Chem Commun 48(5):660–662. doi:10.1039/C1CC15765ECrossRef Negishi Y, Igarashi K, Munakata K, Ohgake W, Nobusada K (2012) Palladium doping of magic gold cluster Au38(SC2H4Ph)24: formation of Pd2Au36(SC2H4Ph)24 with higher stability than Au38(SC2H4Ph)24. Chem Commun 48(5):660–662. doi:10.1039/C1CC15765ECrossRef
28.
Zurück zum Zitat Negishi Y, Kurashige W, Kobayashi Y, Yamazoe S, Kojima N, Seto M, Tsukuda T (2013) Formation of a Pd@Au12 superatomic core in Au24Pd1(SC12H25)18 probed by 197Au Mössbauer and Pd K-edge EXAFS spectroscopy. J Phys Chem Lett 4(21):3579–3583. doi:10.1021/jz402030nCrossRef Negishi Y, Kurashige W, Kobayashi Y, Yamazoe S, Kojima N, Seto M, Tsukuda T (2013) Formation of a Pd@Au12 superatomic core in Au24Pd1(SC12H25)18 probed by 197Au Mössbauer and Pd K-edge EXAFS spectroscopy. J Phys Chem Lett 4(21):3579–3583. doi:10.1021/jz402030nCrossRef
29.
Zurück zum Zitat Negishi Y, Munakata K, Ohgake W, Nobusada K (2012) Effect of copper doping on electronic structure, geometric structure, and stability of thiolate-protected Au25 nanoclusters. J Phys Chem Lett 3(16):2209–2214. doi:10.1021/jz300892wCrossRef Negishi Y, Munakata K, Ohgake W, Nobusada K (2012) Effect of copper doping on electronic structure, geometric structure, and stability of thiolate-protected Au25 nanoclusters. J Phys Chem Lett 3(16):2209–2214. doi:10.1021/jz300892wCrossRef
30.
Zurück zum Zitat Kurashige W, Munakata K, Nobusada K, Negishi Y (2013) Synthesis of stable CunAu25-n nanoclusters (n = 1–9) using selenolate ligands. Chem Commun 49(48):5447–5449. doi:10.1039/C3CC41210ECrossRef Kurashige W, Munakata K, Nobusada K, Negishi Y (2013) Synthesis of stable CunAu25-n nanoclusters (n = 1–9) using selenolate ligands. Chem Commun 49(48):5447–5449. doi:10.1039/C3CC41210ECrossRef
31.
Zurück zum Zitat Yancey DF, Chill ST, Zhang L, Frenkel AI, Henkelman G, Crooks RM (2013) A theoretical and experimental examination of systematic ligand-induced disorder in Au dendrimer-encapsulated nanoparticles. Chem Sci 4(7):2912. doi:10.1039/c3sc50614bCrossRef Yancey DF, Chill ST, Zhang L, Frenkel AI, Henkelman G, Crooks RM (2013) A theoretical and experimental examination of systematic ligand-induced disorder in Au dendrimer-encapsulated nanoparticles. Chem Sci 4(7):2912. doi:10.1039/c3sc50614bCrossRef
32.
Zurück zum Zitat Bare SR, Ressler T (2009) Characterization of catalysts in reactive atmospheres by X-ray absorption spectroscopy. Adv Catal 52:339–465. doi:10.1016/S0360-0564(08)00006-0 Bare SR, Ressler T (2009) Characterization of catalysts in reactive atmospheres by X-ray absorption spectroscopy. Adv Catal 52:339–465. doi:10.1016/S0360-0564(08)00006-0
33.
Zurück zum Zitat Koningsberger DC, Prins R (1987) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. Wiley, New York, Chemical analysis, vol. 92 Koningsberger DC, Prins R (1987) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. Wiley, New York, Chemical analysis, vol. 92
34.
Zurück zum Zitat Frenkel AI, Cason MW, Elsen A, Jung U, Small MW, Nuzzo RG, Vila FD, Rehr JJ, Stach EA, Yang JC (2014) Critical review: effects of complex interactions on structure and dynamics of supported metal catalysts. J Vac Sci Technol A 32(2) 020801:1–17. doi:10.1116/1.4820493 Frenkel AI, Cason MW, Elsen A, Jung U, Small MW, Nuzzo RG, Vila FD, Rehr JJ, Stach EA, Yang JC (2014) Critical review: effects of complex interactions on structure and dynamics of supported metal catalysts. J Vac Sci Technol A 32(2) 020801:1–17. doi:10.1116/1.4820493
35.
Zurück zum Zitat Frenkel AI, Yevick A, Cooper C, Vasic R (2011) Modeling the structure and composition of nanoparticles by extended X-ray absorption fine-structure spectroscopy. Annu Rev Anal Chem 4:23–39. doi:10.1146/annurev-anchem-061010-113906CrossRef Frenkel AI, Yevick A, Cooper C, Vasic R (2011) Modeling the structure and composition of nanoparticles by extended X-ray absorption fine-structure spectroscopy. Annu Rev Anal Chem 4:23–39. doi:10.1146/annurev-anchem-061010-113906CrossRef
36.
Zurück zum Zitat Lapresta-Fernandez A, Salinas-Castillo A, de la Llana SA, Costa-Fernandez JM, Dominguez-Meister S, Cecchini R, Capitan-Vallvey LF, Moreno-Bondi MC, Marco MP, Sanchez-Lopez JC, Anderson IS (2014) A general perspective of the characterization and quantification of nanoparticles: imaging, spectroscopic, and separation techniques. Crit Rev Solid State Mater Sci 39(6):423–458. doi:10.1080/10408436.2014.899890CrossRef Lapresta-Fernandez A, Salinas-Castillo A, de la Llana SA, Costa-Fernandez JM, Dominguez-Meister S, Cecchini R, Capitan-Vallvey LF, Moreno-Bondi MC, Marco MP, Sanchez-Lopez JC, Anderson IS (2014) A general perspective of the characterization and quantification of nanoparticles: imaging, spectroscopic, and separation techniques. Crit Rev Solid State Mater Sci 39(6):423–458. doi:10.1080/10408436.2014.899890CrossRef
37.
Zurück zum Zitat Schmid G (2010) Nanoparticles: from theory to application, 2nd edn. Wiley-VCH, WeinheimCrossRef Schmid G (2010) Nanoparticles: from theory to application, 2nd edn. Wiley-VCH, WeinheimCrossRef
38.
Zurück zum Zitat Hakkinen H (2008) Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. Chem Soc Rev 37(9):1847–1859. doi:10.1039/B717686bCrossRef Hakkinen H (2008) Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. Chem Soc Rev 37(9):1847–1859. doi:10.1039/B717686bCrossRef
39.
Zurück zum Zitat Pei Y, Zeng XC (2012) Investigating the structural evolution of thiolate protected gold clusters from first-principles. Nanoscale 4(14):4054–4072. doi:10.1039/C2nr30685aCrossRef Pei Y, Zeng XC (2012) Investigating the structural evolution of thiolate protected gold clusters from first-principles. Nanoscale 4(14):4054–4072. doi:10.1039/C2nr30685aCrossRef
40.
Zurück zum Zitat Frenkel AI (2012) Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts. Chem Soc Rev 41(24):8163–8178. doi:10.1039/C2cs35174aCrossRef Frenkel AI (2012) Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts. Chem Soc Rev 41(24):8163–8178. doi:10.1039/C2cs35174aCrossRef
41.
Zurück zum Zitat Gao F, Goodman DW (2012) Pd-Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles. Chem Soc Rev 41(24):8009–8020. doi:10.1039/C2cs35160aCrossRef Gao F, Goodman DW (2012) Pd-Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles. Chem Soc Rev 41(24):8009–8020. doi:10.1039/C2cs35160aCrossRef
42.
Zurück zum Zitat Jin R, Nobusada K (2014) Doping and alloying in atomically precise gold nanoparticles. Nano Res 7(3):285–300. doi:10.1007/s12274-014-0403-5CrossRef Jin R, Nobusada K (2014) Doping and alloying in atomically precise gold nanoparticles. Nano Res 7(3):285–300. doi:10.1007/s12274-014-0403-5CrossRef
43.
Zurück zum Zitat Zhang P (2014) X-ray spectroscopy of gold–thiolate nanoclusters. J Phys Chem C 118(44):25291–25299 Zhang P (2014) X-ray spectroscopy of gold–thiolate nanoclusters. J Phys Chem C 118(44):25291–25299
44.
Zurück zum Zitat Bunker G (2010) Introduction to XAFS: a practical guide to X-ray absorption fine structure spectroscopy. Cambridge University Press, Cambridge/New YorkCrossRef Bunker G (2010) Introduction to XAFS: a practical guide to X-ray absorption fine structure spectroscopy. Cambridge University Press, Cambridge/New YorkCrossRef
45.
Zurück zum Zitat Calvin S (2013) XAFS for everyone. CRC press, Boca Raton Calvin S (2013) XAFS for everyone. CRC press, Boca Raton
46.
Zurück zum Zitat Kelly SD, Hesterberg D, Ravel B (2008) Analysis of soils and minerals using X-ray absorption spectroscopy. In: Ulery AL (ed) Mineralogical methods. Methods of soil analysis, vol 5. Soil Science Society of America, Madison, pp 387–464 Kelly SD, Hesterberg D, Ravel B (2008) Analysis of soils and minerals using X-ray absorption spectroscopy. In: Ulery AL (ed) Mineralogical methods. Methods of soil analysis, vol 5. Soil Science Society of America, Madison, pp 387–464
47.
Zurück zum Zitat Teo BK (1986) EXAFS: basic principles and data analysis. Inorganic chemistry concepts, vol 9. Springer, Berlin/New YorkCrossRef Teo BK (1986) EXAFS: basic principles and data analysis. Inorganic chemistry concepts, vol 9. Springer, Berlin/New YorkCrossRef
48.
Zurück zum Zitat Pantelouris A, Kuper G, Hormes J, Feldmann C, Jansen M (1995) Anionic gold in Cs3auo and Rb3auo established by X-ray-absorption spectroscopy. J Am Chem Soc 117(47):11749–11753. doi:10.1021/Ja00152a016CrossRef Pantelouris A, Kuper G, Hormes J, Feldmann C, Jansen M (1995) Anionic gold in Cs3auo and Rb3auo established by X-ray-absorption spectroscopy. J Am Chem Soc 117(47):11749–11753. doi:10.1021/Ja00152a016CrossRef
49.
Zurück zum Zitat Kuno M (2011) Introductory nanoscience – physical and chemical concepts, 1st edn. Garland Science, New York Kuno M (2011) Introductory nanoscience – physical and chemical concepts, 1st edn. Garland Science, New York
50.
Zurück zum Zitat Rehr JJ, Albers RC (2000) Theoretical approaches to x-ray absorption fine structure. Rev Mod Phys 72(3):621–654. doi:10.1103/RevModPhys.72.621CrossRef Rehr JJ, Albers RC (2000) Theoretical approaches to x-ray absorption fine structure. Rev Mod Phys 72(3):621–654. doi:10.1103/RevModPhys.72.621CrossRef
51.
Zurück zum Zitat Ravel B (2000) Introduction to EXAFS experiments and theory. Open access. doi:http://feff.phys.washington.edu/~ravel/ Ravel B (2000) Introduction to EXAFS experiments and theory. Open access. doi:http://​feff.​phys.​washington.​edu/​~ravel/​
52.
Zurück zum Zitat Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541. doi:10.1107/S0909049505012719CrossRef Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541. doi:10.1107/S0909049505012719CrossRef
53.
Zurück zum Zitat Ressler T (1998) WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows. J Synchrotron Radiat 5:118–122CrossRef Ressler T (1998) WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows. J Synchrotron Radiat 5:118–122CrossRef
54.
Zurück zum Zitat Westre TE, Di Cicco A, Filipponi A, Natoli CR, Hedman B, Solomon EI, Hodgson KO (1995) GNXAS, a multiple-scattering approach to EXAFS analysis: methodology and applications to iron complexes. J Am Chem Soc 117(5):1566–1583. doi:10.1021/ja00110a012CrossRef Westre TE, Di Cicco A, Filipponi A, Natoli CR, Hedman B, Solomon EI, Hodgson KO (1995) GNXAS, a multiple-scattering approach to EXAFS analysis: methodology and applications to iron complexes. J Am Chem Soc 117(5):1566–1583. doi:10.1021/ja00110a012CrossRef
55.
Zurück zum Zitat Frenkel AI, Wang Q, Sanchez SI, Small MW, Nuzzo RG (2013) Short range order in bimetallic nanoalloys: an extended X-ray absorption fine structure study. J Chem Phys 138(6) 064202:1–7. doi:10.1063/1.4790509 Frenkel AI, Wang Q, Sanchez SI, Small MW, Nuzzo RG (2013) Short range order in bimetallic nanoalloys: an extended X-ray absorption fine structure study. J Chem Phys 138(6) 064202:1–7. doi:10.1063/1.4790509
56.
Zurück zum Zitat Calvin S, Carpenter E, Ravel B, Harris V, Morrison S (2002) Multiedge refinement of extended x-ray-absorption fine structure of manganese zinc ferrite nanoparticles. Phys Rev 66(22) 224405:1–13. doi:10.1103/PhysRevB.66.224405 Calvin S, Carpenter E, Ravel B, Harris V, Morrison S (2002) Multiedge refinement of extended x-ray-absorption fine structure of manganese zinc ferrite nanoparticles. Phys Rev 66(22) 224405:1–13. doi:10.1103/PhysRevB.66.224405
57.
Zurück zum Zitat Calvin S, Miller MM, Goswami R, Cheng SF, Mulvaney SP, Whitman LJ, Harris VG (2003) Determination of crystallite size in a magnetic nanocomposite using extended x-ray absorption fine structure. J Appl Phys 94(1):778. doi:10.1063/1.1581344CrossRef Calvin S, Miller MM, Goswami R, Cheng SF, Mulvaney SP, Whitman LJ, Harris VG (2003) Determination of crystallite size in a magnetic nanocomposite using extended x-ray absorption fine structure. J Appl Phys 94(1):778. doi:10.1063/1.1581344CrossRef
58.
Zurück zum Zitat Frenkel AI (1999) Solving the structure of nanoparticles by multiple-scattering EXAFS analysis. J Synchrotron Radiat 6:293–295. doi:10.1107/S0909049598017786CrossRef Frenkel AI (1999) Solving the structure of nanoparticles by multiple-scattering EXAFS analysis. J Synchrotron Radiat 6:293–295. doi:10.1107/S0909049598017786CrossRef
59.
Zurück zum Zitat Frenkel AI, Hills CW, Nuzzo RG (2001) A view from the inside: complexity in the atomic scale ordering of supported metal nanoparticles. J Phys Chem B 105(51):12689–12703. doi:10.1021/Jp012769jCrossRef Frenkel AI, Hills CW, Nuzzo RG (2001) A view from the inside: complexity in the atomic scale ordering of supported metal nanoparticles. J Phys Chem B 105(51):12689–12703. doi:10.1021/Jp012769jCrossRef
60.
Zurück zum Zitat Nashner MS, Frenkel AI, Adler DL, Shapley JR, Nuzzo RG (1997) Structural characterization of carbon-supported platinum-ruthenium nanoparticles from the molecular cluster precursor PtRu5C(CO)16. J Am Chem Soc 119(33):7760–7771. doi:10.1021/Ja971039fCrossRef Nashner MS, Frenkel AI, Adler DL, Shapley JR, Nuzzo RG (1997) Structural characterization of carbon-supported platinum-ruthenium nanoparticles from the molecular cluster precursor PtRu5C(CO)16. J Am Chem Soc 119(33):7760–7771. doi:10.1021/Ja971039fCrossRef
61.
Zurück zum Zitat Frenkel A (2007) Solving the 3D structure of metal nanoparticles. Zeitschrift für Kristallographie 222(11/2007). doi:10.1524/zkri.2007.222.11.605 Frenkel A (2007) Solving the 3D structure of metal nanoparticles. Zeitschrift für Kristallographie 222(11/2007). doi:10.1524/zkri.2007.222.11.605
62.
Zurück zum Zitat Knecht MR, Weir MG, Frenkel AI, Crooks RM (2008) Structural rearrangement of bimetallic alloy PdAu nanoparticles within dendrimer templates to yield core/shell configurations. Chem Mater 20(3):1019–1028. doi:10.1021/Cm0717817CrossRef Knecht MR, Weir MG, Frenkel AI, Crooks RM (2008) Structural rearrangement of bimetallic alloy PdAu nanoparticles within dendrimer templates to yield core/shell configurations. Chem Mater 20(3):1019–1028. doi:10.1021/Cm0717817CrossRef
63.
Zurück zum Zitat Lemonnier M, Collet O, Depautex C, Esteva JM, Raoux D (1978) High-vacuum two crystal soft-X-ray monochromator. Nucl Instrum Methods 152(1):109–111. doi:10.1016/0029-554x(78)90246-XCrossRef Lemonnier M, Collet O, Depautex C, Esteva JM, Raoux D (1978) High-vacuum two crystal soft-X-ray monochromator. Nucl Instrum Methods 152(1):109–111. doi:10.1016/0029-554x(78)90246-XCrossRef
64.
Zurück zum Zitat Lee PA, Citrin PH, Eisenberger P, Kincaid BM (1981) Extended X-ray absorption fine-structure – its strengths and limitations as a structural tool. Rev Mod Phys 53(4):769–806. doi:10.1103/RevModPhys.53.769CrossRef Lee PA, Citrin PH, Eisenberger P, Kincaid BM (1981) Extended X-ray absorption fine-structure – its strengths and limitations as a structural tool. Rev Mod Phys 53(4):769–806. doi:10.1103/RevModPhys.53.769CrossRef
65.
Zurück zum Zitat Stern EA, Kim K (1981) Thickness effect on the extended-X-ray-absorption-fine-structure amplitude. Phys Rev B 23(8):3781–3787. doi:10.1103/PhysRevB.23.3781CrossRef Stern EA, Kim K (1981) Thickness effect on the extended-X-ray-absorption-fine-structure amplitude. Phys Rev B 23(8):3781–3787. doi:10.1103/PhysRevB.23.3781CrossRef
66.
Zurück zum Zitat Boscherini F, de Panfilis S, Weissmuller J (1998) Determination of local structure in nanophase palladium by x-ray-absorption spectroscopy. Phys Rev B 57(6):3365–3374. doi:10.1103/PhysRevB.57.3365CrossRef Boscherini F, de Panfilis S, Weissmuller J (1998) Determination of local structure in nanophase palladium by x-ray-absorption spectroscopy. Phys Rev B 57(6):3365–3374. doi:10.1103/PhysRevB.57.3365CrossRef
67.
Zurück zum Zitat Stern EA, Yacoby Y (1996) Structural disorder in perovskite ferroelectric crystals as revealed by XAFS. J Phys Chem Solids 57(10):1449–1455. doi:10.1016/0022-3697(96)00012-1CrossRef Stern EA, Yacoby Y (1996) Structural disorder in perovskite ferroelectric crystals as revealed by XAFS. J Phys Chem Solids 57(10):1449–1455. doi:10.1016/0022-3697(96)00012-1CrossRef
68.
Zurück zum Zitat Schmid G, Pfeil R, Boese R, Bandermann F, Meyer S, Calis GHM, Vandervelden WA (1981) Au55[P(C6H5)3]12cl6 – a gold cluster of an exceptional size. Chem Ber 114(11):3634–3642. doi:10.1002/cber.19811141116CrossRef Schmid G, Pfeil R, Boese R, Bandermann F, Meyer S, Calis GHM, Vandervelden WA (1981) Au55[P(C6H5)3]12cl6 – a gold cluster of an exceptional size. Chem Ber 114(11):3634–3642. doi:10.1002/cber.19811141116CrossRef
69.
Zurück zum Zitat Cluskey PD, Newport RJ, Benfield RE, Gurman SJ, Schmid G (1993) An EXAFS study of some gold and palladium cluster compounds. Z Phys D At Mol Clusters 26:8–11. doi:10.1007/BF01425601CrossRef Cluskey PD, Newport RJ, Benfield RE, Gurman SJ, Schmid G (1993) An EXAFS study of some gold and palladium cluster compounds. Z Phys D At Mol Clusters 26:8–11. doi:10.1007/BF01425601CrossRef
70.
Zurück zum Zitat Fairbanks MC, Benfield RE, Newport RJ, Schmid G (1990) An EXAFS study of the cluster molecule Au55(PPh3)12Cl6. Solid State Commun 73(6):431–436. doi:10.1016/0038-1098(90)90045-D Fairbanks MC, Benfield RE, Newport RJ, Schmid G (1990) An EXAFS study of the cluster molecule Au55(PPh3)12Cl6. Solid State Commun 73(6):431–436. doi:10.1016/0038-1098(90)90045-D
71.
Zurück zum Zitat Marcus M, Andrews M, Zegenhagen J, Bommannavar A, Montano P (1990) Structure and vibrations of chemically produced Au55 clusters. Phys Rev B 42(6):3312–3316. doi:10.1103/PhysRevB.42.3312CrossRef Marcus M, Andrews M, Zegenhagen J, Bommannavar A, Montano P (1990) Structure and vibrations of chemically produced Au55 clusters. Phys Rev B 42(6):3312–3316. doi:10.1103/PhysRevB.42.3312CrossRef
72.
Zurück zum Zitat Benfield RE, Filipponi A, Bowron DT, Newport RJ, Gurman SJ, Schmid G (1995) EXAFS investigations of high-nuclearity Pd clusters. Phys B Condens Matter 208(1–4):671–673. doi:10.1016/0921-4526(94)00783-RCrossRef Benfield RE, Filipponi A, Bowron DT, Newport RJ, Gurman SJ, Schmid G (1995) EXAFS investigations of high-nuclearity Pd clusters. Phys B Condens Matter 208(1–4):671–673. doi:10.1016/0921-4526(94)00783-RCrossRef
73.
Zurück zum Zitat Glasner D, Frenkel AI (2007) Geometrical characteristics of regular polyhedra: application to EXAFS studies of nanoclusters. AIP Conf Proc 882(1):746–748. doi:10.1063/1.2644651CrossRef Glasner D, Frenkel AI (2007) Geometrical characteristics of regular polyhedra: application to EXAFS studies of nanoclusters. AIP Conf Proc 882(1):746–748. doi:10.1063/1.2644651CrossRef
74.
Zurück zum Zitat Vargaftik MN, Zagorodnikov VP, Stolyarov IP, Moiseev II, Likholobov VA, Kochubey DI, Chuvilin AL, Zaikovsky VI, Zamaraev KI, Timofeeva GI (1985) A novel giant palladium cluster. J Chem Soc Chem Commun 14:937–939. doi:10.1039/C39850000937CrossRef Vargaftik MN, Zagorodnikov VP, Stolyarov IP, Moiseev II, Likholobov VA, Kochubey DI, Chuvilin AL, Zaikovsky VI, Zamaraev KI, Timofeeva GI (1985) A novel giant palladium cluster. J Chem Soc Chem Commun 14:937–939. doi:10.1039/C39850000937CrossRef
75.
Zurück zum Zitat Vargaftik MN, Moiseev II, Kochubey DI, Zamaraev KI (1991) Giant palladium clusters – synthesis and characterization. Faraday Discuss 92:13–29. doi:10.1039/Fd9919200013CrossRef Vargaftik MN, Moiseev II, Kochubey DI, Zamaraev KI (1991) Giant palladium clusters – synthesis and characterization. Faraday Discuss 92:13–29. doi:10.1039/Fd9919200013CrossRef
76.
Zurück zum Zitat Jentys A (1999) Estimation of mean size and shape of small metal particles by EXAFS. Phys Chem Chem Phys 1(17):4059–4063. doi:10.1039/A904654bCrossRef Jentys A (1999) Estimation of mean size and shape of small metal particles by EXAFS. Phys Chem Chem Phys 1(17):4059–4063. doi:10.1039/A904654bCrossRef
77.
Zurück zum Zitat Beale AM, Weckhuysen BM (2010) EXAFS as a tool to interrogate the size and shape of mono and bimetallic catalyst nanoparticles. Phys Chem Chem Phys 12(21):5562–5574. doi:10.1039/B925206aCrossRef Beale AM, Weckhuysen BM (2010) EXAFS as a tool to interrogate the size and shape of mono and bimetallic catalyst nanoparticles. Phys Chem Chem Phys 12(21):5562–5574. doi:10.1039/B925206aCrossRef
78.
Zurück zum Zitat Teo BK, Sloane NJA (1985) Magic numbers in polygonal and polyhedral clusters. Inorg Chem 24(26):4545–4558. doi:10.1021/Ic00220a025CrossRef Teo BK, Sloane NJA (1985) Magic numbers in polygonal and polyhedral clusters. Inorg Chem 24(26):4545–4558. doi:10.1021/Ic00220a025CrossRef
79.
Zurück zum Zitat Schmid G (2008) The relevance of shape and size of Au55 clusters. Chem Soc Rev 37(9):1909–1930. doi:10.1039/B713631PCrossRef Schmid G (2008) The relevance of shape and size of Au55 clusters. Chem Soc Rev 37(9):1909–1930. doi:10.1039/B713631PCrossRef
80.
Zurück zum Zitat Mays CW, Vermaak JS, Kuhlmann D (1968) On surface stress and surface tension. 2. Determination of surface stress of gold. Surf Sci 12(2):134. doi:10.1016/0039-6028(68)90119-2CrossRef Mays CW, Vermaak JS, Kuhlmann D (1968) On surface stress and surface tension. 2. Determination of surface stress of gold. Surf Sci 12(2):134. doi:10.1016/0039-6028(68)90119-2CrossRef
81.
Zurück zum Zitat Häberlen OD, Chung S-C, Stener M, Rösch N (1997) From clusters to bulk: a relativistic density functional investigation on a series of gold clusters Aun, n = 6,…,147. J Chem Phys 106(12):5189–5201. doi:10.1063/1.473518CrossRef Häberlen OD, Chung S-C, Stener M, Rösch N (1997) From clusters to bulk: a relativistic density functional investigation on a series of gold clusters Aun, n = 6,…,147. J Chem Phys 106(12):5189–5201. doi:10.1063/1.473518CrossRef
82.
Zurück zum Zitat Kruger S, Vent S, Rosch N (1997) Size dependence of bond length and binding energy in palladium and gold clusters. Ber Bunsen Phys Chem 101(11):1640–1643. doi:10.1002/bbpc.19971011115CrossRef Kruger S, Vent S, Rosch N (1997) Size dependence of bond length and binding energy in palladium and gold clusters. Ber Bunsen Phys Chem 101(11):1640–1643. doi:10.1002/bbpc.19971011115CrossRef
83.
Zurück zum Zitat Kruger S, Vent S, Nortemann F, Staufer M, Rosch N (2001) The average bond length in Pd clusters Pdn, n = 4-309: a density-functional case study on the scaling of cluster properties. J Chem Phys 115(5):2082–2087. doi:10.1063/1.1383985CrossRef Kruger S, Vent S, Nortemann F, Staufer M, Rosch N (2001) The average bond length in Pd clusters Pdn, n = 4-309: a density-functional case study on the scaling of cluster properties. J Chem Phys 115(5):2082–2087. doi:10.1063/1.1383985CrossRef
84.
Zurück zum Zitat Simms GA, Padmos JD, Zhang P (2009) Structural and electronic properties of protein/thiolate-protected gold nanocluster with “staple” motif: a XAS, L-DOS, and XPS study. J Chem Phys 131(21):214703. doi:10.1063/1.3268782CrossRef Simms GA, Padmos JD, Zhang P (2009) Structural and electronic properties of protein/thiolate-protected gold nanocluster with “staple” motif: a XAS, L-DOS, and XPS study. J Chem Phys 131(21):214703. doi:10.1063/1.3268782CrossRef
85.
Zurück zum Zitat MacDonald MA, Zhang P, Chen N, Qian HF, Jin RC (2011) Solution-phase structure and bonding of Au38(SR)24 nanoclusters from X-ray absorption spectroscopy. J Phys Chem C 115(1):65–69. doi:10.1021/Jp1102884CrossRef MacDonald MA, Zhang P, Chen N, Qian HF, Jin RC (2011) Solution-phase structure and bonding of Au38(SR)24 nanoclusters from X-ray absorption spectroscopy. J Phys Chem C 115(1):65–69. doi:10.1021/Jp1102884CrossRef
86.
Zurück zum Zitat Fritsche HG, Buttner T (1999) Modification of the lattice contraction of small metallic particles by chemical and/or geometrical stabilization. Z Phys Chem 209:93–101CrossRef Fritsche HG, Buttner T (1999) Modification of the lattice contraction of small metallic particles by chemical and/or geometrical stabilization. Z Phys Chem 209:93–101CrossRef
87.
Zurück zum Zitat Zanchet D, Tolentino H, Alves MCM, Alves OL, Ugarte D (2000) Inter-atomic distance contraction in thiol-passivated gold nanoparticles. Chem Phys Lett 323(1–2):167–172. doi:10.1016/S0009-2614(00)00424-3CrossRef Zanchet D, Tolentino H, Alves MCM, Alves OL, Ugarte D (2000) Inter-atomic distance contraction in thiol-passivated gold nanoparticles. Chem Phys Lett 323(1–2):167–172. doi:10.1016/S0009-2614(00)00424-3CrossRef
88.
Zurück zum Zitat Zhang P, Sham T (2003) X-ray studies of the structure and electronic behavior of alkanethiolate-capped gold nanoparticles: the interplay of size and surface effects. Phys Rev Lett 90(24) 245502:1–4. doi:10.1103/PhysRevLett.90.245502 Zhang P, Sham T (2003) X-ray studies of the structure and electronic behavior of alkanethiolate-capped gold nanoparticles: the interplay of size and surface effects. Phys Rev Lett 90(24) 245502:1–4. doi:10.1103/PhysRevLett.90.245502
89.
Zurück zum Zitat Frenkel AI, Menard LD, Northrup P, Rodriguez JA, Zypman F, Glasner D, Gao SP, Xu H, Yang JC, Nuzzo RG (2007) Geometry and charge state of mixed-ligand Au13 nanoclusters. AIP Conf Proc 882(1):749–751. doi:10.1063/1.2644652CrossRef Frenkel AI, Menard LD, Northrup P, Rodriguez JA, Zypman F, Glasner D, Gao SP, Xu H, Yang JC, Nuzzo RG (2007) Geometry and charge state of mixed-ligand Au13 nanoclusters. AIP Conf Proc 882(1):749–751. doi:10.1063/1.2644652CrossRef
90.
Zurück zum Zitat Weir MG, Myers VS, Frenkel AI, Crooks RM (2010) In situ X-ray absorption analysis of approximately 1.8 nm dendrimer-encapsulated Pt nanoparticles during electrochemical CO oxidation. Chemphyschem Eur J Chem Phys Phys Chem 11(13):2942–2950. doi:10.1002/cphc.201000452 Weir MG, Myers VS, Frenkel AI, Crooks RM (2010) In situ X-ray absorption analysis of approximately 1.8 nm dendrimer-encapsulated Pt nanoparticles during electrochemical CO oxidation. Chemphyschem Eur J Chem Phys Phys Chem 11(13):2942–2950. doi:10.1002/cphc.201000452
91.
Zurück zum Zitat Wu Z, Jiang DE, Mann AK, Mullins DR, Qiao ZA, Allard LF, Zeng C, Jin R, Overbury SH (2014) Thiolate ligands as a double-edged sword for CO oxidation on CeO2 supported Au25(SCH2CH2Ph)18 nanoclusters. J Am Chem Soc 136(16):6111–6122. doi:10.1021/ja5018706CrossRef Wu Z, Jiang DE, Mann AK, Mullins DR, Qiao ZA, Allard LF, Zeng C, Jin R, Overbury SH (2014) Thiolate ligands as a double-edged sword for CO oxidation on CeO2 supported Au25(SCH2CH2Ph)18 nanoclusters. J Am Chem Soc 136(16):6111–6122. doi:10.1021/ja5018706CrossRef
92.
Zurück zum Zitat Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318(5849):430–433. doi:10.1126/science.1148624CrossRef Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318(5849):430–433. doi:10.1126/science.1148624CrossRef
93.
Zurück zum Zitat MacDonald MA, Zhang P, Qian HF, Jin RC (2010) Site-specific and size-dependent bonding of compositionally precise gold-thiolate nanoparticles from X-ray spectroscopy. J Phys Chem Lett 1(12):1821–1825. doi:10.1021/Jz100547qCrossRef MacDonald MA, Zhang P, Qian HF, Jin RC (2010) Site-specific and size-dependent bonding of compositionally precise gold-thiolate nanoparticles from X-ray spectroscopy. J Phys Chem Lett 1(12):1821–1825. doi:10.1021/Jz100547qCrossRef
94.
Zurück zum Zitat Jiang DE, Tiago ML, Luo WD, Dai S (2008) The “Staple” motif: a key to stability of thiolate-protected gold nanoclusters. J Am Chem Soc 130(9):2777. doi:10.1021/Ja710991nCrossRef Jiang DE, Tiago ML, Luo WD, Dai S (2008) The “Staple” motif: a key to stability of thiolate-protected gold nanoclusters. J Am Chem Soc 130(9):2777. doi:10.1021/Ja710991nCrossRef
95.
Zurück zum Zitat Chevrier DM, MacDonald MA, Chatt A, Zhang P, Wu Z, Jin R (2012) Sensitivity of structural and electronic properties of gold–thiolate nanoclusters to the atomic composition: a comparative X-ray study of Au19(SR)13 and Au25(SR)18. J Phys Chem C 116(47):25137–25142. doi:10.1021/jp309283yCrossRef Chevrier DM, MacDonald MA, Chatt A, Zhang P, Wu Z, Jin R (2012) Sensitivity of structural and electronic properties of gold–thiolate nanoclusters to the atomic composition: a comparative X-ray study of Au19(SR)13 and Au25(SR)18. J Phys Chem C 116(47):25137–25142. doi:10.1021/jp309283yCrossRef
96.
Zurück zum Zitat Chevrier DM, Meng X, Tang Q, Jiang D-e, Zhu M, Chatt A, Zhang P (2014) Impact of the selenolate ligand on the bonding behavior of Au25 nanoclusters. J Phys Chem C 118(37):21730–21737. doi:10.1021/jp508419pCrossRef Chevrier DM, Meng X, Tang Q, Jiang D-e, Zhu M, Chatt A, Zhang P (2014) Impact of the selenolate ligand on the bonding behavior of Au25 nanoclusters. J Phys Chem C 118(37):21730–21737. doi:10.1021/jp508419pCrossRef
97.
Zurück zum Zitat Kurashige W, Yamazoe S, Kanehira K, Tsukuda T, Negishi Y (2013) Selenolate-protected Au38 nanoclusters: isolation and structural characterization. J Phys Chem Lett 4(18):3181–3185. doi:10.1021/jz401770yCrossRef Kurashige W, Yamazoe S, Kanehira K, Tsukuda T, Negishi Y (2013) Selenolate-protected Au38 nanoclusters: isolation and structural characterization. J Phys Chem Lett 4(18):3181–3185. doi:10.1021/jz401770yCrossRef
98.
Zurück zum Zitat Chevrier DM, Chatt A, Zhang P, Zeng C, Jin R (2013) Unique bonding properties of the Au36(SR)24 nanocluster with FCC-like core. J Phys Chem Lett 4(19):3186–3191. doi:10.1021/jz401818cCrossRef Chevrier DM, Chatt A, Zhang P, Zeng C, Jin R (2013) Unique bonding properties of the Au36(SR)24 nanocluster with FCC-like core. J Phys Chem Lett 4(19):3186–3191. doi:10.1021/jz401818cCrossRef
99.
Zurück zum Zitat Chevrier DM, Zeng C, Jin R, Chatt A, Zhang P (2014) Role of Au4 units on the electronic and bonding properties of Au28(SR)20 nanoclusters from X-ray spectroscopy. J Phys Chem C 119(2):1217–1223. doi:10.1021/jp509296w Chevrier DM, Zeng C, Jin R, Chatt A, Zhang P (2014) Role of Au4 units on the electronic and bonding properties of Au28(SR)20 nanoclusters from X-ray spectroscopy. J Phys Chem C 119(2):1217–1223. doi:10.1021/jp509296w
100.
Zurück zum Zitat Christensen SL, Cho P, Chatt A, Zhang P (2014) A site-specific comparative study of Au102 and Au25 nanoclusters using theoretical EXAFS and l-DOS. Can J Chem 93:1–5. doi:10.1139/cjc-2014-0271 Christensen SL, Cho P, Chatt A, Zhang P (2014) A site-specific comparative study of Au102 and Au25 nanoclusters using theoretical EXAFS and l-DOS. Can J Chem 93:1–5. doi:10.1139/cjc-2014-0271
101.
Zurück zum Zitat Yancey DF, Zhang L, Crooks RM, Henkelman G (2012) Au@Pt dendrimer encapsulated nanoparticles as model electrocatalysts for comparison of experiment and theory. Chem Sci 3(4):1033–1040. doi:10.1039/C2sc00971dCrossRef Yancey DF, Zhang L, Crooks RM, Henkelman G (2012) Au@Pt dendrimer encapsulated nanoparticles as model electrocatalysts for comparison of experiment and theory. Chem Sci 3(4):1033–1040. doi:10.1039/C2sc00971dCrossRef
102.
Zurück zum Zitat Yevick A, Frenkel AI (2010) Effects of surface disorder on EXAFS modeling of metallic clusters. Phys Rev B 81 115451:1–7. doi:10.1103/PhysRevB.81.115451 Yevick A, Frenkel AI (2010) Effects of surface disorder on EXAFS modeling of metallic clusters. Phys Rev B 81 115451:1–7. doi:10.1103/PhysRevB.81.115451
103.
Zurück zum Zitat Roscioni OM, Zonias N, Price SWT, Russell AE, Comaschi T, Skylaris C-K (2011) Computational prediction of L3 EXAFS spectra of gold nanoparticles from classical molecular dynamics simulations. Phys Rev B 83 115409:1–8. doi:10.1103/PhysRevB.83.115409 Roscioni OM, Zonias N, Price SWT, Russell AE, Comaschi T, Skylaris C-K (2011) Computational prediction of L3 EXAFS spectra of gold nanoparticles from classical molecular dynamics simulations. Phys Rev B 83 115409:1–8. doi:10.1103/PhysRevB.83.115409
104.
Zurück zum Zitat Myers VS, Frenkel AI, Crooks RM (2012) In situ structural characterization of platinum dendrimer-encapsulated oxygen reduction electrocatalysts. Langmuir 28(2):1596–1603. doi:10.1021/la203756zCrossRef Myers VS, Frenkel AI, Crooks RM (2012) In situ structural characterization of platinum dendrimer-encapsulated oxygen reduction electrocatalysts. Langmuir 28(2):1596–1603. doi:10.1021/la203756zCrossRef
105.
Zurück zum Zitat Price SWT, Zonias N, Skylaris CK, Hyde TI, Ravel B, Russell AE (2012) Fitting EXAFS data using molecular dynamics outputs and a histogram approach. Phys Rev B 85(7), 075439:1–14. doi:10.1103/Physrevb.85.075439 Price SWT, Zonias N, Skylaris CK, Hyde TI, Ravel B, Russell AE (2012) Fitting EXAFS data using molecular dynamics outputs and a histogram approach. Phys Rev B 85(7), 075439:1–14. doi:10.1103/Physrevb.85.075439
106.
Zurück zum Zitat Behafarid F, Matos J, Hong S, Zhang L, Rahman TS, Roldan Cuenya B (2014) Structural and electronic properties of micellar Au nanoparticles: size and ligand effects. ACS Nano 8(7):6671–6681. doi:10.1021/nn406568bCrossRef Behafarid F, Matos J, Hong S, Zhang L, Rahman TS, Roldan Cuenya B (2014) Structural and electronic properties of micellar Au nanoparticles: size and ligand effects. ACS Nano 8(7):6671–6681. doi:10.1021/nn406568bCrossRef
107.
Zurück zum Zitat Oyanagi H, Orimoto Y, Hayakawa K, Hatada K, Sun Z, Zhang L, Yamashita K, Nakamura H, Uehara M, Fukano A, Maeda H (2014) Nanoclusters synthesized by synchrotron radiolysis in concert with wet chemistry. Sci Rep 4. doi:10.1038/srep07199 Oyanagi H, Orimoto Y, Hayakawa K, Hatada K, Sun Z, Zhang L, Yamashita K, Nakamura H, Uehara M, Fukano A, Maeda H (2014) Nanoclusters synthesized by synchrotron radiolysis in concert with wet chemistry. Sci Rep 4. doi:10.1038/srep07199
108.
Zurück zum Zitat Ahmadi S, Zhang X, Gong Y, Sun CQ (2014) Effect of atomic under-coordination on the properties of Ag and Cu nanoclusters. Proc SPIE 9165, Phys Chem Interfaces Nanomaterials XIII, 91650. doi:10.1117/12.2059745 Ahmadi S, Zhang X, Gong Y, Sun CQ (2014) Effect of atomic under-coordination on the properties of Ag and Cu nanoclusters. Proc SPIE 9165, Phys Chem Interfaces Nanomaterials XIII, 91650. doi:10.1117/12.2059745
109.
Zurück zum Zitat Anderson RM, Zhang L, Loussaert JA, Frenkel AI, Henkelman G, Crooks RM (2013) An experimental and theoretical investigation of the inversion of Pd@Pt core@shell dendrimer-encapsulated nanoparticles. ACS Nano 7(10):9345–9353. doi:10.1021/Nn4040348CrossRef Anderson RM, Zhang L, Loussaert JA, Frenkel AI, Henkelman G, Crooks RM (2013) An experimental and theoretical investigation of the inversion of Pd@Pt core@shell dendrimer-encapsulated nanoparticles. ACS Nano 7(10):9345–9353. doi:10.1021/Nn4040348CrossRef
110.
Zurück zum Zitat Kurashige W, Yamazoe S, Yamaguchi M, Nishido K, Nobusada K, Tsukuda T, Negishi Y (2014) Au25 clusters containing unoxidized tellurolates in the ligand shell. J Phys Chem Lett 5(12):2072–2076. doi:10.1021/jz500901fCrossRef Kurashige W, Yamazoe S, Yamaguchi M, Nishido K, Nobusada K, Tsukuda T, Negishi Y (2014) Au25 clusters containing unoxidized tellurolates in the ligand shell. J Phys Chem Lett 5(12):2072–2076. doi:10.1021/jz500901fCrossRef
111.
Zurück zum Zitat Citrin P, Eisenberger P, Kincaid B (1976) Transferability of phase shifts in extended X-ray absorption fine structure. Phys Rev Lett 36(22):1346–1349. doi:10.1103/PhysRevLett.36.1346CrossRef Citrin P, Eisenberger P, Kincaid B (1976) Transferability of phase shifts in extended X-ray absorption fine structure. Phys Rev Lett 36(22):1346–1349. doi:10.1103/PhysRevLett.36.1346CrossRef
113.
Zurück zum Zitat IXS_Committee (2000b) Report of the International XAFS Society standards and criteria committee. http://ixs.iit.edu/subcommittee_reports/sc/ IXS_Committee (2000b) Report of the International XAFS Society standards and criteria committee. http://​ixs.​iit.​edu/​subcommittee_​reports/​sc/​
114.
Zurück zum Zitat Weir MG, Knecht MR, Frenkel AI, Crooks RM (2010) Structural analysis of PdAu dendrimer-encapsulated bimetallic nanoparticles. Langmuir 26(2):1137–1146. doi:10.1021/La902233hCrossRef Weir MG, Knecht MR, Frenkel AI, Crooks RM (2010) Structural analysis of PdAu dendrimer-encapsulated bimetallic nanoparticles. Langmuir 26(2):1137–1146. doi:10.1021/La902233hCrossRef
115.
Zurück zum Zitat Liu J, Krishna KS, Losovyj YB, Chattopadhyay S, Lozova N, Miller JT, Spivey JJ, Kumar CSSR (2013) Ligand-stabilized and atomically precise gold nanocluster catalysis: a case study for correlating fundamental electronic properties with catalysis. Chem-Eur J 19(31):10201–10208. doi:10.1002/chem.201300600CrossRef Liu J, Krishna KS, Losovyj YB, Chattopadhyay S, Lozova N, Miller JT, Spivey JJ, Kumar CSSR (2013) Ligand-stabilized and atomically precise gold nanocluster catalysis: a case study for correlating fundamental electronic properties with catalysis. Chem-Eur J 19(31):10201–10208. doi:10.1002/chem.201300600CrossRef
116.
Zurück zum Zitat Ohyama J, Teramura K, Shishido T, Hitomi Y, Kato K, Tanida H, Uruga T, Tanaka T (2011) In Situ Au L3 and L2 edge XANES spectral analysis during growth of thiol protected gold nanoparticles for the study on particle size dependent electronic properties. Chem Phys Lett 507(1–3):105–110. doi:10.1016/j.cplett.2011.03.020CrossRef Ohyama J, Teramura K, Shishido T, Hitomi Y, Kato K, Tanida H, Uruga T, Tanaka T (2011) In Situ Au L3 and L2 edge XANES spectral analysis during growth of thiol protected gold nanoparticles for the study on particle size dependent electronic properties. Chem Phys Lett 507(1–3):105–110. doi:10.1016/j.cplett.2011.03.020CrossRef
117.
Zurück zum Zitat Chauvistre R (1987) Absorptionsspektroskopie an Atomen und kleinen Molekülen im weichen Röntgengebiet. Diplom thesis, University of Bonn Chauvistre R (1987) Absorptionsspektroskopie an Atomen und kleinen Molekülen im weichen Röntgengebiet. Diplom thesis, University of Bonn
118.
Zurück zum Zitat Bovenkamp GL, Prange A, Schumacher W, Ham K, Smith AP, Hormes J (2013) Lead uptake in diverse plant families: a study applying X-ray absorption near edge spectroscopy. Environ Sci Technol 47(9):4375–4382. doi:10.1021/Es302408mCrossRef Bovenkamp GL, Prange A, Schumacher W, Ham K, Smith AP, Hormes J (2013) Lead uptake in diverse plant families: a study applying X-ray absorption near edge spectroscopy. Environ Sci Technol 47(9):4375–4382. doi:10.1021/Es302408mCrossRef
119.
Zurück zum Zitat Bovenkamp GL, Prange A, Roy A, Schumacher W, Hormes FJ (2009) X-ray absorption near edge structure spectra as a basis for the speciation of lead. J Phys Conf Ser 190:012190. doi:10.1088/1742-6596/190/1/012190CrossRef Bovenkamp GL, Prange A, Roy A, Schumacher W, Hormes FJ (2009) X-ray absorption near edge structure spectra as a basis for the speciation of lead. J Phys Conf Ser 190:012190. doi:10.1088/1742-6596/190/1/012190CrossRef
120.
Zurück zum Zitat Zhang P, Sham TK (2002) Tuning the electronic behavior of Au nanoparticles with capping molecules. Appl Phys Lett 81(4):736. doi:10.1063/1.1494120CrossRef Zhang P, Sham TK (2002) Tuning the electronic behavior of Au nanoparticles with capping molecules. Appl Phys Lett 81(4):736. doi:10.1063/1.1494120CrossRef
121.
Zurück zum Zitat Behrens P, Assmann S, Bilow U, Linke C, Jansen M (1999) Electronic structure of silver oxides investigated by AgL XANES spectroscopy. Z Anorg Allg Chem 625(1):111–116. doi:10.1002/(Sici)1521-3749(199901)625:1<111::Aid-Zaac111>3.0.Co;2-7CrossRef Behrens P, Assmann S, Bilow U, Linke C, Jansen M (1999) Electronic structure of silver oxides investigated by AgL XANES spectroscopy. Z Anorg Allg Chem 625(1):111–116. doi:10.1002/(Sici)1521-3749(199901)625:1<111::Aid-Zaac111>3.0.Co;2-7CrossRef
122.
Zurück zum Zitat Evans J, Mosselmans JFW (1991) L-edge studies on molybdenum. J Phys Chem 95(24):9673–9676. doi:10.1021/J100177a015CrossRef Evans J, Mosselmans JFW (1991) L-edge studies on molybdenum. J Phys Chem 95(24):9673–9676. doi:10.1021/J100177a015CrossRef
123.
Zurück zum Zitat Hlil EK, BaudoingSavois R, Moraweck B, Renouprez AJ (1996) X-ray absorption edges in platinum-based alloys 2. Influence of ordering and of the nature of the second metal. J Phys Chem 100(8):3102–3107. doi:10.1021/Jp951440tCrossRef Hlil EK, BaudoingSavois R, Moraweck B, Renouprez AJ (1996) X-ray absorption edges in platinum-based alloys 2. Influence of ordering and of the nature of the second metal. J Phys Chem 100(8):3102–3107. doi:10.1021/Jp951440tCrossRef
124.
Zurück zum Zitat Mansour AN, Cook JW, Sayers DE (1984) Quantitative technique for the determination of the number of unoccupied d-electron states in a platinum catalyst using the L2,3 X-ray absorption-edge spectra. J Phys Chem 88(11):2330–2334. doi:10.1021/J150655a029CrossRef Mansour AN, Cook JW, Sayers DE (1984) Quantitative technique for the determination of the number of unoccupied d-electron states in a platinum catalyst using the L2,3 X-ray absorption-edge spectra. J Phys Chem 88(11):2330–2334. doi:10.1021/J150655a029CrossRef
125.
Zurück zum Zitat Mattheiss LF, Dietz RE (1980) Relativistic tight-binding calculation of core-valence transitions in Pt and Au. Phys Rev B 22(4):1663–1676. doi:10.1103/PhysRevB.22.1663CrossRef Mattheiss LF, Dietz RE (1980) Relativistic tight-binding calculation of core-valence transitions in Pt and Au. Phys Rev B 22(4):1663–1676. doi:10.1103/PhysRevB.22.1663CrossRef
126.
Zurück zum Zitat Moraweck B, Renouprez AJ, Hlil EK, Baudoingsavois R (1993) Alloying effects on X-ray absorption edges in Pt1-xNix single-crystals. J Phys Chem 97(17):4288–4292. doi:10.1021/J100119a009CrossRef Moraweck B, Renouprez AJ, Hlil EK, Baudoingsavois R (1993) Alloying effects on X-ray absorption edges in Pt1-xNix single-crystals. J Phys Chem 97(17):4288–4292. doi:10.1021/J100119a009CrossRef
127.
Zurück zum Zitat Tyson CC, Bzowski A, Kristof P, Kuhn M, Sammynaiken R, Sham TK (1992) Charge redistribution in Au-Ag alloys from a local perspective. Phys Rev B 45(16):8924–8928. doi:10.1103/PhysRevB.45.8924CrossRef Tyson CC, Bzowski A, Kristof P, Kuhn M, Sammynaiken R, Sham TK (1992) Charge redistribution in Au-Ag alloys from a local perspective. Phys Rev B 45(16):8924–8928. doi:10.1103/PhysRevB.45.8924CrossRef
128.
Zurück zum Zitat Lytle FW, Wei PSP, Greegor RB, Via GH, Sinfelt JH (1979) Effect of chemical environment on magnitude of x-ray absorption resonance at LIII edges. Studies on metallic elements, compounds, and catalysts. J Chem Phys 70(11):4849. doi:10.1063/1.437376CrossRef Lytle FW, Wei PSP, Greegor RB, Via GH, Sinfelt JH (1979) Effect of chemical environment on magnitude of x-ray absorption resonance at LIII edges. Studies on metallic elements, compounds, and catalysts. J Chem Phys 70(11):4849. doi:10.1063/1.437376CrossRef
129.
Zurück zum Zitat Zabinsky SI, Rehr JJ, Ankudinov A, Albers RC, Eller MJ (1995) Multiple-scattering calculations of X-ray-absorption spectra. Phys Rev B 52(4):2995–3009. doi:10.1103/PhysRevB.52.2995CrossRef Zabinsky SI, Rehr JJ, Ankudinov A, Albers RC, Eller MJ (1995) Multiple-scattering calculations of X-ray-absorption spectra. Phys Rev B 52(4):2995–3009. doi:10.1103/PhysRevB.52.2995CrossRef
130.
Zurück zum Zitat Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys Rev B 58(12):7565–7576. doi:10.1103/PhysRevB.58.7565CrossRef Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys Rev B 58(12):7565–7576. doi:10.1103/PhysRevB.58.7565CrossRef
131.
Zurück zum Zitat Ravel B (2005) A practical introduction to multiple scattering theory. J Alloy Compd 401(1–2):118–126. doi:10.1016/j.jallcom.2005.04.021CrossRef Ravel B (2005) A practical introduction to multiple scattering theory. J Alloy Compd 401(1–2):118–126. doi:10.1016/j.jallcom.2005.04.021CrossRef
132.
Zurück zum Zitat Soldatov MA, Ascone I, Congiu-Castellano A, Messori L, Cinellu MA, Balerna A, Soldatov AV, Yalovega GE (2009) Potential antitumor gold drugs: DFT and XANES studies of local atomic and electronic structure. J Phys Conf Ser 190:012210. doi:10.1088/1742-6596/190/1/012210CrossRef Soldatov MA, Ascone I, Congiu-Castellano A, Messori L, Cinellu MA, Balerna A, Soldatov AV, Yalovega GE (2009) Potential antitumor gold drugs: DFT and XANES studies of local atomic and electronic structure. J Phys Conf Ser 190:012210. doi:10.1088/1742-6596/190/1/012210CrossRef
133.
Zurück zum Zitat Chen HM, Liu RS, Asakura K, Jang LY, Lee JF (2007) Controlling length of gold nanowires with large-scale: X-ray absorption spectroscopy approaches to the growth process. J Phys Chem C 111(50):18550–18557. doi:10.1021/Jp0770615CrossRef Chen HM, Liu RS, Asakura K, Jang LY, Lee JF (2007) Controlling length of gold nanowires with large-scale: X-ray absorption spectroscopy approaches to the growth process. J Phys Chem C 111(50):18550–18557. doi:10.1021/Jp0770615CrossRef
134.
Zurück zum Zitat Kas JJ, Sorini AP, Prange MP, Cambell LW, Soininen JA, Rehr JJ (2007) Many-pole model of inelastic losses in x-ray absorption spectra. Phys Rev B 76 195116:1–10. doi:10.1103/Physrevb.76.195116 Kas JJ, Sorini AP, Prange MP, Cambell LW, Soininen JA, Rehr JJ (2007) Many-pole model of inelastic losses in x-ray absorption spectra. Phys Rev B 76 195116:1–10. doi:10.1103/Physrevb.76.195116
135.
Zurück zum Zitat Rehr JJ (2006) Theory and calculations of X-ray spectra: XAS, XES, XRS, and NRIXS. Radiat Phys Chem 75(11):1547–1558. doi:10.1016/j.radphyschem.2005.11.014CrossRef Rehr JJ (2006) Theory and calculations of X-ray spectra: XAS, XES, XRS, and NRIXS. Radiat Phys Chem 75(11):1547–1558. doi:10.1016/j.radphyschem.2005.11.014CrossRef
136.
Zurück zum Zitat Mazalova V, Kravtsova A, Yalovega G, Soldatov A, Piseri P, Coreno M, Mazza T, Lenardi C, Bongiorno G, Milani P (2007) Free small nanoclusters of titanium: XANES study. Nucl Instrum Methods Phys Res, Sect A 575(1–2):165–167. doi:10.1016/j.nima.2007.01.058CrossRef Mazalova V, Kravtsova A, Yalovega G, Soldatov A, Piseri P, Coreno M, Mazza T, Lenardi C, Bongiorno G, Milani P (2007) Free small nanoclusters of titanium: XANES study. Nucl Instrum Methods Phys Res, Sect A 575(1–2):165–167. doi:10.1016/j.nima.2007.01.058CrossRef
137.
Zurück zum Zitat Mazalova VL, Soldatov AV, Adam S, Yakovlev A, Möller T, Johnston RL (2009) Small copper clusters in Ar shells: a study of local structure. J Phys Chem C 113(21):9086–9091. doi:10.1021/jp809401rCrossRef Mazalova VL, Soldatov AV, Adam S, Yakovlev A, Möller T, Johnston RL (2009) Small copper clusters in Ar shells: a study of local structure. J Phys Chem C 113(21):9086–9091. doi:10.1021/jp809401rCrossRef
138.
Zurück zum Zitat Mazalova VL, Soldatov AV (2008) Geometrical and electronic structure of small copper nanoclusters: XANES and DFT analysis. J Struct Chem 49(1):107–115. doi:10.1007/s10947-008-0208-zCrossRef Mazalova VL, Soldatov AV (2008) Geometrical and electronic structure of small copper nanoclusters: XANES and DFT analysis. J Struct Chem 49(1):107–115. doi:10.1007/s10947-008-0208-zCrossRef
139.
Zurück zum Zitat Kravtsova AN, Lomachenko KA, Soldatov AV, Meyer J, Niedner-Schatteburg G, Peredkov S, Eberhardt W, Neeb M (2014) Atomic and electronic structure of free niobium nanoclusters: simulation of the M4,5-XANES spectrum of Nb13+. J Electron Spectrosc Relat Phenom 195:189–194. doi:10.1016/j.elspec.2014.07.005CrossRef Kravtsova AN, Lomachenko KA, Soldatov AV, Meyer J, Niedner-Schatteburg G, Peredkov S, Eberhardt W, Neeb M (2014) Atomic and electronic structure of free niobium nanoclusters: simulation of the M4,5-XANES spectrum of Nb13+. J Electron Spectrosc Relat Phenom 195:189–194. doi:10.1016/j.elspec.2014.07.005CrossRef
140.
Zurück zum Zitat Coulthard I, Degen S, Zhu YJ, Sham TK (1998) Gold nanoclusters reductively deposited on porous silicon: morphology and electronic structures. Can J Chem 76(11):1707–1716. doi:10.1139/cjc-76-11-1707 Coulthard I, Degen S, Zhu YJ, Sham TK (1998) Gold nanoclusters reductively deposited on porous silicon: morphology and electronic structures. Can J Chem 76(11):1707–1716. doi:10.1139/cjc-76-11-1707
141.
Zurück zum Zitat Kuhn M, Sham T (1994) Charge redistribution and electronic behavior in a series of Au-Cu alloys. Phys Rev B 49(3):1647–1661. doi:10.1103/PhysRevB.49.1647CrossRef Kuhn M, Sham T (1994) Charge redistribution and electronic behavior in a series of Au-Cu alloys. Phys Rev B 49(3):1647–1661. doi:10.1103/PhysRevB.49.1647CrossRef
142.
Zurück zum Zitat Chaudhuri A, Odelius M, Jones RG, Lee TL, Detlefs B, Woodruff DP (2009) The structure of the Au(111)/methylthiolate interface: new insights from near-edge x-ray absorption spectroscopy and x-ray standing waves. J Chem Phys 130(12) 124708:1–11. doi:10.1063/1.3102095 Chaudhuri A, Odelius M, Jones RG, Lee TL, Detlefs B, Woodruff DP (2009) The structure of the Au(111)/methylthiolate interface: new insights from near-edge x-ray absorption spectroscopy and x-ray standing waves. J Chem Phys 130(12) 124708:1–11. doi:10.1063/1.3102095
143.
Zurück zum Zitat Park YS, Whalley AC, Kamenetska M, Steigerwald ML, Hybertsen MS, Nuckolls C, Venkataraman L (2007) Contact chemistry and single-molecule conductance: a comparison of phosphines, methyl sulfides, and amines. J Am Chem Soc 129(51):15768. doi:10.1021/Ja0773857CrossRef Park YS, Whalley AC, Kamenetska M, Steigerwald ML, Hybertsen MS, Nuckolls C, Venkataraman L (2007) Contact chemistry and single-molecule conductance: a comparison of phosphines, methyl sulfides, and amines. J Am Chem Soc 129(51):15768. doi:10.1021/Ja0773857CrossRef
144.
Zurück zum Zitat Ravel B (2014) Deeper understanding of EXAFS. Private communication Ravel B (2014) Deeper understanding of EXAFS. Private communication
145.
Zurück zum Zitat Krishna KS, Navin CV, Biswas S, Singh V, Ham K, Bovenkamp GL, Theegala CS, Miller JT, Spivey JJ, Kumar CSSR (2013) Millifluidics for time-resolved mapping of the growth of gold nanostructures. J Am Chem Soc 135(14):5450–5456. doi:10.1021/Ja400434cCrossRef Krishna KS, Navin CV, Biswas S, Singh V, Ham K, Bovenkamp GL, Theegala CS, Miller JT, Spivey JJ, Kumar CSSR (2013) Millifluidics for time-resolved mapping of the growth of gold nanostructures. J Am Chem Soc 135(14):5450–5456. doi:10.1021/Ja400434cCrossRef
146.
Zurück zum Zitat Yu Y, Luo Z, Chevrier DM, Leong DT, Zhang P, Jiang D-e, Xie J (2014) Identification of a highly luminescent Au22(SG)18 nanocluster. J Am Chem Soc 136(4):1246–1249. doi:10.1021/ja411643uCrossRef Yu Y, Luo Z, Chevrier DM, Leong DT, Zhang P, Jiang D-e, Xie J (2014) Identification of a highly luminescent Au22(SG)18 nanocluster. J Am Chem Soc 136(4):1246–1249. doi:10.1021/ja411643uCrossRef
147.
Zurück zum Zitat Nishigaki JI, Tsunoyama R, Tsunoyama H, Ichikuni N, Yamazoe S, Negishi Y, Ito M, Matsuo T, Tamao K, Tsukuda T (2012) A new binding motif of sterically demanding thiolates on a gold cluster. J Am Chem Soc 134(35):14295–14297. doi:10.1021/Ja305477aCrossRef Nishigaki JI, Tsunoyama R, Tsunoyama H, Ichikuni N, Yamazoe S, Negishi Y, Ito M, Matsuo T, Tamao K, Tsukuda T (2012) A new binding motif of sterically demanding thiolates on a gold cluster. J Am Chem Soc 134(35):14295–14297. doi:10.1021/Ja305477aCrossRef
148.
Zurück zum Zitat Pande S, Weir MG, Zaccheo BA, Crooks RM (2011) Synthesis, characterization, and electrocatalysis using Pt and Pd dendrimer-encapsulated nanoparticles prepared by galvanic exchange. New J Chem 35(10):2054–2060. doi:10.1039/C1nj20083fCrossRef Pande S, Weir MG, Zaccheo BA, Crooks RM (2011) Synthesis, characterization, and electrocatalysis using Pt and Pd dendrimer-encapsulated nanoparticles prepared by galvanic exchange. New J Chem 35(10):2054–2060. doi:10.1039/C1nj20083fCrossRef
Metadaten
Titel
The Characterization of Atomically Precise Nanoclusters Using X-Ray Absorption Spectroscopy
verfasst von
Lisa Bovenkamp-Langlois
Martha W. Schaefer
Copyright-Jahr
2016
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-48606-1_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.