Skip to main content
Erschienen in: Cognitive Neurodynamics 5/2021

07.05.2021 | Review Paper

The glutamatergic synapse: a complex machinery for information processing

verfasst von: Vito Di Maio

Erschienen in: Cognitive Neurodynamics | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Being the most abundant synaptic type, the glutamatergic synapse is responsible for the larger part of the brain’s information processing. Despite the conceptual simplicity of the basic mechanism of synaptic transmission, the glutamatergic synapse shows a large variation in the response to the presynaptic release of the neurotransmitter. This variability is observed not only among different synapses but also in the same single synapse. The synaptic response variability is due to several mechanisms of control of the information transferred among the neurons and suggests that the glutamatergic synapse is not a simple bridge for the transfer of information but plays an important role in its elaboration and management. The control of the synaptic information is operated at pre, post, and extrasynaptic sites in a sort of cooperation between the pre and postsynaptic neurons which also involves the activity of other neurons. The interaction between the different mechanisms of control is extremely complicated and its complete functionality is far from being fully understood. The present review, although not exhaustively, is intended to outline the most important of these mechanisms and their complexity, the understanding of which will be among the most intriguing challenges of future neuroscience.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Allam SL, Ghaderi VS, Bouteiller JM, Legendre A, Ambert N, Greget R, Bischoff S, Baudry M, Berger TW (2012) A computational model to investigate astrocytic glutamate uptake influence on synaptic transmission and neuronal spiking. Front Comput Neurosci. https://doi.org/10.3389/fncom.2012.00070 Allam SL, Ghaderi VS, Bouteiller JM, Legendre A, Ambert N, Greget R, Bischoff S, Baudry M, Berger TW (2012) A computational model to investigate astrocytic glutamate uptake influence on synaptic transmission and neuronal spiking. Front Comput Neurosci. https://​doi.​org/​10.​3389/​fncom.​2012.​00070
Zurück zum Zitat Bartol TMJ, Land BR, Salpeter EE, Salpeter MM (1991) Monte carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. Biophys J 59:1290–1307PubMedPubMedCentralCrossRef Bartol TMJ, Land BR, Salpeter EE, Salpeter MM (1991) Monte carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. Biophys J 59:1290–1307PubMedPubMedCentralCrossRef
Zurück zum Zitat Beaumont V, Llobet A, Lagnado L (2005) Expansion of calcium microdomains regulates fast exocytosis at a ribbon synapse. Proc Natl Acad Sci USA 102:10700–10705PubMedPubMedCentralCrossRef Beaumont V, Llobet A, Lagnado L (2005) Expansion of calcium microdomains regulates fast exocytosis at a ribbon synapse. Proc Natl Acad Sci USA 102:10700–10705PubMedPubMedCentralCrossRef
Zurück zum Zitat Bliss T, Collingridge G (2013) Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide. Mol Brain 6:1–14CrossRef Bliss T, Collingridge G (2013) Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide. Mol Brain 6:1–14CrossRef
Zurück zum Zitat Boucher J, Kroger H, Sı A (2010) Realistic modelling of receptor activation in hippocampal excitatory synapses: analysis of multivesicular release, release location, temperature and synaptic cross-talk. Brain Struct Funct 215:49–65 Boucher J, Kroger H, Sı A (2010) Realistic modelling of receptor activation in hippocampal excitatory synapses: analysis of multivesicular release, release location, temperature and synaptic cross-talk. Brain Struct Funct 215:49–65
Zurück zum Zitat Buhl EH, Halasy K, Somogyi P (1994) Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368:823–828PubMedCrossRef Buhl EH, Halasy K, Somogyi P (1994) Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368:823–828PubMedCrossRef
Zurück zum Zitat Burk K, Ramachandran B, Ahmed S, Hurtado-Zavala JI, Awasthi A, Benito E, Faram R, Ahmad H, Swaminathan A, McIlhinney J, Fischer A, Perestenko P, Dean C (2017) Regulation of Dendritic Spine Morphology in Hippocampal Neurons by Copine-6. Cereb Cortex 28:1087–1104. https://doi.org/10.1093/cercor/bhx009CrossRef Burk K, Ramachandran B, Ahmed S, Hurtado-Zavala JI, Awasthi A, Benito E, Faram R, Ahmad H, Swaminathan A, McIlhinney J, Fischer A, Perestenko P, Dean C (2017) Regulation of Dendritic Spine Morphology in Hippocampal Neurons by Copine-6. Cereb Cortex 28:1087–1104. https://​doi.​org/​10.​1093/​cercor/​bhx009CrossRef
Zurück zum Zitat Clements JD (1996) Transmitter time course in the synaptic cleft: its role in central synaptic function. Trends Neurosci 19:163–171PubMedCrossRef Clements JD (1996) Transmitter time course in the synaptic cleft: its role in central synaptic function. Trends Neurosci 19:163–171PubMedCrossRef
Zurück zum Zitat Di Maio V (2008) Regulation of information passing by synaptic transmission: a short review. Brain Res 1225:26–38PubMedCrossRef Di Maio V (2008) Regulation of information passing by synaptic transmission: a short review. Brain Res 1225:26–38PubMedCrossRef
Zurück zum Zitat Di Maio V, Santillo S (2020) Information processing and synaptic transmission. In: Vinjamuri DR (ed) Advances in neural signal processing. IntechOpen (in press) Di Maio V, Santillo S (2020) Information processing and synaptic transmission. In: Vinjamuri DR (ed) Advances in neural signal processing. IntechOpen (in press)
Zurück zum Zitat Di Maio V, Ventriglia F, Santillo S (2016a) AMPA/NMDA cooperativity and integration during a single synaptic event. J Comput Neurosci 41:127–142PubMedCrossRef Di Maio V, Ventriglia F, Santillo S (2016a) AMPA/NMDA cooperativity and integration during a single synaptic event. J Comput Neurosci 41:127–142PubMedCrossRef
Zurück zum Zitat Di Maio V, Ventriglia F, Santillo S (2016b) A model of cooperative effect of AMPA and NMDA receptors in glutamatergic synapses. Cogn Neurodyn 10:315–325PubMedPubMedCentralCrossRef Di Maio V, Ventriglia F, Santillo S (2016b) A model of cooperative effect of AMPA and NMDA receptors in glutamatergic synapses. Cogn Neurodyn 10:315–325PubMedPubMedCentralCrossRef
Zurück zum Zitat Dingledine R, Borges K, Bowie D, Traynelis S (1999) The gutamate receptor ion channels. Pharmacological Review 51:7–61 Dingledine R, Borges K, Bowie D, Traynelis S (1999) The gutamate receptor ion channels. Pharmacological Review 51:7–61
Zurück zum Zitat Forti L, Bossi M, Bergamaschi A, Villa A, Malgaroli A (1997) Loose path recording of single quanta at individual hippocampal synapses. Nature 388:874–878PubMedCrossRef Forti L, Bossi M, Bergamaschi A, Villa A, Malgaroli A (1997) Loose path recording of single quanta at individual hippocampal synapses. Nature 388:874–878PubMedCrossRef
Zurück zum Zitat Gillespie D (1996) The multivariate langevin and fokker-planck equations. Am J Phys 64:1246–1257CrossRef Gillespie D (1996) The multivariate langevin and fokker-planck equations. Am J Phys 64:1246–1257CrossRef
Zurück zum Zitat Gulyás AI, Megías M, Emri Z, Freund TF (1999) Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the ca1 area of the rat hippocampus. Journal Neuscience 19:10082–10097 Gulyás AI, Megías M, Emri Z, Freund TF (1999) Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the ca1 area of the rat hippocampus. Journal Neuscience 19:10082–10097
Zurück zum Zitat Haas KT, Compans B, Letellier M, Bartol TM, Grillo-Bosch D, Sejnowski TJ, Sainlos M, Choquet D, Thoumine O, Hosy E (2018) Pre-post synaptic alignment through neuroligin-1 tunes synaptic transmission efficiency. eLife 7:e31755. https://doi.org/10.7554/eLife.31755, Haas KT, Compans B, Letellier M, Bartol TM, Grillo-Bosch D, Sejnowski TJ, Sainlos M, Choquet D, Thoumine O, Hosy E (2018) Pre-post synaptic alignment through neuroligin-1 tunes synaptic transmission efficiency. eLife 7:e31755. https://​doi.​org/​10.​7554/​eLife.​31755,
Zurück zum Zitat Holderith N, Lorincz A, Katona G, Rózsa B, Kulik A, Watanabe M, Nusser Z (2012) Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Nat Neurosci 15:988–997. https://doi.org/10.1038/nn.3137, erratum. In: Nat Neurosci. 2016 Jan; 19(1):172 Holderith N, Lorincz A, Katona G, Rózsa B, Kulik A, Watanabe M, Nusser Z (2012) Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Nat Neurosci 15:988–997. https://​doi.​org/​10.​1038/​nn.​3137, erratum. In: Nat Neurosci. 2016 Jan; 19(1):172
Zurück zum Zitat Jahr C, Stevens C (1990) Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10:3178–3182PubMedPubMedCentralCrossRef Jahr C, Stevens C (1990) Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10:3178–3182PubMedPubMedCentralCrossRef
Zurück zum Zitat Jonas P, Major G, Sackmann B (1993) Quantal components of unitary epscs at mossy fiber synapse on ca3 pyramidal cell of rat hippocampus. J Physiol 472C:615–663CrossRef Jonas P, Major G, Sackmann B (1993) Quantal components of unitary epscs at mossy fiber synapse on ca3 pyramidal cell of rat hippocampus. J Physiol 472C:615–663CrossRef
Zurück zum Zitat Karunanithi S, Marin L, Wong K, Atwood HL (2002) Quantal size and variation determined by vesicle size in normal and mutant drosophila glutamatergic synapses. J Neurosci 22:10267–10276PubMedPubMedCentralCrossRef Karunanithi S, Marin L, Wong K, Atwood HL (2002) Quantal size and variation determined by vesicle size in normal and mutant drosophila glutamatergic synapses. J Neurosci 22:10267–10276PubMedPubMedCentralCrossRef
Zurück zum Zitat Jand Koester BH, Sakmann (1998) Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. Proc Natl Acad Sci USA 95:9596–9601. https://doi.org/10.1073/pnas.95.16.9596 Jand Koester BH, Sakmann (1998) Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. Proc Natl Acad Sci USA 95:9596–9601. https://​doi.​org/​10.​1073/​pnas.​95.​16.​9596
Zurück zum Zitat Lansky P (1999) Sato S (1999) The stochastic diffusion models of nerve membrane depolarization and interspike interval generation. Journal of the peripheral nervouse system Published 4:27–42 Lansky P (1999) Sato S (1999) The stochastic diffusion models of nerve membrane depolarization and interspike interval generation. Journal of the peripheral nervouse system Published 4:27–42
Zurück zum Zitat Larkman AU, Jack JJ (1995) Synaptic plasticity: hippocampal LTP. Curr Opin Neurobiol 5:324–334CrossRef Larkman AU, Jack JJ (1995) Synaptic plasticity: hippocampal LTP. Curr Opin Neurobiol 5:324–334CrossRef
Zurück zum Zitat Li F, Pincet F, Perez E, Eng WS, Melia TJ, Rothman JE, Tareste D (2007) Energetics and dynamics of snarepin folding across lipid bilayers. Nat Struct Mol Biol 14:890–896PubMedCrossRef Li F, Pincet F, Perez E, Eng WS, Melia TJ, Rothman JE, Tareste D (2007) Energetics and dynamics of snarepin folding across lipid bilayers. Nat Struct Mol Biol 14:890–896PubMedCrossRef
Zurück zum Zitat Liu G, Choi S, Tsien RW (1999) Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Neuron 22:395–409PubMedCrossRef Liu G, Choi S, Tsien RW (1999) Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Neuron 22:395–409PubMedCrossRef
Zurück zum Zitat Lu WY, Man HY, Ju W, Trimble WS, MacDonald JF, Wang YT (2001) Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29:243–254PubMedCrossRef Lu WY, Man HY, Ju W, Trimble WS, MacDonald JF, Wang YT (2001) Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29:243–254PubMedCrossRef
Zurück zum Zitat Magee JC, Cook EP (2000) Somatic epsp amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat Neurosci 3:895–03PubMedCrossRef Magee JC, Cook EP (2000) Somatic epsp amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat Neurosci 3:895–03PubMedCrossRef
Zurück zum Zitat Magee JC, Johnston D (1995) Characterization of single voltage-gated \(na+\) and \({\rm Ca}^{2+}\) channels in apical dendrites of rat cai pyramidal neurons. J Physiol 487:67–90PubMedPubMedCentralCrossRef Magee JC, Johnston D (1995) Characterization of single voltage-gated \(na+\) and \({\rm Ca}^{2+}\) channels in apical dendrites of rat cai pyramidal neurons. J Physiol 487:67–90PubMedPubMedCentralCrossRef
Zurück zum Zitat McAllister AK, Stevens CF (2000) Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. Proceedings of the National Acadademi of Science USA 97:6173–6178CrossRef McAllister AK, Stevens CF (2000) Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. Proceedings of the National Acadademi of Science USA 97:6173–6178CrossRef
Zurück zum Zitat Megías M, Emri Z, Freund TF, Gulyás AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal ca1 pyramidal cells. Neuroscience 102:527–540PubMedCrossRef Megías M, Emri Z, Freund TF, Gulyás AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal ca1 pyramidal cells. Neuroscience 102:527–540PubMedCrossRef
Zurück zum Zitat Merchán-Pérez FN: A, Rodríguez JR, González S, Robles V, Defelipe J, Larrañaga P, Bielza C et al (2014) Three-dimensional spatial distribution of synapses in the neocortex: a dual-beam electron microscopy study. Cereb Cortex 24:1579–1588. https://doi.org/10.1093/cercor/bht018 Merchán-Pérez FN: A, Rodríguez JR, González S, Robles V, Defelipe J, Larrañaga P, Bielza C et al (2014) Three-dimensional spatial distribution of synapses in the neocortex: a dual-beam electron microscopy study. Cereb Cortex 24:1579–1588. https://​doi.​org/​10.​1093/​cercor/​bht018
Zurück zum Zitat Nicoll R, Schmitz D (2005) Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 6:863–876PubMedCrossRef Nicoll R, Schmitz D (2005) Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 6:863–876PubMedCrossRef
Zurück zum Zitat Raastad M, Storm JF, Andersen P (1992) Putative single quantum and single fibre excitatory postsynaptic currents show similar amplitude range and variability in rat hippocampal slices. Eur J Neurosci 4:113–117PubMedCrossRef Raastad M, Storm JF, Andersen P (1992) Putative single quantum and single fibre excitatory postsynaptic currents show similar amplitude range and variability in rat hippocampal slices. Eur J Neurosci 4:113–117PubMedCrossRef
Zurück zum Zitat Rall W (1974) Dendritic spines, synaptic potency and neuronal plasticity. Brain Information Service, University of California, Los Angeles, pp 13–21 Rall W (1974) Dendritic spines, synaptic potency and neuronal plasticity. Brain Information Service, University of California, Los Angeles, pp 13–21
Zurück zum Zitat Rall W, Rinzel J (1973) Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys J 13:648–688PubMedPubMedCentralCrossRef Rall W, Rinzel J (1973) Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys J 13:648–688PubMedPubMedCentralCrossRef
Zurück zum Zitat Sahara Y, Takahashi T (2001) Quantal components of the excitatory postsynaptic currents at a rat central auditory synapse. J Physiol 536:189–197PubMedPubMedCentralCrossRef Sahara Y, Takahashi T (2001) Quantal components of the excitatory postsynaptic currents at a rat central auditory synapse. J Physiol 536:189–197PubMedPubMedCentralCrossRef
Zurück zum Zitat Schikorski T, Stevens CF (1997) Quantitative ultrastructural analysis of hippocampal excitatory synapses. Journal Neuroscience 17:5858–5867PubMedCrossRef Schikorski T, Stevens CF (1997) Quantitative ultrastructural analysis of hippocampal excitatory synapses. Journal Neuroscience 17:5858–5867PubMedCrossRef
Zurück zum Zitat Schikorski T, Stevens CF (2001) Morphological correlates of functionally defined synaptic vesicle populations. Nat Neurosci 4:391–395PubMedCrossRef Schikorski T, Stevens CF (2001) Morphological correlates of functionally defined synaptic vesicle populations. Nat Neurosci 4:391–395PubMedCrossRef
Zurück zum Zitat Sherrington CS (1906) The integrative action of the nervous system. Charles Scribner’s Sons, New York Sherrington CS (1906) The integrative action of the nervous system. Charles Scribner’s Sons, New York
Zurück zum Zitat Stiles JR, Van Helden D, Bartol TM, Salpeter EE, Salpeter MM (1996) Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle. Proc Natl Acad Sci 93:5747–5752. https://doi.org/10.1073/pnas.93.12.5747 Stiles JR, Van Helden D, Bartol TM, Salpeter EE, Salpeter MM (1996) Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle. Proc Natl Acad Sci 93:5747–5752. https://​doi.​org/​10.​1073/​pnas.​93.​12.​5747
Zurück zum Zitat Sutton RB, Fasshauer D, Jahn R, Brünger AT (1998) Crystal structure of a snare complex involved in synaptic exocytosis at 2.4 a resolution. Nature 395:347–353PubMedCrossRef Sutton RB, Fasshauer D, Jahn R, Brünger AT (1998) Crystal structure of a snare complex involved in synaptic exocytosis at 2.4 a resolution. Nature 395:347–353PubMedCrossRef
Zurück zum Zitat Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Brügger SBS, Ringler P, Müller SA, Rammner B, Gräter F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmüller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846PubMedCrossRef Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Brügger SBS, Ringler P, Müller SA, Rammner B, Gräter F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmüller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846PubMedCrossRef
Zurück zum Zitat Takumi Y, Matsubara A, Rinvik E, Ottersen OP (1999) The arrangement of glutamate receptors in excitatory synapses. Annual New York Academy of Science 868:474–482CrossRef Takumi Y, Matsubara A, Rinvik E, Ottersen OP (1999) The arrangement of glutamate receptors in excitatory synapses. Annual New York Academy of Science 868:474–482CrossRef
Zurück zum Zitat Tønnesen J, Rózsa G, Katona B, Nägerl U (2014) Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci 17:678–685PubMedCrossRef Tønnesen J, Rózsa G, Katona B, Nägerl U (2014) Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci 17:678–685PubMedCrossRef
Zurück zum Zitat Vargas-Caballero MI, Robinson H (2004) Fast and slow voltage-dependent dynamics of magnesium block in the NMDA receptor: the asymmetric trapping block model. J Neurosci 24:6171–6180PubMedCrossRef Vargas-Caballero MI, Robinson H (2004) Fast and slow voltage-dependent dynamics of magnesium block in the NMDA receptor: the asymmetric trapping block model. J Neurosci 24:6171–6180PubMedCrossRef
Zurück zum Zitat Ventriglia F (2011) Effect of filaments within the synaptic cleft on the response of excitatory synapses simulated by computer experiments. Biosystems 104:14–22PubMedCrossRef Ventriglia F (2011) Effect of filaments within the synaptic cleft on the response of excitatory synapses simulated by computer experiments. Biosystems 104:14–22PubMedCrossRef
Zurück zum Zitat Ventriglia F, Di Maio V (2000a) A brownian model of glutamate diffusion in excitatory synapses of hippocampus. Biosystems 58:67–74PubMedCrossRef Ventriglia F, Di Maio V (2000a) A brownian model of glutamate diffusion in excitatory synapses of hippocampus. Biosystems 58:67–74PubMedCrossRef
Zurück zum Zitat Ventriglia F, Di Maio V (2000b) A brownian simulation model of glutamate synaptic diffusion in the femtosecond time scale. Biol Cybern 83:93–109PubMedCrossRef Ventriglia F, Di Maio V (2000b) A brownian simulation model of glutamate synaptic diffusion in the femtosecond time scale. Biol Cybern 83:93–109PubMedCrossRef
Zurück zum Zitat Ventriglia F, Di Maio V (2002) Stochastic fluctuation of the synaptic function. Biosystems 67:287–294PubMedCrossRef Ventriglia F, Di Maio V (2002) Stochastic fluctuation of the synaptic function. Biosystems 67:287–294PubMedCrossRef
Zurück zum Zitat Ventriglia F, Di Maio V (2003a) Stochastic fluctuation of the quantal epsc amplitude in computer simulated excitatory synapses of hippocampus. Biosystems 71:195–204PubMedCrossRef Ventriglia F, Di Maio V (2003a) Stochastic fluctuation of the quantal epsc amplitude in computer simulated excitatory synapses of hippocampus. Biosystems 71:195–204PubMedCrossRef
Zurück zum Zitat Ventriglia F, Di Maio V (2003b) Synaptic fusion pore structure and AMPA receptors activation according to brownian simulation of glutamate diffusion. Biol Cybern 88:201–209PubMedCrossRef Ventriglia F, Di Maio V (2003b) Synaptic fusion pore structure and AMPA receptors activation according to brownian simulation of glutamate diffusion. Biol Cybern 88:201–209PubMedCrossRef
Zurück zum Zitat Ventriglia F, Di Maio V (2013a) Effects of AMPARs trafficking and glutamate-receptor binding probability on stochastic variability of epsc. Biosystems 112:298–304PubMedCrossRef Ventriglia F, Di Maio V (2013a) Effects of AMPARs trafficking and glutamate-receptor binding probability on stochastic variability of epsc. Biosystems 112:298–304PubMedCrossRef
Zurück zum Zitat Ventriglia F, Di Maio V (2013b) Glutamate-AMPA interaction in a model of synaptic transmission. Brain Res 1536:168–176PubMedCrossRef Ventriglia F, Di Maio V (2013b) Glutamate-AMPA interaction in a model of synaptic transmission. Brain Res 1536:168–176PubMedCrossRef
Zurück zum Zitat Volk L, Chiu SL, Sharma K, Huganir RL (2015) Glutamate synapses in human cognitive disorders. Annu Rev Neurosci 38:127–149PubMedCrossRef Volk L, Chiu SL, Sharma K, Huganir RL (2015) Glutamate synapses in human cognitive disorders. Annu Rev Neurosci 38:127–149PubMedCrossRef
Zurück zum Zitat Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Söllner TH, Rothman JE (1998) Snarepins: Minimal machinery for membrane fusion. Cell 92:759–772PubMedCrossRef Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Söllner TH, Rothman JE (1998) Snarepins: Minimal machinery for membrane fusion. Cell 92:759–772PubMedCrossRef
Zurück zum Zitat Zuber B, Nikonenko I, Klauser P, Muller D, Dobochet J (2005) The mammallian central nervous synaptic cleft contains a high density of periodically organized complexes. Proceedings of the National Acadademi of Science USA 102:19192–19197CrossRef Zuber B, Nikonenko I, Klauser P, Muller D, Dobochet J (2005) The mammallian central nervous synaptic cleft contains a high density of periodically organized complexes. Proceedings of the National Acadademi of Science USA 102:19192–19197CrossRef
Metadaten
Titel
The glutamatergic synapse: a complex machinery for information processing
verfasst von
Vito Di Maio
Publikationsdatum
07.05.2021
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 5/2021
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-021-09679-w

Weitere Artikel der Ausgabe 5/2021

Cognitive Neurodynamics 5/2021 Zur Ausgabe

Neuer Inhalt