Skip to main content
Erschienen in: Journal of Computer and Systems Sciences International 5/2020

01.09.2020 | STABILITY

Theory of Hidden Oscillations and Stability of Control Systems

verfasst von: N. V. Kuznetsov

Erschienen in: Journal of Computer and Systems Sciences International | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The development of the theory of absolute stability, the theory of bifurcations, the theory of chaos, theory of robust control, and new computing technologies has made it possible to take a fresh look at a number of well-known theoretical and practical problems in the analysis of multidimensional control systems, which led to the emergence of the theory of hidden oscillations, which represents the genesis of the modern era of Andronov’s theory of oscillations. The theory of hidden oscillations is based on a new classification of oscillations as self-excited or hidden. While the self-excitation of oscillations can be effectively investigated analytically and numerically, revealing a hidden oscillation requires the development of special analytical and numerical methods and also it is necessary to determine the exact boundaries of global stability, to analyze and reduce the gap between the necessary and sufficient conditions for global stability, and distinguish classes of control systems for which these conditions coincide. This survey discusses well-known theoretical and engineering problems in which hidden oscillations (their absence or presence and location) play an important role.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
A.A. Witt was a coauthor of the first edition of the book [8], published in 1937, but his name was removed from the first edition and restored only in the second edition of the book, published in 1959. In 1941, a monograph by I. Rockard, one of the creators of the atomic bomb in France, was published with a similar name and similar ideas in French [9] without reference to the works of Andronov.
 
2
The concept of self-excitation of oscillations in Andronov’s works was also used to describe the bifurcation process of the transition of the system’s state to the oscillation mode with changing parameters [8].
 
3
An attractor of a dynamical system is a bounded closed invariant set in phase space that is locally attractive (i.e., having an open neighborhood—a basin of attraction, all trajectories with the initial data from which tend to the attractor over time).
 
4
Several paragraphs in the monograph [7] are devoted to the corresponding analytical analysis.
 
5
G. Barkhausen used the similar German term Selbsterregte Schwingungen in his papers [44].
 
7
This doctoral thesis was defended at St. Petersburg State University in 2016 (reviewers: I.M. Burkin, N.G. Kuznetsov, G.A. Leonov, E.A. Mikrin, V.G. Peshekhonov, R.M. Yusupov, V.I. Nekorkin, and A.M. Sergeev (Leading Organization–Institute of Applied Physics of the Russian Academy of Sciences)).
 
8
RAS, news 11.12.2016 (Russian Highly Cited Researchers Award, 2016): http://www.ras.ru/news/shownews.aspx?id=036a64c2-32f2-4624-bc32-8f0e4d138e7d. See the citation of the review on latent oscillations in the translated version of Izvestia RAN. Control theory and systems: http://citations.springer.com/search?query=Computer+and+Systems+Sciences+International.
 
9
The corresponding rigorous mathematical statements were first formulated later for the general case of continuous systems by E.A. Barbashin and N.N. Krasovsky [49].
 
10
Note that we can construct counterexamples to the discrete analogue of the Kalman conjecture for 2-dimensional systems [53]. Here, the difference in the phase space dimension needed for constructing counterexamples for continuous and discrete cases coincides with the difference in the dimension of the spaces of dynamical systems in which chaos occurs: 3 and 1, respectively.
 
11
Here the solution of the discontinuous system is understood in the terms of Filippov [56]; the function \(\tanh(100\sigma )\) is used as a smooth approximation sign(σ).
 
12
In the two-dimensional case, the departure of the trajectories is possible only to infinity, and in the three-dimensional case, the existence of limit periodic trajectories is possible [59].
 
13
Regarding counterexamples with hidden attractors [41, 67] in 2011, R.E. Kalman wrote to the author of the article: “I was far too young and lacking technical mathematical knowledge to go more deeply into the matter.”
 
14
In physical experiments, the system’s state leaves the unstable stationary mode due to external perturbations (an example is the impossibility of observing the upper position of the physical pendulum without additional stabilization). When analyzing the corresponding mathematical dynamic models, it is necessary to take into account that the unstable equilibrium states themselves do not fall into the basin of attraction of self-excited attractors. Therefore, in numerical modeling, the system state can remain in an unstable equilibrium state, and to study the dynamics in its vicinity, one has to choose the initial data that are different from the equilibrium state itself.
 
15
In 2009, the plenary report [92] needed an example of applying the harmonic balance method to the Chua electronic circuit. For the parameters that I randomly selected, the attractor found in the Chua chain turned out to be weakly connected to the equilibrium states. A small additional control made it possible to disconnect the attractor found from the equilibrium states. In 2010, this example was finalized and presented at the IFAC conference “Periodic Control Systems” [40], and also published in the journal “Proceedings of the Academy of Sciences” [93]. Then, using the hidden attractor in the modified circuit, using the parameter continuation method, we managed to get rid of the additional control and get the hidden attractor in the classical Chua chain in 2011.
 
16
This phase portrait with three Chua hidden attractors was selected for the cover of the International Journal of Bifurcation and Chaos in Applied Sciences and Engineering: https://​www.​worldscientific.​com/​na101/​home/​literatum/​publisher/​wspc/​journals/​content/​ijbc/​2017/​ijbc.​27.​issue-12/​ijbc.​27.​issue-12/​20171218/​ijbc.​27.​issue-12.​cover.​jpg. The initial data for visualizing hidden attractors in system (3.1): \(z = (9.2942,5.5013, - 31.4277)\), \(z = \pm (1.5179,0.2875, - 1.7414)\).
 
17
Academician of the Academy of Sciences of the USSR (since 1946), rector of Moscow State University (1951–1973).
 
18
Designing PLL systems for the analysis of stability and oscillations, various software simulators of electronic systems, Simulation Program with Integrated Circuit Emphasis (SPICE), are used by engineers, giving the illusion of virtual reality—observing real physical processes.
 
19
In 1986, G.A. Leonov (as part of a team of researchers led by V.V. Shahgildyan) was awarded the USSR State Prize for these works.
 
20
In 2008–2009 the coleaders were G.A. Leonov and V.A. Yakybovich (NSh-2387.2008.1), in 2014–2017 the coleader was G.A. Leonov (NSh-3384.2014.1, and NSh-8580.2016.1), and since 2018, the team of the Leading Scientific School of the Russian Federation has been headed by N.V. Kuznetsov (NSh-2858.2018.1 and NSh-2624.2020.1).
 
21
Materials of the report “Hidden oscillations and stability of control systems. Theory and Applications” at the meeting of the Bureau of the DEEMCP on March 3, 2020: http://​apcyb.​spbu.​ru/​wp-content/​uploads/​2020-RAN-Bureau-DEEMCP-KuznetsovNV.​pdf
 
Literatur
2.
Zurück zum Zitat I. A. Vyshnegradskii, “About direct action regulators,” Izv. SPb. Tekhnol. Inst. 1, 21–62 (1877). I. A. Vyshnegradskii, “About direct action regulators,” Izv. SPb. Tekhnol. Inst. 1, 21–62 (1877).
3.
Zurück zum Zitat M. H. Léauté, “Mémoire sur les oscillations à longue période dans les machines actionnées par des moteurs hydrauliques et sur les moyens de prévenir ces oscillations,” J. l’ecole Polytech. 55, 1–126 (1885). M. H. Léauté, “Mémoire sur les oscillations à longue période dans les machines actionnées par des moteurs hydrauliques et sur les moyens de prévenir ces oscillations,” J. l’ecole Polytech. 55, 1–126 (1885).
4.
Zurück zum Zitat N. E. Zhukovskii, Theory of Machine Control, Part 1 (Tipolitogr. Tov. I. N. Kushnerev, Moscow, 1909) [in Russian]. N. E. Zhukovskii, Theory of Machine Control, Part 1 (Tipolitogr. Tov. I. N. Kushnerev, Moscow, 1909) [in Russian].
5.
Zurück zum Zitat A. M. Lyapunov, The General Problem of Traffic Stability (Khar’k. Mat. Ob-va, Khar’kov, 1892) [in Russian]. A. M. Lyapunov, The General Problem of Traffic Stability (Khar’k. Mat. Ob-va, Khar’kov, 1892) [in Russian].
6.
Zurück zum Zitat H. Poincare, “Mémoire sur les courbes définies par une équations différentielle (II),” J. Math. 8, 251–296 (1882).MATH H. Poincare, “Mémoire sur les courbes définies par une équations différentielle (II),” J. Math. 8, 251–296 (1882).MATH
7.
Zurück zum Zitat A. A. Andronov and S. E. Khaikin, Oscillation Theory (ONTI, Moscow, Leningrad, 1937) [in Russian]. A. A. Andronov and S. E. Khaikin, Oscillation Theory (ONTI, Moscow, Leningrad, 1937) [in Russian].
8.
Zurück zum Zitat A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Oscillation Theory, 2nd ed. (Fizmatlit, Moscow, 1959) [in Russian].MATH A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Oscillation Theory, 2nd ed. (Fizmatlit, Moscow, 1959) [in Russian].MATH
9.
Zurück zum Zitat Y. Rocard, Théorie des Oscillateurs (Revue Sci., Paris, 1941).MATH Y. Rocard, Théorie des Oscillateurs (Revue Sci., Paris, 1941).MATH
10.
Zurück zum Zitat Ya. Z. Tsypkin, “A. A. Andronov and the theory of automatic control,” Avtom. Telemekh. 5, 5–10 (1974). Ya. Z. Tsypkin, “A. A. Andronov and the theory of automatic control,” Avtom. Telemekh. 5, 5–10 (1974).
11.
Zurück zum Zitat C. A. A. Bissel, “Andronov and the development of soviet control engineering,” IEEE Control Syst. Mag. 18, 56–62 (1998).CrossRef C. A. A. Bissel, “Andronov and the development of soviet control engineering,” IEEE Control Syst. Mag. 18, 56–62 (1998).CrossRef
12.
Zurück zum Zitat A. A. Andronov and A. G. Maier, “Mises problem in the theory of direct regulation and the theory of point transformations of surfaces,” Dokl. Akad. Nauk SSSR 43, 58–60 (1944). A. A. Andronov and A. G. Maier, “Mises problem in the theory of direct regulation and the theory of point transformations of surfaces,” Dokl. Akad. Nauk SSSR 43, 58–60 (1944).
13.
Zurück zum Zitat A. A. Andronov and A. G. Maier, “Vyshnegradsky’s problem in the theory of direct regulation,” Dokl. Akad. Nauk SSSR 47, 345–348 (1945). A. A. Andronov and A. G. Maier, “Vyshnegradsky’s problem in the theory of direct regulation,” Dokl. Akad. Nauk SSSR 47, 345–348 (1945).
14.
Zurück zum Zitat “Academicians elected by the general assembly of the USSR Academy of Sciences on November 30, 1946,” Vestn. Akad. Nauk SSSR 1, 83 (1947). “Academicians elected by the general assembly of the USSR Academy of Sciences on November 30, 1946,” Vestn. Akad. Nauk SSSR 1, 83 (1947).
15.
Zurück zum Zitat A. Kh. Gelig, “On the stability of motion of systems with a single equilibrium position,” Dokl. Akad. Nauk SSSR 147, 526–528 (1962).MathSciNet A. Kh. Gelig, “On the stability of motion of systems with a single equilibrium position,” Dokl. Akad. Nauk SSSR 147, 526–528 (1962).MathSciNet
16.
Zurück zum Zitat G. A. Leonov, “On the stability of nonlinear controlled systems with a non-unique equilibrium position,” Avtom. Telemekh. 10, 23–28 (1971). G. A. Leonov, “On the stability of nonlinear controlled systems with a non-unique equilibrium position,” Avtom. Telemekh. 10, 23–28 (1971).
17.
Zurück zum Zitat A. Kh. Gelig, G. A. Leonov, and V. A. Yakubovich, Stability of Nonlinear Systems with a Non-Single State of Equilibrium (Nauka, Moscow, 1978) [in Russian].MATH A. Kh. Gelig, G. A. Leonov, and V. A. Yakubovich, Stability of Nonlinear Systems with a Non-Single State of Equilibrium (Nauka, Moscow, 1978) [in Russian].MATH
18.
Zurück zum Zitat G. A. Leonov, N. V. Kuznetsov, M. A. Kiseleva, and R. N. Mokaev, “Global problems of differential inclusions: The problems of Kalman and Vyshnegradskii, Chua’s circuit,” Differ. Uravn. Protsessy Upravl. 4, 1–52 (2017).MATH G. A. Leonov, N. V. Kuznetsov, M. A. Kiseleva, and R. N. Mokaev, “Global problems of differential inclusions: The problems of Kalman and Vyshnegradskii, Chua’s circuit,” Differ. Uravn. Protsessy Upravl. 4, 1–52 (2017).MATH
19.
Zurück zum Zitat "The accident at the Sayano-Shushenskaya hydroelectric station and the scientific and technical support for its restoration," Report on Meeting of the Presidium of the Russian Academy of Sciences. http://www.ras.ru/FStorage/Download.aspxıd=7d431c54-8c18-42c4-aeff-6dfc9ea18aa4. "The accident at the Sayano-Shushenskaya hydroelectric station and the scientific and technical support for its restoration," Report on Meeting of the Presidium of the Russian Academy of Sciences. http://​www.​ras.​ru/​FStorage/​Download.​aspxıd=​7d431c54-8c18-42c4-aeff-6dfc9ea18aa4.​
20.
Zurück zum Zitat R. F. Ganiev, Nonlinear Resonances and Disasters. Reliability, Safety and Noiselessness (RKhD, Izhevsk, Moscow, 2013) [in Russian]. R. F. Ganiev, Nonlinear Resonances and Disasters. Reliability, Safety and Noiselessness (RKhD, Izhevsk, Moscow, 2013) [in Russian].
21.
Zurück zum Zitat G. A. Leonov, N. V. Kuznetsov, and E. P. Solovyeva, “A simple dynamical model of hydropower plant: Stability and oscillations,” IFAC-PapersOnLine 48, 656–661 (2015).CrossRef G. A. Leonov, N. V. Kuznetsov, and E. P. Solovyeva, “A simple dynamical model of hydropower plant: Stability and oscillations,” IFAC-PapersOnLine 48, 656–661 (2015).CrossRef
22.
Zurück zum Zitat G. A. Leonov, N. V. Kuznetsov, and E. P. Solov’eva, “Mathematical modeling of vibrations in turbogenerator sets of Sayano-Shushenskaya hydroelectric power station,” Dokl. Phys. 61, 55–60 (2016). G. A. Leonov, N. V. Kuznetsov, and E. P. Solov’eva, “Mathematical modeling of vibrations in turbogenerator sets of Sayano-Shushenskaya hydroelectric power station,” Dokl. Phys. 61, 55–60 (2016).
23.
Zurück zum Zitat V. F. Zhuravlev and D. M. Klimov, “On certain dynamic problems of a rigid body with dry friction,” Vestn. Nizhegor. Univ. im. N. I. Lobachevskogo 4-2, 133–134 (2011). V. F. Zhuravlev and D. M. Klimov, “On certain dynamic problems of a rigid body with dry friction,” Vestn. Nizhegor. Univ. im. N. I. Lobachevskogo 4-2, 133–134 (2011).
24.
Zurück zum Zitat I. G. Goryacheva, Friction Mechanics (Nauka, Moscow, 2001) [in Russian]. I. G. Goryacheva, Friction Mechanics (Nauka, Moscow, 2001) [in Russian].
25.
Zurück zum Zitat V. I. Kolesnikov, P. G. Ivanochkin, A. V. Chelokh’yan, and E. A. Lugovoi, Friction and Wear of Machine Units and Mechanisms (Rostov. Gos. Univ. Putei Soobshch., Rostov-on-Don, 2000) [in Russian]. V. I. Kolesnikov, P. G. Ivanochkin, A. V. Chelokh’yan, and E. A. Lugovoi, Friction and Wear of Machine Units and Mechanisms (Rostov. Gos. Univ. Putei Soobshch., Rostov-on-Don, 2000) [in Russian].
26.
Zurück zum Zitat E. A. Fedosov, K. S. Kolesnikov, and G. G. Sebryakov, Engineering, Encyclopedia, Vol. 1-4: Automatic Control (Mashinostroenie, Moscow, 2000) [in Russian]. E. A. Fedosov, K. S. Kolesnikov, and G. G. Sebryakov, Engineering, Encyclopedia, Vol. 1-4: Automatic Control (Mashinostroenie, Moscow, 2000) [in Russian].
27.
Zurück zum Zitat S. N. Vasil’ev, A. K. Zherlov, E. A. Fedosov, and B. E. Fedunov, Intelligent Control of Dynamic Systems (Fizmatlit, Moscow, 2000) [in Russian]. S. N. Vasil’ev, A. K. Zherlov, E. A. Fedosov, and B. E. Fedunov, Intelligent Control of Dynamic Systems (Fizmatlit, Moscow, 2000) [in Russian].
28.
Zurück zum Zitat F. L. Chernous’ko, I. M. Anan’evskii, and S. A. Reshmin, Non-Linear Mechanical Systems Control Methods (Fizmatlit, Moscow, 2006) [in Russian]. F. L. Chernous’ko, I. M. Anan’evskii, and S. A. Reshmin, Non-Linear Mechanical Systems Control Methods (Fizmatlit, Moscow, 2006) [in Russian].
29.
Zurück zum Zitat N. P. Demenkov and E. A. Mikrin, Control in Technical Systems (MGTU im. N. E. Baumana, Moscow, 2017) [in Russian]. N. P. Demenkov and E. A. Mikrin, Control in Technical Systems (MGTU im. N. E. Baumana, Moscow, 2017) [in Russian].
30.
Zurück zum Zitat V. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electro-Mechanical Systems (CRC, Boca Raton, FL, 2017).CrossRef V. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electro-Mechanical Systems (CRC, Boca Raton, FL, 2017).CrossRef
31.
Zurück zum Zitat B. R. Andrievskii, A. A. Bobtsov, and A. L. Fradkov, Methods of Analysis and Synthesis of Nonlinear Control Systems (IKI, Moscow, Izhevsk, 2018) [in Russian]. B. R. Andrievskii, A. A. Bobtsov, and A. L. Fradkov, Methods of Analysis and Synthesis of Nonlinear Control Systems (IKI, Moscow, Izhevsk, 2018) [in Russian].
32.
Zurück zum Zitat B. T. Polyak, M. V. Khlebnikov, and L. B. Rapoport, The Mathematical Theory of Automatic Control (LENAND, Moscow, 2019) [in Russian]. B. T. Polyak, M. V. Khlebnikov, and L. B. Rapoport, The Mathematical Theory of Automatic Control (LENAND, Moscow, 2019) [in Russian].
33.
Zurück zum Zitat D. A. Novikov, Control Theory, Additional Chapters (LENAND, Moscow, 2019) [in Russian]. D. A. Novikov, Control Theory, Additional Chapters (LENAND, Moscow, 2019) [in Russian].
34.
Zurück zum Zitat A. B. Kurzhanski and A. N. Daryin, Dynamic Programming for Impulse Feedback and Fast Controls: The Linear Systems Case (Springer, London, 2020).MATHCrossRef A. B. Kurzhanski and A. N. Daryin, Dynamic Programming for Impulse Feedback and Fast Controls: The Linear Systems Case (Springer, London, 2020).MATHCrossRef
35.
Zurück zum Zitat L. I. Mandel’shtam and N. D. Papaleksi, “On the phenomena of resonance of the N-th kind,” Zh. Tekh. Fiz. 2, 775–811 (1932). L. I. Mandel’shtam and N. D. Papaleksi, “On the phenomena of resonance of the N-th kind,” Zh. Tekh. Fiz. 2, 775–811 (1932).
37.
Zurück zum Zitat Y. Ueda, N. Akamatsu, and C. Hayashi, “Computer simulations and non-periodic oscillations,” Trans. IEICE Jpn. A 56, 218–255 (1973). Y. Ueda, N. Akamatsu, and C. Hayashi, “Computer simulations and non-periodic oscillations,” Trans. IEICE Jpn. A 56, 218–255 (1973).
39.
Zurück zum Zitat G. A. Leonov and N. V. Kuznetsov, “Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits,” Int. J. Bifurcat. Chaos Appl. Sci. Eng. 23, 1330002 (2013).MathSciNetMATHCrossRef G. A. Leonov and N. V. Kuznetsov, “Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits,” Int. J. Bifurcat. Chaos Appl. Sci. Eng. 23, 1330002 (2013).MathSciNetMATHCrossRef
40.
Zurück zum Zitat N. V. Kuznetsov, G. A. Leonov, and V. I. Vagaitsev, “Analytical-numerical method for attractor localization of generalized Chua’s system,” IFAC Proc. 43 (11), 29–33 (2010). N. V. Kuznetsov, G. A. Leonov, and V. I. Vagaitsev, “Analytical-numerical method for attractor localization of generalized Chua’s system,” IFAC Proc. 43 (11), 29–33 (2010).
41.
Zurück zum Zitat V. O. Bragin, V. I. Vagaitsev, N. V. Kuznetsov, and G. A. Leonov, “Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits,” J. Comput. Syst. Sci. Int. 50, 511 (2011).MathSciNetMATHCrossRef V. O. Bragin, V. I. Vagaitsev, N. V. Kuznetsov, and G. A. Leonov, “Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits,” J. Comput. Syst. Sci. Int. 50, 511 (2011).MathSciNetMATHCrossRef
42.
Zurück zum Zitat G. A. Leonov, N. V. Kuznetsov, and T. N. Mokaev, “Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion,” Eur. Phys. J. Spec. Top. 224, 1421–1458 (2015).CrossRef G. A. Leonov, N. V. Kuznetsov, and T. N. Mokaev, “Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion,” Eur. Phys. J. Spec. Top. 224, 1421–1458 (2015).CrossRef
43.
Zurück zum Zitat N. V. Kuznetsov, “Analytical and numerical methods for the analysis of hidden oscillations,” Doctoral (Phys. Math.) Dissertation (SPb. State Univ., St. Petersburg, 2016). N. V. Kuznetsov, “Analytical and numerical methods for the analysis of hidden oscillations,” Doctoral (Phys. Math.) Dissertation (SPb. State Univ., St. Petersburg, 2016).
44.
Zurück zum Zitat H. Barkhausen, Textbook of Electron Tubes and their Technical Applications (S. Hirzel, Germany, 1935). H. Barkhausen, Textbook of Electron Tubes and their Technical Applications (S. Hirzel, Germany, 1935).
45.
Zurück zum Zitat N. V. Kuznetsov, “Theory of hidden oscillations,” Plenary Lecture at the 11th Russian Multiconference on Control Problems, St. Petersburg, 2018. N. V. Kuznetsov, “Theory of hidden oscillations,” Plenary Lecture at the 11th Russian Multiconference on Control Problems, St. Petersburg, 2018.
46.
Zurück zum Zitat N. V. Kuznetsov, “Theory of hidden oscillations,” Plenary Lecture at the 5th IFAC Conference on Analysis and Control of Chaotic Systems, Eindhoven, 2018. N. V. Kuznetsov, “Theory of hidden oscillations,” Plenary Lecture at the 5th IFAC Conference on Analysis and Control of Chaotic Systems, Eindhoven, 2018.
47.
Zurück zum Zitat N. V. Kuznetsov, “Theory of hidden oscillations,” in Proceedings of the 13th All-Russia Workshop on Control Problems VSPU-2019 (IPU, Moscow, 2019), pp. 103–107. N. V. Kuznetsov, “Theory of hidden oscillations,” in Proceedings of the 13th All-Russia Workshop on Control Problems VSPU-2019 (IPU, Moscow, 2019), pp. 103–107.
48.
Zurück zum Zitat A. I. Lur’e and V. N. Postnikov, “On the theory of stability of controlled systems,” Prikl. Mat. Mekh. 8, 246–248 (1944).MATH A. I. Lur’e and V. N. Postnikov, “On the theory of stability of controlled systems,” Prikl. Mat. Mekh. 8, 246–248 (1944).MATH
49.
Zurück zum Zitat E. A. Barbashin and N. N. Krasovskii, “On the stability of movement in general,” Dokl. Akad. Nauk SSSR 86, 453–459 (1952). E. A. Barbashin and N. N. Krasovskii, “On the stability of movement in general,” Dokl. Akad. Nauk SSSR 86, 453–459 (1952).
50.
Zurück zum Zitat R. E. Kalman, “Physical and mathematical mechanisms of instability in nonlinear automatic control systems,” Trans. ASME 79, 553–566 (1957).MathSciNet R. E. Kalman, “Physical and mathematical mechanisms of instability in nonlinear automatic control systems,” Trans. ASME 79, 553–566 (1957).MathSciNet
51.
Zurück zum Zitat G. A. Leonov, D. V. Ponomarenko, and V. B. Smirnova, Frequency-Domain Methods for Nonlinear Analysis. Theory and Applications (World Scientific, Singapore, 1996).MATHCrossRef G. A. Leonov, D. V. Ponomarenko, and V. B. Smirnova, Frequency-Domain Methods for Nonlinear Analysis. Theory and Applications (World Scientific, Singapore, 1996).MATHCrossRef
52.
Zurück zum Zitat N. E. Barabanov, “On Kalman problem,” Sib. Mat. Zh. 29, 3–11 (1988).MATH N. E. Barabanov, “On Kalman problem,” Sib. Mat. Zh. 29, 3–11 (1988).MATH
53.
Zurück zum Zitat W. P. Heath, J. Carrasco, and M. de la Sen, “Second-order counterexamples to the discrete-time Kalman conjecture,” Automatica 60, 140–144 (2015).MathSciNetMATHCrossRef W. P. Heath,  J. Carrasco, and M. de la Sen, “Second-order counterexamples to the discrete-time Kalman conjecture,” Automatica 60, 140–144 (2015).MathSciNetMATHCrossRef
54.
Zurück zum Zitat N. V. Kuznetsov, O. A. Kuznetsova, D. V. Koznov, R. N. Mokaev, and B. R. Andrievsky, “Counterexamples to the Kalman conjectures,” IFAC-PapersOnLine 51 (33), 138–143 (2018).CrossRef N. V. Kuznetsov, O. A. Kuznetsova, D. V. Koznov, R. N. Mokaev, and B. R. Andrievsky, “Counterexamples to the Kalman conjectures,” IFAC-PapersOnLine 51 (33), 138–143 (2018).CrossRef
55.
Zurück zum Zitat N. V. Kuznetsov, O. A. Kuznetsova, T. N. Mokaev, R. N. Mokaev, M. V. Yuldashev, and R. V. Yuldashev, “Coexistence of hidden attractors and multistability in counterexamples to the Kalman conjecture,” IFAC-PapersOnLine 52 (16), 7–12 (2019).CrossRef N. V. Kuznetsov, O. A. Kuznetsova, T. N. Mokaev, R. N. Mokaev, M. V. Yuldashev, and R. V. Yuldashev, “Coexistence of hidden attractors and multistability in counterexamples to the Kalman conjecture,” IFAC-PapersOnLine 52 (16), 7–12 (2019).CrossRef
56.
Zurück zum Zitat A. F. Filippov, Differential Equations with Discontinuous Right-Hand Side (Nauka, Moscow, 1985) [in Russian].MATH A. F. Filippov, Differential Equations with Discontinuous Right-Hand Side (Nauka, Moscow, 1985) [in Russian].MATH
57.
Zurück zum Zitat M. A. Aizerman and E. S. Pyatnitskii, “Fundamentals of the theory of discontinuous systems. I,” Avtom. Telemekh. 7, 33–47 (1974).MATH M. A. Aizerman and E. S. Pyatnitskii, “Fundamentals of the theory of discontinuous systems. I,” Avtom. Telemekh. 7, 33–47 (1974).MATH
58.
Zurück zum Zitat M. A. Aizerman, “On a problem concerning the stability “in the large” of dynamical systems,” Usp. Mat. Nauk 4, 187–188 (1949).MathSciNetMATH M. A. Aizerman, “On a problem concerning the stability “in the large” of dynamical systems,” Usp. Mat. Nauk 4, 187–188 (1949).MathSciNetMATH
59.
Zurück zum Zitat V. A. Pliss, Certain Problems in the Theory of Stability of Motion in the Whole (Leningrad Univ. Press, 1958). V. A. Pliss, Certain Problems in the Theory of Stability of Motion in the Whole (Leningrad Univ. Press, 1958).
60.
Zurück zum Zitat N. N. Krasovskii, “Motion stability theorems defined by a system of two equations,” Prikl. Mat. Mekh. 16, 547–554 (1952). N. N. Krasovskii, “Motion stability theorems defined by a system of two equations,” Prikl. Mat. Mekh. 16, 547–554 (1952).
61.
Zurück zum Zitat L. Markus and H. Yamabe, “Global stability criteria for differential systems,” Osaka Math. J. 12, 305–317 (1960).MathSciNetMATH L. Markus and H. Yamabe, “Global stability criteria for differential systems,” Osaka Math. J. 12, 305–317 (1960).MathSciNetMATH
62.
Zurück zum Zitat G. Meisters, “Biography of the Markus-Yamabe conjecture,” (1996). http://www.math.unl.edu/ gmeisters1/papers/HK1996.pdf. G. Meisters, “Biography of the Markus-Yamabe conjecture,” (1996). http://www.math.unl.edu/ gmeisters1/papers/HK1996.pdf.
63.
Zurück zum Zitat B. van der Pol, “On relaxation-oscillations,” Philos. Mag. J. Sci. 7, 978–992 (1926).MATHCrossRef B. van der Pol, “On relaxation-oscillations,” Philos. Mag. J. Sci. 7, 978–992 (1926).MATHCrossRef
64.
Zurück zum Zitat N. M. Krylov and N. N. Bogolyubov, Introduction to Nonlinear Mechanics (Akad. Nauk USSR, Kiev, 1937; Princeton Univ. Press, Princeton, 1947). N. M. Krylov and N. N. Bogolyubov, Introduction to Nonlinear Mechanics (Akad. Nauk USSR, Kiev, 1937; Princeton Univ. Press, Princeton, 1947).
65.
Zurück zum Zitat V. A. Besekerskii and E. P. Popov, Theory of Automatic Control Systems (Fizmatlit, Moscow, 1966) [in Russian]. V. A. Besekerskii and E. P. Popov, Theory of Automatic Control Systems (Fizmatlit, Moscow, 1966) [in Russian].
66.
Zurück zum Zitat H. K. Khalil, Nonlinear Systems (Prentice Hall, NJ, 2002).MATH H. K. Khalil, Nonlinear Systems (Prentice Hall, NJ, 2002).MATH
67.
Zurück zum Zitat G. A. Leonov and N. V. Kuznetsov, “Algorithms for searching for hidden oscillations in the Aizerman and Kalman problems,” Dokl. Math. 84, 475–481 (2011).MathSciNetMATHCrossRef G. A. Leonov and N. V. Kuznetsov, “Algorithms for searching for hidden oscillations in the Aizerman and Kalman problems,” Dokl. Math. 84, 475–481 (2011).MathSciNetMATHCrossRef
68.
Zurück zum Zitat N. E. Barabanov, A. Kh. Gelig, G. A. Leonov, A. L. Likhtarnikov, A. S. Matveev, V. B. Smirnova, and A. L. Fradkov, “The frequency theorem (the Yakubovich-Kalman lemma) in control theory,” Autom. Remote Control 10 (9), 3–40 (1996).MathSciNetMATH N. E. Barabanov, A. Kh. Gelig, G. A. Leonov, A. L. Likhtarnikov, A. S. Matveev, V. B. Smirnova, and A. L. Fradkov, “The frequency theorem (the Yakubovich-Kalman lemma) in control theory,” Autom. Remote Control 10 (9), 3–40 (1996).MathSciNetMATH
69.
Zurück zum Zitat Ya. Z. Tsypkin, Theory of Relay Systems of Automatic Control (Gostekhizdat, Moscow, 1955) [in Russian].MATH Ya. Z. Tsypkin, Theory of Relay Systems of Automatic Control (Gostekhizdat, Moscow, 1955) [in Russian].MATH
70.
Zurück zum Zitat N. V. Kuznetsov, R. N. Mokaev, E. D. Akimova, and I. M. Boiko, “Harmonic balance method, Tsypkin locus, and LPRS: Comparison and counterexamples,” in Proceedings of European Control Conference, St. Petersburg,2020, pp. 781–786. N. V. Kuznetsov, R. N. Mokaev, E. D. Akimova, and I. M. Boiko, “Harmonic balance method, Tsypkin locus, and LPRS: Comparison and counterexamples,” in Proceedings of European Control Conference, St. Petersburg,2020, pp. 781–786.
71.
Zurück zum Zitat G. A. Leonov, V. O. Bragin, and N. V. Kuznetsov, “Algorithm for constructing counterexamples to the Kalman problem,” Dokl. Math. 82, 540–542 (2010).MATHCrossRef G. A. Leonov, V. O. Bragin, and N. V. Kuznetsov, “Algorithm for constructing counterexamples to the Kalman problem,” Dokl. Math. 82, 540–542 (2010).MATHCrossRef
72.
Zurück zum Zitat N. V. Kuznetsov and G. A. Leonov, “Perron’s counterexample in the discrete case,” Izv. RAEN, Differ. Uravn. 5, 71 (2001). N. V. Kuznetsov and G. A. Leonov, “Perron’s counterexample in the discrete case,” Izv. RAEN, Differ. Uravn. 5, 71 (2001).
73.
Zurück zum Zitat G. A. Leonov and N. V. Kuznetsov, “Time-varying linearization and the Perron effects,” Int. J. Bifurcat. Chaos Appl. Sci. Eng. 17, 1079–1107 (2007).MathSciNetMATHCrossRef G. A. Leonov and N. V. Kuznetsov, “Time-varying linearization and the Perron effects,” Int. J. Bifurcat. Chaos Appl. Sci. Eng. 17, 1079–1107 (2007).MathSciNetMATHCrossRef
74.
Zurück zum Zitat N. V. Kuznetsov, Stability and Oscillations of Dynamical Systems: Theory and Applications (Jyväskylä Univ. Press, Jyväskylä, 2008). N. V. Kuznetsov, Stability and Oscillations of Dynamical Systems: Theory and Applications (Jyväskylä Univ. Press, Jyväskylä, 2008).
75.
Zurück zum Zitat N. V. Kuznetsov and G. A. Leonov, “Strange attractors and classical stability theory: Stability, instability, Lyapunov exponents and chaos,” in Handbook of Applications of Chaos Theory, Ed. by Ch. H. Skiadas and C. Skiadas (Chapman and Hall/CRC, Routledge, 2016), pp. 105–134. N. V. Kuznetsov and G. A. Leonov, “Strange attractors and classical stability theory: Stability, instability, Lyapunov exponents and chaos,” in Handbook of Applications of Chaos Theory, Ed. by Ch. H. Skiadas and C. Skiadas (Chapman and Hall/CRC, Routledge, 2016), pp. 105–134.
76.
Zurück zum Zitat O. Perron, “Die Stabilitatsfrage bei Differentialgleichungen,” Math. Zeitschr. 32, 702–728 (1930).MathSciNetMATH O. Perron, “Die Stabilitatsfrage bei Differentialgleichungen,” Math. Zeitschr. 32, 702–728 (1930).MathSciNetMATH
77.
Zurück zum Zitat M. V. Keldysh, “About non-linear dampers,” Tr. TsAGI. 557, 26–37 (1944). M. V. Keldysh, “About non-linear dampers,” Tr. TsAGI. 557, 26–37 (1944).
78.
Zurück zum Zitat G. A. Leonov and N. V. Kuznetsov, “On the Keldysh problem of flutter suppression,” AIP Conf. Proc. 1959, 020002 (2018).CrossRef G. A. Leonov and N. V. Kuznetsov, “On the Keldysh problem of flutter suppression,” AIP Conf. Proc. 1959, 020002 (2018).CrossRef
79.
Zurück zum Zitat G. A. Leonov and N. V. Kuznetsov, “On flutter suppression in the Keldysh model,” Dokl. Phys. 63, 366–370 (2018).CrossRef G. A. Leonov and N. V. Kuznetsov, “On flutter suppression in the Keldysh model,” Dokl. Phys. 63, 366–370 (2018).CrossRef
80.
Zurück zum Zitat E. V. Kudryashova, N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov, and R. N. Mokaev, “Harmonic balance method and stability of discontinuous systems,” in Dynamics and Control of Advanced Structures and Machines, Ed. by V. P. Matveenko, M. Krommer, A. Belyaev, and H. Irschik (Springer Nature, Switzerland, 2019), pp. 99–107. E. V. Kudryashova, N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov, and R. N. Mokaev, “Harmonic balance method and stability of discontinuous systems,” in Dynamics and Control of Advanced Structures and Machines, Ed. by V. P. Matveenko, M. Krommer, A. Belyaev, and H. Irschik (Springer Nature, Switzerland, 2019), pp. 99–107.
81.
Zurück zum Zitat G. S. Byushgens, S. L. Chernyshev, M. G. Goman, et al., Aerodynamics, Stability and Controllability of Supersonic Aircraft (Nauka, Moscow, 2016) [in Russian]. G. S. Byushgens, S. L. Chernyshev, M. G. Goman, et al., Aerodynamics, Stability and Controllability of Supersonic Aircraft (Nauka, Moscow, 2016) [in Russian].
82.
Zurück zum Zitat M. A. Pogosyan, Aircraft Design (Innov. Mashinostr., Moscow, 2008) [in Russian]. M. A. Pogosyan, Aircraft Design (Innov. Mashinostr., Moscow, 2008) [in Russian].
83.
Zurück zum Zitat T. Lauvdal, R. M. Murray, and T. I. Fossen, “Stabilization of integrator chains in the presence of magnitude and rate saturations: A gain scheduling approach,” in Proceedings of the IEEE Control and Decision Conference, San Diego,1997, Vol. 4, pp. 4404–4405. T. Lauvdal, R. M. Murray, and T. I. Fossen, “Stabilization of integrator chains in the presence of magnitude and rate saturations: A gain scheduling approach,” in Proceedings of the IEEE Control and Decision Conference, San Diego,1997, Vol. 4, pp. 4404–4405.
84.
Zurück zum Zitat S. L. Chernyshev, “Modern problems of aircraft building in applied problems of aerohydromechanics,” in Proceedings of the International Conference on Mechanics, 8th Polyakhov’s Readings, St. Petersburg,2018. https://events.spbu.ru/eventsContent/events/2018/polyakhov/tsagi.pdf. S. L. Chernyshev, “Modern problems of aircraft building in applied problems of aerohydromechanics,” in Proceedings of the International Conference on Mechanics, 8th Polyakhov’s Readings, St. Petersburg,2018. https://​events.​spbu.​ru/​eventsContent/​events/​2018/​polyakhov/​tsagi.​pdf.​
85.
Zurück zum Zitat B. R. Andrievskii, N. V. Kuznetsov, and G. A. Leonov, “Methods for suppressing nonlinear oscillations in astatic auto-piloted aircraft control systems,” J. Comput. Syst. Sci. Int. 56, 455 (2017).MathSciNetMATHCrossRef B. R. Andrievskii, N. V. Kuznetsov, and G. A. Leonov, “Methods for suppressing nonlinear oscillations in astatic auto-piloted aircraft control systems,” J. Comput. Syst. Sci. Int. 56, 455 (2017).MathSciNetMATHCrossRef
86.
Zurück zum Zitat G. A. Leonov, B. R. Andrievskii, N. V. Kuznetsov, and A. Yu. Pogromskii, “Control of aircraft with AW-compensation,” Differ. Uravn. Protsessy Upravl. 3, 1–36 (2012).MATH G. A. Leonov, B. R. Andrievskii, N. V. Kuznetsov, and A. Yu. Pogromskii, “Control of aircraft with AW-compensation,” Differ. Uravn. Protsessy Upravl. 3, 1–36 (2012).MATH
87.
Zurück zum Zitat G. A. Leonov, N. V. Kuznetsov, and A. Yu. Pogromskii, “Stability domain analysis of an antiwindup control system for an unstable object,” Dokl. Math. 86, 587–590 (2012).MathSciNetMATHCrossRef G. A. Leonov, N. V. Kuznetsov, and A. Yu. Pogromskii, “Stability domain analysis of an antiwindup control system for an unstable object,” Dokl. Math. 86, 587–590 (2012).MathSciNetMATHCrossRef
88.
Zurück zum Zitat B. R. Andrievsky, N. V. Kuznetsov, G. A. Leonov, and A. Yu. Pogromsky, “Hidden oscillations in aircraft flight control system with input saturation,” IFAC Proc. Vols. 46 (12), 75–79 (2013). B. R. Andrievsky, N. V. Kuznetsov, G. A. Leonov, and A. Yu. Pogromsky, “Hidden oscillations in aircraft flight control system with input saturation,” IFAC Proc. Vols. 46 (12), 75–79 (2013).
89.
Zurück zum Zitat B. R. Andrievsky, E. V. Kudryashova, N. V. Kuznetsov, and O. A. Kuznetsova, “Aircraft wing rock oscillations suppression by simple adaptive control,” Aerospace Science and Technology (2020). https://doi.org/10.1016/j.ast.2020.106049 B. R. Andrievsky, E. V. Kudryashova, N. V. Kuznetsov, and O. A. Kuznetsova, “Aircraft wing rock oscillations suppression by simple adaptive control,” Aerospace Science and Technology (2020). https://doi.org/10.1016/j.ast.2020.106049
90.
Zurück zum Zitat L. O. Chua, “A zoo of strange attractors from the canonical Chua’s circuits,” in Proceedings of the IEEE 35th Midwest Symposium on Circuits and Systems, Washington, DC,1992, Cat. No. 92CH3099-9, Vol. 2, pp. 916–926. L. O. Chua, “A zoo of strange attractors from the canonical Chua’s circuits,” in Proceedings of the IEEE 35th Midwest Symposium on Circuits and Systems, Washington, DC,1992, Cat. No. 92CH3099-9, Vol. 2, pp. 916–926.
91.
Zurück zum Zitat E. Bilotta and P. Pantano, A Gallery of Chua Attractors (World Scientific, Singapore, 2008).MATHCrossRef E. Bilotta and P. Pantano, A Gallery of Chua Attractors (World Scientific, Singapore, 2008).MATHCrossRef
92.
Zurück zum Zitat G. A. Leonov and N. V. Kuznetsov, “Localization of hidden oscillations in dynamical systems,” Plenary Lecture on 4th International Conference on Physics and Control, Catania, 2009. http://www.math.spbu.ru/user/leonov/publications/2009-PhysCon-Leonov-plenary-hidden-oscillations.pdf#page=21. G. A. Leonov and N. V. Kuznetsov, “Localization of hidden oscillations in dynamical systems,” Plenary Lecture on 4th International Conference on Physics and Control, Catania, 2009. http://​www.​math.​spbu.​ru/​user/​leonov/​publications/​2009-PhysCon-Leonov-plenary-hidden-oscillations.​pdf#page=21.
93.
Zurück zum Zitat G. A. Leonov, V. I. Vagaitsev, and N. V. Kuznetsov, “Algorithm for localizing Chua attractors based on the harmonic linearization method,” Dokl. Math. 82, 663–666 (2010).MathSciNetMATHCrossRef G. A. Leonov, V. I. Vagaitsev, and N. V. Kuznetsov, “Algorithm for localizing Chua attractors based on the harmonic linearization method,” Dokl. Math. 82, 663–666 (2010).MathSciNetMATHCrossRef
94.
Zurück zum Zitat N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov, and V. I. Vagaytsev, “Hidden attractor in Chua’s circuits,” in ICINCO 2011, Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics,2011, Vol. 1, pp. 279–283. N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov, and V. I. Vagaytsev, “Hidden attractor in Chua’s circuits,” in ICINCO 2011, Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics,2011, Vol. 1, pp. 279–283.
95.
Zurück zum Zitat G. A. Leonov, N. V. Kuznetsov, and V. I. Vagaitsev, “Localization of hidden Chua’s attractors,” Phys. Lett. A 375, 2230–2233 (2011).MathSciNetMATHCrossRef G. A. Leonov, N. V. Kuznetsov, and V. I. Vagaitsev, “Localization of hidden Chua’s attractors,” Phys. Lett. A 375, 2230–2233 (2011).MathSciNetMATHCrossRef
96.
Zurück zum Zitat N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov, T. N. Mokaev, and N. V. Stankevich, “Hidden attractors localization in Chua circuit via the describing function method,” IFAC-PapersOnLine 50, 2651–2656 (2017).CrossRef N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov, T. N. Mokaev, and N. V. Stankevich, “Hidden attractors localization in Chua circuit via the describing function method,” IFAC-PapersOnLine 50, 2651–2656 (2017).CrossRef
97.
Zurück zum Zitat N. V. Stankevich, N. V. Kuznetsov, G. A. Leonov, and L. Chua, “Scenario of the birth of hidden attractors in the Chua circuit,” Int. J. Bifurcat. Chaos Appl. Sci. Eng. 27, 1730038 (2017).MathSciNetMATHCrossRef N. V. Stankevich, N. V. Kuznetsov, G. A. Leonov, and L. Chua, “Scenario of the birth of hidden attractors in the Chua circuit,” Int. J. Bifurcat. Chaos Appl. Sci. Eng. 27, 1730038 (2017).MathSciNetMATHCrossRef
98.
Zurück zum Zitat N. V. Kuznetsov and G. A. Leonov, “Hidden attractors in dynamical systems: Systems with no equilibria, multistability and coexisting attractors,” IFAC Proc. Vols. 47, 5445–5454 (2014). N. V. Kuznetsov and G. A. Leonov, “Hidden attractors in dynamical systems: Systems with no equilibria, multistability and coexisting attractors,” IFAC Proc. Vols. 47, 5445–5454 (2014).
99.
Zurück zum Zitat M. A. Kiseleva, E. V. Kudryashova, N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev, “Hidden and self-excited attractors in Chua circuit: Synchronization and SPICE simulation,” Int. J. Parall., Emerg. Distrib. Syst. 33, 513–523 (2018).CrossRef M. A. Kiseleva, E. V. Kudryashova, N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev, “Hidden and self-excited attractors in Chua circuit: Synchronization and SPICE simulation,” Int. J. Parall., Emerg. Distrib. Syst. 33, 513–523 (2018).CrossRef
100.
Zurück zum Zitat A. Sommerfeld, “Beitrage zum dynamischen Ausbau der Festigkeitslehre,” Zeitschr. Vereins deutsch. Ingen. 46, 391–394 (1902). A. Sommerfeld, “Beitrage zum dynamischen Ausbau der Festigkeitslehre,” Zeitschr. Vereins deutsch. Ingen. 46, 391–394 (1902).
101.
Zurück zum Zitat I. I. Blekhman, “Self-synchronization of vibrators of some vibrating machines,” Inzh. Sb. 16, 49–72 (1953). I. I. Blekhman, “Self-synchronization of vibrators of some vibrating machines,” Inzh. Sb. 16, 49–72 (1953).
102.
Zurück zum Zitat M. A. Kiseleva, N. V. Kuznetsov, and G. A. Leonov, “Hidden attractors in electromechanical systems with and without equilibria,” IFAC-PapersOnLine 49 (14), 51–55 (2016).CrossRef M. A. Kiseleva, N. V. Kuznetsov, and G. A. Leonov, “Hidden attractors in electromechanical systems with and without equilibria,” IFAC-PapersOnLine 49 (14), 51–55 (2016).CrossRef
103.
Zurück zum Zitat M. Kiseleva, N. Kondratyeva, N. Kuznetsov, and G. Leonov, “Hidden oscillations in electromechanical systems,” in Dynamics and Control of Advanced Structures and Machines, Ed. by H. Irschik, A. Belyaev, and M. Krommer (Springer, Cham, 2018), pp. 119–124. M. Kiseleva, N. Kondratyeva, N. Kuznetsov, and G. Leonov, “Hidden oscillations in electromechanical systems,” in Dynamics and Control of Advanced Structures and Machines, Ed. by H. Irschik, A. Belyaev, and M. Krommer (Springer, Cham, 2018), pp. 119–124.
104.
Zurück zum Zitat I. I. Blekhman, D. A. Indeitsev, and A. L. Fradkov, “Slow motions in systems with inertially excited vibrations,” IFAC Proc. Vols. 40 (14), 126–131 (2007). I. I. Blekhman, D. A. Indeitsev, and A. L. Fradkov, “Slow motions in systems with inertially excited vibrations,” IFAC Proc. Vols. 40 (14), 126–131 (2007).
105.
Zurück zum Zitat A. Fradkov, O. Tomchina, and D. Tomchin, “Controlled passage through resonance in mechanical systems,” J. Sound Vibrat. 330, 1065–1073 (2011).CrossRef A. Fradkov, O. Tomchina, and D. Tomchin, “Controlled passage through resonance in mechanical systems,” J. Sound Vibrat. 330, 1065–1073 (2011).CrossRef
106.
Zurück zum Zitat N. Mihajlovic, A. A. van Veggel, N. van de Wouw, and H. Nijmeijer, “Analysis of friction-induced limit cycling in an experimental drill-string system,” J. Dyn. Syst. Meas. Control 126, 709–720 (2004).CrossRef N. Mihajlovic, A. A. van Veggel, N. van de Wouw, and H. Nijmeijer, “Analysis of friction-induced limit cycling in an experimental drill-string system,” J. Dyn. Syst. Meas. Control 126, 709–720 (2004).CrossRef
107.
Zurück zum Zitat G. A. Leonov, N. V. Kuznetsov, M. A. Kiseleva, E. P. Solovyeva, and A. M. Zaretskiy, “Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor,” Nonlin. Dyn. 77, 277–288 (2014).CrossRef G. A. Leonov, N. V. Kuznetsov, M. A. Kiseleva, E. P. Solovyeva, and A. M. Zaretskiy, “Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor,” Nonlin. Dyn. 77, 277–288 (2014).CrossRef
108.
Zurück zum Zitat M. A. Kiseleva, N. V. Kondratyeva, N. V. Kuznetsov, G. A. Leonov, and E. P. Solovyeva, “Hidden periodic oscillations in drilling system driven by induction motor,” IFAC Proc. Vols. 47, 5872–5877 (2014). M. A. Kiseleva, N. V. Kondratyeva, N. V. Kuznetsov, G. A. Leonov, and E. P. Solovyeva, “Hidden periodic oscillations in drilling system driven by induction motor,” IFAC Proc. Vols. 47, 5872–5877 (2014).
109.
Zurück zum Zitat M. A. Kiseleva, N. V. Kondratyeva, N. V. Kuznetsov, and G. A. Leonov, “Hidden oscillations in drilling systems with salient pole synchronous motor,” IFAC-PapersOnLine 48, 700–705 (2015).CrossRef M. A. Kiseleva, N. V. Kondratyeva, N. V. Kuznetsov, and G. A. Leonov, “Hidden oscillations in drilling systems with salient pole synchronous motor,” IFAC-PapersOnLine 48, 700–705 (2015).CrossRef
110.
Zurück zum Zitat O. A. Ladyzhenskaya, “On finding minimal global attractors for the Navier–Stokes equations and other partial differential equations,” Usp. Mat. Nauk 42, 25–60 (1987).MathSciNet O. A. Ladyzhenskaya, “On finding minimal global attractors for the Navier–Stokes equations and other partial differential equations,” Usp. Mat. Nauk 42, 25–60 (1987).MathSciNet
111.
Zurück zum Zitat G. A. Leonov and V. Reitmann, Attraktoreingrenzung fur Nichtlineare Systeme (Teubner, Stuttgart, Leipzig, 1987).MATHCrossRef G. A. Leonov and V. Reitmann, Attraktoreingrenzung fur Nichtlineare Systeme (Teubner, Stuttgart, Leipzig, 1987).MATHCrossRef
112.
Zurück zum Zitat G. A. Leonov and N. V. Kuznetsov, “On differences and similarities in the analysis of Lorenz, Chen, and Lu systems,” Appl. Math. Comput. 256, 334–343 (2015).MathSciNetMATH G. A. Leonov and N. V. Kuznetsov, “On differences and similarities in the analysis of Lorenz, Chen, and Lu systems,” Appl. Math. Comput. 256, 334–343 (2015).MathSciNetMATH
113.
Zurück zum Zitat D. Dudkowski, S. Jafari, T. Kapitaniak, N. V. Kuznetsov, G. A. Leonov, and A. Prasad, “Hidden attractors in dynamical systems,” Phys. Rep. 637, 1–50 (2016).MathSciNetMATHCrossRef D. Dudkowski, S. Jafari, T. Kapitaniak, N. V. Kuznetsov, G. A. Leonov, and A. Prasad, “Hidden attractors in dynamical systems,” Phys. Rep. 637, 1–50 (2016).MathSciNetMATHCrossRef
114.
Zurück zum Zitat N. V. Kuznetsov, G. A. Leonov, T. N. Mokaev, A. Prasad, and M. D. Shrimali, “Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system,” Nonlin. Dyn. 92, 267–285 (2018).MATHCrossRef N. V. Kuznetsov, G. A. Leonov, T. N. Mokaev, A. Prasad, and M. D. Shrimali, “Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system,” Nonlin. Dyn. 92, 267–285 (2018).MATHCrossRef
115.
Zurück zum Zitat G. Chen, N. V. Kuznetsov, G. A. Leonov, and T. N. Mokaev, “Hidden attractors on one path: Glukhovsky-Dolzhansky, Lorenz, and Rabinovich systems,” Int. J. Bifurcat. Chaos Appl. Sci. Eng. 27, 1750115 (2017).MathSciNetMATHCrossRef G. Chen, N. V. Kuznetsov, G. A. Leonov, and T. N. Mokaev, “Hidden attractors on one path: Glukhovsky-Dolzhansky, Lorenz, and Rabinovich systems,” Int. J. Bifurcat. Chaos Appl. Sci. Eng. 27, 1750115 (2017).MathSciNetMATHCrossRef
116.
Zurück zum Zitat G. A. Leonov, N. V. Kuznetsov, and V. I. Vagaitsev, “Hidden attractor in smooth Chua systems,” Phys. D: Nonlin. Phenom. 241, 1482–1486 (2012).MathSciNetMATHCrossRef G. A. Leonov, N. V. Kuznetsov, and V. I. Vagaitsev, “Hidden attractor in smooth Chua systems,” Phys. D: Nonlin. Phenom. 241, 1482–1486 (2012).MathSciNetMATHCrossRef
117.
Zurück zum Zitat M.-F. Danca and N. V. Kuznetsov, “Hidden chaotic sets in a hopfield neural system,” Chaos, Solitons Fractals 103, 144–150 (2017).MathSciNetMATHCrossRef M.-F. Danca and N. V. Kuznetsov, “Hidden chaotic sets in a hopfield neural system,” Chaos, Solitons Fractals 103, 144–150 (2017).MathSciNetMATHCrossRef
118.
Zurück zum Zitat M.-F. Danca, N. Kuznetsov, and G. Chen, “Unusual dynamics and hidden attractors of the Rabinovich–Fabrikant system,” Nonlin. Dynam. 88, 791–805 (2017).MathSciNetCrossRef M.-F. Danca, N. Kuznetsov, and G. Chen, “Unusual dynamics and hidden attractors of the Rabinovich–Fabrikant system,” Nonlin. Dynam. 88, 791–805 (2017).MathSciNetCrossRef
119.
Zurück zum Zitat G. A. Leonov, N. V. Kuznetsov, and T. N. Mokaev, “Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity,” Commun. Nonlin. Sci. Numer. Simul. 28, 166–174 (2015).MathSciNetMATHCrossRef G. A. Leonov, N. V. Kuznetsov, and T. N. Mokaev, “Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity,” Commun. Nonlin. Sci. Numer. Simul. 28, 166–174 (2015).MathSciNetMATHCrossRef
120.
Zurück zum Zitat A. L. Fradkov and R. J. Evans, “Control of chaos: Methods and applications in engineering,” Ann. Rev. Control 29, 33–56 (2005).CrossRef A. L. Fradkov and R. J. Evans, “Control of chaos: Methods and applications in engineering,” Ann. Rev. Control 29, 33–56 (2005).CrossRef
121.
Zurück zum Zitat A. L. Fradkov, Cybernetic Physics: Principles and Examples (Nauka, St. Petersburg, 2003) [in Russian]. A. L. Fradkov, Cybernetic Physics: Principles and Examples (Nauka, St. Petersburg, 2003) [in Russian].
122.
123.
Zurück zum Zitat N. V. Kuznetsov and T. N. Mokaev, “Numerical analysis of dynamical systems: Unstable periodic orbits, hidden transient chaotic sets, hidden attractors, and finite-time Lyapunov dimension,” J. Phys.: Conf. Ser. 1205, 012034 (2019). N. V. Kuznetsov and T. N. Mokaev, “Numerical analysis of dynamical systems: Unstable periodic orbits, hidden transient chaotic sets, hidden attractors, and finite-time Lyapunov dimension,” J. Phys.: Conf. Ser. 1205, 012034 (2019).
124.
Zurück zum Zitat N. V. Kuznetsov, T. N. Mokaev, E. V. Kudryashova, O. A. Kuznetsova, and M.-F. Danca, “On lower-bound estimates of the Lyapunov dimension and topological entropy for the Rössler systems,” IFAC-PapersOnLine 52 (18), 97–102 (2019).CrossRef N. V. Kuznetsov, T. N. Mokaev, E. V. Kudryashova, O. A. Kuznetsova, and M.-F. Danca, “On lower-bound estimates of the Lyapunov dimension and topological entropy for the Rössler systems,” IFAC-PapersOnLine 52 (18), 97–102 (2019).CrossRef
126.
Zurück zum Zitat P. R. Sharma, M. D. Shrimali, A. Prasad, N. V. Kuznetsov, and G. A. Leonov, “Control of multistability in hidden attractors,” Eur. Phys. J. Spec. Top. 224, 1485–1491 (2015).CrossRef P. R. Sharma, M. D. Shrimali, A. Prasad, N. V. Kuznetsov, and G. A. Leonov, “Control of multistability in hidden attractors,” Eur. Phys. J. Spec. Top. 224, 1485–1491 (2015).CrossRef
127.
Zurück zum Zitat P. R. Sharma, M. D. Shrimali, A. Prasad, N. V. Kuznetsov, and G. A. Leonov, “Controlling dynamics of hidden attractors,” Int. J. Bifurcat. Chaos Appl. Sci. Eng. 25, 1550061 (2015).MathSciNetMATHCrossRef P. R. Sharma, M. D. Shrimali, A. Prasad, N. V. Kuznetsov, and G. A. Leonov, “Controlling dynamics of hidden attractors,” Int. J. Bifurcat. Chaos Appl. Sci. Eng. 25, 1550061 (2015).MathSciNetMATHCrossRef
128.
Zurück zum Zitat G. A. Leonov, M. M. Shumafov, and N. V. Kuznetsov, “Delayed feedback stabilization of unstable equilibria,” IFAC Proc. Vols. 19, 6818–6825 (2014). G. A. Leonov, M. M. Shumafov, and N. V. Kuznetsov, “Delayed feedback stabilization of unstable equilibria,” IFAC Proc. Vols. 19, 6818–6825 (2014).
129.
Zurück zum Zitat G. A. Leonov, M. M. Shumafov, and N. V. Kuznetsov, “Delayed feedback stabilization and the Huijberts-Michiels-Nijmeijer problem,” Differ. Equat. 52, 1707–1731 (2016).MathSciNetMATHCrossRef G. A. Leonov, M. M. Shumafov, and N. V. Kuznetsov, “Delayed feedback stabilization and the Huijberts-Michiels-Nijmeijer problem,” Differ. Equat. 52, 1707–1731 (2016).MathSciNetMATHCrossRef
130.
Zurück zum Zitat G. A. Leonov, I. Adan, B. R. Andrievsky, N. V. Kuznetsov, and A. Yu. Pogromsky, “Nonlinear problems in control of manufacturing systems,” IFAC Proc. Vols. 46 (9), 33–42 (2013). G. A. Leonov, I. Adan, B. R. Andrievsky, N. V. Kuznetsov, and A. Yu. Pogromsky, “Nonlinear problems in control of manufacturing systems,” IFAC Proc. Vols. 46 (9), 33–42 (2013).
131.
Zurück zum Zitat B. R. Andrievskii, N. V. Kuznetsov, G. A. Leonov, and A. Yu. Pogromskii, “Observed-based distributed control of production line,” Mekhatron. Avtomatiz. Upravl., No. 5, 13–25 (2014). B. R. Andrievskii, N. V. Kuznetsov, G. A. Leonov, and A. Yu. Pogromskii, “Observed-based distributed control of production line,” Mekhatron. Avtomatiz. Upravl., No. 5, 13–25 (2014).
132.
Zurück zum Zitat A. L. Fradkov, Network Control Issues (IKI, Moscow, Izhevsk, 2015) [in Russian]. A. L. Fradkov, Network Control Issues (IKI, Moscow, Izhevsk, 2015) [in Russian].
133.
Zurück zum Zitat D. Dudkowski, N. V. Kuznetsov, and T. N. Mokaev, “Chimera states and hidden attractors,” Phys. Life Rev. 28, 131–133 (2019).CrossRef D. Dudkowski, N. V. Kuznetsov, and T. N. Mokaev, “Chimera states and hidden attractors,” Phys. Life Rev. 28, 131–133 (2019).CrossRef
134.
Zurück zum Zitat N. V. Kuznetsov, “The Lyapunov dimension and its estimation via the Leonov method,” Phys. Lett. A 380, 2142–2149 (2016).MathSciNetMATHCrossRef N. V. Kuznetsov, “The Lyapunov dimension and its estimation via the Leonov method,” Phys. Lett. A 380, 2142–2149 (2016).MathSciNetMATHCrossRef
135.
Zurück zum Zitat N. V. Kuznetsov, T. A. Alexeeva, and G. A. Leonov, “Invariance of Lyapunov exponents and lyapunov dimension for regular and irregular linearizations,” Nonlin. Dyn. 85, 195–201 (2016).MathSciNetMATHCrossRef N. V. Kuznetsov, T. A. Alexeeva, and G. A. Leonov, “Invariance of Lyapunov exponents and lyapunov dimension for regular and irregular linearizations,” Nonlin. Dyn. 85, 195–201 (2016).MathSciNetMATHCrossRef
136.
Zurück zum Zitat N. V. Kuznetsov and V. Reitmann, Attractor Dimension Estimates for Dynamical Systems: Theory and Computation (Dedicated to Gennady Leonov) (Springer, Cham, 2021). N. V. Kuznetsov and V. Reitmann, Attractor Dimension Estimates for Dynamical Systems: Theory and Computation (Dedicated to Gennady Leonov) (Springer, Cham, 2021).
137.
Zurück zum Zitat A. S. Matveev and A. Yu. Pogromsky, “Observation of nonlinear systems via finite capacity channels. pt. II. Restoration entropy and its estimates,” Automatica 103, 189–199 (2019).MATHCrossRef A. S. Matveev and A. Yu. Pogromsky, “Observation of nonlinear systems via finite capacity channels. pt. II. Restoration entropy and its estimates,” Automatica 103, 189–199 (2019).MATHCrossRef
138.
Zurück zum Zitat V. I. Arnol’d, V. S. Afraimovich, Yu. S. Il’yashenko, and L. P. Shil’nikov, Bifurcation Theory (VINITI, Moscow, 1986) [in Russian]. V. I. Arnol’d, V. S. Afraimovich, Yu. S. Il’yashenko, and L. P. Shil’nikov, Bifurcation Theory (VINITI, Moscow, 1986) [in Russian].
139.
Zurück zum Zitat A. A. Andronov and L. S. Pontryagin, “Rough systems,” Dokl. Akad. Nauk SSSR 14, 247–250 (1937). A. A. Andronov and L. S. Pontryagin, “Rough systems,” Dokl. Akad. Nauk SSSR 14, 247–250 (1937).
140.
Zurück zum Zitat N. N. Bautin, “On the number of limit cycles that appear when coefficients change from an equilibrium state such as a focus or center,” Mat. Sb. 30 (72), 181–196 (1952). N. N. Bautin, “On the number of limit cycles that appear when coefficients change from an equilibrium state such as a focus or center,” Mat. Sb. 30 (72), 181–196 (1952).
141.
Zurück zum Zitat N. V. Kuznetsov and G. A. Leonov, “Lyapunov quantities, limit cycles and strange behavior of trajectories in two-dimensional quadratic systems,” J. Vibroeng. 10, 460–467 (2008). N. V. Kuznetsov and G. A. Leonov, “Lyapunov quantities, limit cycles and strange behavior of trajectories in two-dimensional quadratic systems,” J. Vibroeng. 10, 460–467 (2008).
142.
Zurück zum Zitat G. A. Leonov, N. V. Kuznetsov, and E. V. Kudryashova, “A direct method for calculating Lyapunov quantities of two-dimensional dynamical systems,” Proc. of the Steklov Institute of Math. (Tr. Inst. Mat. Mekh. UrO RAN), 272 (SUPPL 1), 119–127 (2011). G. A. Leonov, N. V. Kuznetsov, and E. V. Kudryashova, “A direct method for calculating Lyapunov quantities of two-dimensional dynamical systems,” Proc. of the Steklov Institute of Math. (Tr. Inst. Mat. Mekh. UrO RAN), 272 (SUPPL 1), 119–127 (2011).
143.
Zurück zum Zitat G. A. Leonov, N. V. Kuznetsov, and E. V. Kudryashova, “Local methods for dynamic system cycle investigation,” Plenary Lecture on Pyatnitskiy 10th International Workshop on Stability and Oscillations of Nonlinear Control Systems, Moscow, 2008. G. A. Leonov, N. V. Kuznetsov, and E. V. Kudryashova, “Local methods for dynamic system cycle investigation,” Plenary Lecture on Pyatnitskiy 10th International Workshop on Stability and Oscillations of Nonlinear Control Systems, Moscow, 2008.
144.
Zurück zum Zitat V. I. Arnold, Experimental Mathematics (Moscow, FAZIS, 2005). V. I. Arnold, Experimental Mathematics (Moscow, FAZIS, 2005).
145.
Zurück zum Zitat N. V. Kuznetsov, O. A. Kuznetsova, and G. A. Leonov, “Visualization of four normal size limit cycles in two-dimensional polynomial quadratic system,” Differ. Equat. Dyn. Syst. 21, 29–34 (2013).MathSciNetMATHCrossRef N. V. Kuznetsov, O. A. Kuznetsova, and G. A. Leonov, “Visualization of four normal size limit cycles in two-dimensional polynomial quadratic system,” Differ. Equat. Dyn. Syst. 21, 29–34 (2013).MathSciNetMATHCrossRef
146.
Zurück zum Zitat I. G. Petrovskii and E. M. Landis, “On the number of limit cycles of the equation dy/dx = P(x, y)/Q(x, y), where P and Q are polynomials of the second degree,” Mat. Sb. 37 (79), 209–250 (1955).MathSciNet I. G. Petrovskii and E. M. Landis, “On the number of limit cycles of the equation dy/dx = P(x, y)/Q(x, y), where P and Q are polynomials of the second degree,” Mat. Sb. 37 (79), 209–250 (1955).MathSciNet
147.
Zurück zum Zitat F. Tricomi, “Integrazione di differeziale presentasi in electrotechnica,” Ann. Roma Schuola Normale Super. Pisa 2, 1–20 (1933). F. Tricomi, “Integrazione di differeziale presentasi in electrotechnica,” Ann. Roma Schuola Normale Super. Pisa 2, 1–20 (1933).
148.
Zurück zum Zitat E. A. Barbashin and V. A. Tabueva, Dynamic Systems with a Cylindrical Phase Space (Nauka, Moscow, 1969) [in Russian].MATH E. A. Barbashin and V. A. Tabueva, Dynamic Systems with a Cylindrical Phase Space (Nauka, Moscow, 1969) [in Russian].MATH
149.
Zurück zum Zitat L. N. Belyustina, V. V. Bykov, K. G. Kiveleva, and V. D. Shalfeev, “On the size of the PLL locking system with a proportional-integrating filter,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 13, 561–567 (1970). L. N. Belyustina, V. V. Bykov, K. G. Kiveleva, and V. D. Shalfeev, “On the size of the PLL locking system with a proportional-integrating filter,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 13, 561–567 (1970).
150.
Zurück zum Zitat B. I. Shakhtarin, Analysis of System Synchronization by Averaging (Radio Svyaz’, Moscow, 1999) [in Russian]. B. I. Shakhtarin, Analysis of System Synchronization by Averaging (Radio Svyaz’, Moscow, 1999) [in Russian].
151.
Zurück zum Zitat V. V. Matrosov and V. D. Shalfeev, Nonlinear Dynamics of Phase Synchronization Systems (Nizhegor. Univ., Nizh. Novgorod, 2013) [in Russian]. V. V. Matrosov and V. D. Shalfeev, Nonlinear Dynamics of Phase Synchronization Systems (Nizhegor. Univ., Nizh. Novgorod, 2013) [in Russian].
152.
Zurück zum Zitat K. D. Aleksandrov, N. V. Kuznetsov, G. A. Leonov, N. Neittaanmaki, M. V. Yuldashev, and R. V. Yuldashev, “Computation of the lock-in ranges of phase-locked loops with PI filter,” IFAC-PapersOnLine 49 (14), 36–41 (2016).CrossRef K. D. Aleksandrov, N. V. Kuznetsov, G. A. Leonov, N. Neittaanmaki, M. V. Yuldashev, and R. V. Yuldashev, “Computation of the lock-in ranges of phase-locked loops with PI filter,” IFAC-PapersOnLine 49 (14), 36–41 (2016).CrossRef
153.
Zurück zum Zitat M. V. Kapranov, “Capture phase locked loop,” Radiotekhnika 11 (12), 37–52 (1956). M. V. Kapranov, “Capture phase locked loop,” Radiotekhnika 11 (12), 37–52 (1956).
154.
Zurück zum Zitat R. E. Best, N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev, “Nonlinear analysis of phase-locked loop based circuits,” in Discontinuity and Complexity in Nonlinear Physical Systems (Springer, Cham, 2014), Vol. 6, pp. 169–192.MATH R. E. Best, N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev, “Nonlinear analysis of phase-locked loop based circuits,” in Discontinuity and Complexity in Nonlinear Physical Systems (Springer, Cham, 2014), Vol. 6, pp. 169–192.MATH
155.
Zurück zum Zitat E. V. Kudryashova, N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev, “Nonlinear analysis of PLL by the harmonic balance method: Limitations of the pull-in range estimation,” IFAC-PapersOnLine 50, 1451–1456 (2017).CrossRef E. V. Kudryashova, N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev, “Nonlinear analysis of PLL by the harmonic balance method: Limitations of the pull-in range estimation,” IFAC-PapersOnLine 50, 1451–1456 (2017).CrossRef
156.
Zurück zum Zitat G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, and R. V. Yuldashev, “Hold-in, pull-in, and lock-in ranges of PLL circuits: Rigorous mathematical definitions and limitations of classical theory,” IEEE Trans. Circuits Syst. I: Regular Papers 62, 2454–2464 (2015).MathSciNetCrossRef G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, and R. V. Yuldashev, “Hold-in, pull-in, and lock-in ranges of PLL circuits: Rigorous mathematical definitions and limitations of classical theory,” IEEE Trans. Circuits Syst. I: Regular Papers 62, 2454–2464 (2015).MathSciNetCrossRef
157.
Zurück zum Zitat G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, and R. V. Yuldashev, “Hidden attractors in dynamical models of phase-locked loop circuits: Limitations of simulation in MATLAB and SPICE,” Commun. Nonlin. Sci. Numer. Simul. 51, 39–49 (2017).CrossRef G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, and R. V. Yuldashev, “Hidden attractors in dynamical models of phase-locked loop circuits: Limitations of simulation in MATLAB and SPICE,” Commun. Nonlin. Sci. Numer. Simul. 51, 39–49 (2017).CrossRef
158.
Zurück zum Zitat G. Bianchi, N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev, “Limitations of PLL simulation: Hidden oscillations in MATLAB and SPICE,” in Proceedings of the International Congress on Ultra Modern Telecommunications and Control Systems and Workshops ICUMT,2015, Brno, 2016, pp. 79–84. G. Bianchi, N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev, “Limitations of PLL simulation: Hidden oscillations in MATLAB and SPICE,” in Proceedings of the International Congress on Ultra Modern Telecommunications and Control Systems and Workshops ICUMT,2015, Brno, 2016, pp. 79–84.
159.
Zurück zum Zitat G. Bianchi, N. V. Kuznetsov, G. A. Leonov, S. M. Seledzhi, M. V. Yuldashev, and R. V. Yuldashev, “Hidden oscillations in SPICE simulation of two-phase Costas loop with non-linear VCO,” IFAC-PapersOnLine 49 (14), 45–50 (2016).CrossRef G. Bianchi, N. V. Kuznetsov, G. A. Leonov, S. M. Seledzhi, M. V. Yuldashev, and R. V. Yuldashev, “Hidden oscillations in SPICE simulation of two-phase Costas loop with non-linear VCO,” IFAC-PapersOnLine 49 (14), 45–50 (2016).CrossRef
160.
Zurück zum Zitat S. J. Goldman, Phase-Locked Loops Engineering Handbook for Integrated Circuits (Artech House, Boston, 2007). S. J. Goldman, Phase-Locked Loops Engineering Handbook for Integrated Circuits (Artech House, Boston, 2007).
161.
Zurück zum Zitat G. A. Leonov, V. Reitmann, and V. B. Smirnova, Nonlocal Methods for Pendulum-like Feedback Systems (Teubner, Stuttgart, Leipzig, 1992).MATHCrossRef G. A. Leonov, V. Reitmann, and V. B. Smirnova, Nonlocal Methods for Pendulum-like Feedback Systems (Teubner, Stuttgart, Leipzig, 1992).MATHCrossRef
162.
Zurück zum Zitat G. A. Leonov, I. M. Burkin, and A. I. Shepelyavy, Frequency Methods in Oscillation Theory (Kluwer, Dordretch, 1996).CrossRef G. A. Leonov, I. M. Burkin, and A. I. Shepelyavy, Frequency Methods in Oscillation Theory (Kluwer, Dordretch, 1996).CrossRef
163.
Zurück zum Zitat G. A. Leonov and S. M. Seledzhi, Phase Synchronization Systems in Analog and Digital Circuitry (Nevskii Dialekt, St. Petersburg, 2002) [in Russian]. G. A. Leonov and S. M. Seledzhi, Phase Synchronization Systems in Analog and Digital Circuitry (Nevskii Dialekt, St. Petersburg, 2002) [in Russian].
164.
Zurück zum Zitat G. A. Leonov, N. V. Kuznetsov, and S. M. Seledzhi, “Automation control – theory and practice,” in Nonlinear Analysis and Design of Phase-Locked Loops (InTech, London, 2009), pp. 89–114.CrossRef G. A. Leonov, N. V. Kuznetsov, and S. M. Seledzhi, “Automation control – theory and practice,” in Nonlinear Analysis and Design of Phase-Locked Loops (InTech, London, 2009), pp. 89–114.CrossRef
165.
Zurück zum Zitat G. A. Leonov and N. V. Kuznetsov, Nonlinear Mathematical Models of Phase-Locked Loops. Stability and Oscillations (Cambridge Sci., Cottenham, 2014). G. A. Leonov and N. V. Kuznetsov, Nonlinear Mathematical Models of Phase-Locked Loops. Stability and Oscillations (Cambridge Sci., Cottenham, 2014).
166.
Zurück zum Zitat N. V. Kuznetsov, “The development of stability theory for differential inclusions in G. A. Leonova and its application for stability analysis of angular orientation systems,” in Proceedings of the Korolev’s Readings (Moscow, 2019). N. V. Kuznetsov, “The development of stability theory for differential inclusions in G. A. Leonova and its application for stability analysis of angular orientation systems,” in Proceedings of the Korolev’s Readings (Moscow, 2019).
167.
Zurück zum Zitat N. V. Kuznetsov, M. Y. Lobachev, M. V. Yuldashev, R. V. Yuldashev, E. V. Kudryashova, O. A. Kuznetsova, E. N. Rosenwasser, and S. M. Abramovich, The birth of the global stability theory and the theory of hidden oscillations. In Proc. of European Control Conf. St. Petersburg, P. 769–774 (2020). N. V. Kuznetsov, M. Y. Lobachev, M. V. Yuldashev, R. V. Yuldashev, E. V. Kudryashova, O. A. Kuznetsova, E. N. Rosenwasser, and S. M. Abramovich, The birth of the global stability theory and the theory of hidden oscillations. In Proc. of European Control Conf. St. Petersburg, P. 769–774 (2020).
168.
Zurück zum Zitat D. Abramovitch, “Analysis and design of a third order phase-lock loop,” in Proceedings of the Conference on 21st Century Military Communications—What’s Possible?, San Diego,1988, pp. 455–459. D. Abramovitch, “Analysis and design of a third order phase-lock loop,” in Proceedings of the Conference on 21st Century Military Communications—What’s Possible?, San Diego,1988, pp. 455–459.
169.
Zurück zum Zitat S. Yu. Zheltov, K. K. Veremeenko, N. V. Kim, D. A. Kozorez, M. N. Krasilshchikov, G. G. Sebryakov, K. I. Sypalo, and A. I. Chernomorskiy, Modern information technologies in the tasks of navigation and guidance of unmanned maneuverable aerial vehicles (Fizmatlit, Moscow, 2009) [in Russian]. S. Yu. Zheltov, K. K. Veremeenko, N. V. Kim, D. A. Kozorez, M. N. Krasilshchikov, G. G. Sebryakov, K. I. Sypalo, and A. I. Chernomorskiy, Modern information technologies in the tasks of navigation and guidance of unmanned maneuverable aerial vehicles (Fizmatlit, Moscow, 2009) [in Russian].
170.
Zurück zum Zitat E. D. Kaplan and C. J. Hegarty, Understanding GPS: Principles and Applications (Artech House, Boston, 2006). E. D. Kaplan and C. J. Hegarty, Understanding GPS: Principles and Applications (Artech House, Boston, 2006).
171.
Zurück zum Zitat I. A. Kalyaev, I. I. Levin, E. A. Semernikov, and V. I. Shmoilov, Reconfigurable Multi-Pipeline Computing Structures (YuNTs RAN, Rostov-on-Don, 2008) [in Russian]. I. A. Kalyaev, I. I. Levin, E. A. Semernikov, and V. I. Shmoilov, Reconfigurable Multi-Pipeline Computing Structures (YuNTs RAN, Rostov-on-Don, 2008) [in Russian].
172.
Zurück zum Zitat S. I. Vol’skii, N. V. Kuznetsov, D. A. Sorokin, M. V. Yuldashev, and R. V. Yuldashev, “The choice of the frequency of the output voltage of the magnetoelectric generator of the power supply system of aircraft with electric traction,” in Proceedings of the International Conference on Electrical Complexes and Systems, Ufa,2020. http://www.icoecs.com/. S. I. Vol’skii, N. V. Kuznetsov, D. A. Sorokin, M. V. Yuldashev, and R. V. Yuldashev, “The choice of the frequency of the output voltage of the magnetoelectric generator of the power supply system of aircraft with electric traction,” in Proceedings of the International Conference on Electrical Complexes and Systems, Ufa,2020. http://​www.​icoecs.​com/​.​
173.
Zurück zum Zitat G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, and R. V. Yuldashev, “Analytical method for computation of phase-detector characteristic,” IEEE Trans. Circuits Syst. II: Express Briefs 59, 633–647 (2012).CrossRef G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, and R. V. Yuldashev, “Analytical method for computation of phase-detector characteristic,” IEEE Trans. Circuits Syst. II: Express Briefs 59, 633–647 (2012).CrossRef
174.
Zurück zum Zitat G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, and R. V. Yuldashev, “Nonlinear dynamical model of Costas loop and an approach to the analysis of its stability in the large,” Signal Process. 108, 124–135 (2015).CrossRef G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, and R. V. Yuldashev, “Nonlinear dynamical model of Costas loop and an approach to the analysis of its stability in the large,” Signal Process. 108, 124–135 (2015).CrossRef
175.
Zurück zum Zitat R. E. Best, N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev, “Simulation of analog Costas loop circuits,” Int. J. Autom. Comput. 11, 571–579 (2014).MATHCrossRef R. E. Best, N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev, “Simulation of analog Costas loop circuits,” Int. J. Autom. Comput. 11, 571–579 (2014).MATHCrossRef
176.
Zurück zum Zitat R. E. Best, N. V. Kuznetsov, O. A. Kuznetsova, et al., “A short survey on nonlinear models of the classic Costas loop: Rigorous derivation and limitations of the classic analysis,” in Proceedings of the American Control Conference (IEEE, Chicago, 2015), Art. No. 7170912, pp. 1296–1302. R. E. Best, N. V. Kuznetsov, O. A. Kuznetsova, et al., “A short survey on nonlinear models of the classic Costas loop: Rigorous derivation and limitations of the classic analysis,” in Proceedings of the American Control Conference (IEEE, Chicago, 2015), Art. No. 7170912, pp. 1296–1302.
177.
Zurück zum Zitat G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, and R. V. Yuldashev, “Computation of the phase detector characteristic of classical PLL,” Dokl. Math. 91, 246–249 (2015).MathSciNetMATHCrossRef G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, and R. V. Yuldashev, “Computation of the phase detector characteristic of classical PLL,” Dokl. Math. 91, 246–249 (2015).MathSciNetMATHCrossRef
178.
Zurück zum Zitat G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, and R. V. Yuldashev, “Mathematical models of the Costas loop,” Dokl. Math. 92, 594–598 (2015).MathSciNetMATHCrossRef G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, and R. V. Yuldashev, “Mathematical models of the Costas loop,” Dokl. Math. 92, 594–598 (2015).MathSciNetMATHCrossRef
179.
Zurück zum Zitat G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, and R. V. Yuldashev, “Computation of the phase detector characteristic of a QPSK Costas loop,” Dokl. Math. 93, 348–353 (2016).MathSciNetMATHCrossRef G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, and R. V. Yuldashev, “Computation of the phase detector characteristic of a QPSK Costas loop,” Dokl. Math. 93, 348–353 (2016).MathSciNetMATHCrossRef
180.
Zurück zum Zitat N. V. Kuznetsov, M. V. Yuldashev, R. V. Yuldashev, M. V. Blagov, E. V. Kudryashova, O. A. Kuznetsova, and T. N. Mokaev, “Comments on Van Paemel’s mathematical model of charge-pump phase-locked loop,” Differ. Uravn. Protsessy Upravl. 1, 109–120 (2019). https://diffjournal.spbu.ru/pdf/19107-jdecp-kuznetsov.pdfMathSciNetMATH N. V. Kuznetsov, M. V. Yuldashev, R. V. Yuldashev, M. V. Blagov, E. V. Kudryashova, O. A. Kuznetsova, and T. N. Mokaev, “Comments on Van Paemel’s mathematical model of charge-pump phase-locked loop,” Differ. Uravn. Protsessy Upravl. 1, 109–120 (2019). https://diffjournal.spbu.ru/pdf/19107-jdecp-kuznetsov.pdfMathSciNetMATH
181.
Zurück zum Zitat R. E. Best, N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev, “Tutorial on dynamic analysis of the Costas loop,” IFAC Ann. Rev. Control 42, 27–49 (2016).CrossRef R. E. Best, N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev, “Tutorial on dynamic analysis of the Costas loop,” IFAC Ann. Rev. Control 42, 27–49 (2016).CrossRef
182.
Zurück zum Zitat N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev, “A short survey on nonlinear models of QPSK Costas loop,” IFAC-PapersOnLine 50, 6525–6533 (2017).CrossRef N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev, “A short survey on nonlinear models of QPSK Costas loop,” IFAC-PapersOnLine 50, 6525–6533 (2017).CrossRef
183.
Zurück zum Zitat N. V. Kuznetsov, M. Yu. Lobachev, M. V. Yuldashev, and R. V. Yuldashev, “On the Gardner problem for the phase-locked loops,” Dokl. Math. 100, 568–570 (2019).MATHCrossRef N. V. Kuznetsov, M. Yu. Lobachev, M. V. Yuldashev, and R. V. Yuldashev, “On the Gardner problem for the phase-locked loops,” Dokl. Math. 100, 568–570 (2019).MATHCrossRef
184.
Zurück zum Zitat G. A. Leonov and N. V. Kuznetsov, “Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems,” IFAC Proc. Vols. 44, 2494–2505 (2011). G. A. Leonov and N. V. Kuznetsov, “Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems,” IFAC Proc. Vols. 44, 2494–2505 (2011).
185.
Zurück zum Zitat N. V. Kuznetsov, “Plenary lecture “Hidden attractors in fundamental problems and engineering models. A short survey”,” Lect. Notes Electric. Eng. 371, 13–25 (2016). N. V. Kuznetsov, “Plenary lecture “Hidden attractors in fundamental problems and engineering models. A short survey”,” Lect. Notes Electric. Eng. 371, 13–25 (2016).
186.
Zurück zum Zitat N. V. Kuznetsov, “Plenary lecture "Theory of hidden oscillations and stability of control systems,” in Proceedings of the International Conference on Stability, Control, Differential Games, Devoted to the 95th Anniversary of Academician N. N. Krasovskii (Yekaterinburg, 2019), pp. 201–204. N. V. Kuznetsov, “Plenary lecture "Theory of hidden oscillations and stability of control systems,” in Proceedings of the International Conference on Stability, Control, Differential Games, Devoted to the 95th Anniversary of Academician N. N. Krasovskii (Yekaterinburg, 2019), pp. 201–204.
187.
Zurück zum Zitat N. V. Kuznetsov, “Theory of hidden oscillations and the stability of control systems,” in Proceedings of the 12th All-Russian Congress on Fundamental Problems of Theoretical and Applied Mechanics (Ufa, 2019), Vol. 1, pp. 46–48. www.youtube.com/watch?v=843m-rI5nTM. N. V. Kuznetsov, “Theory of hidden oscillations and the stability of control systems,” in Proceedings of the 12th All-Russian Congress on Fundamental Problems of Theoretical and Applied Mechanics (Ufa, 2019), Vol. 1, pp. 46–48. www.youtube.com/watch?v=843m-rI5nTM.
188.
Zurück zum Zitat N. V. Kuznetsov, “Control of oscillations in phase locked loop systems,” in Proceedings of the 12th Multiconference on Control Problems, Divnomorskoe,2019, Vol. 3, pp. 21–26. N. V. Kuznetsov, “Control of oscillations in phase locked loop systems,” in Proceedings of the 12th Multiconference on Control Problems, Divnomorskoe,2019, Vol. 3, pp. 21–26.
Metadaten
Titel
Theory of Hidden Oscillations and Stability of Control Systems
verfasst von
N. V. Kuznetsov
Publikationsdatum
01.09.2020
Verlag
Pleiades Publishing
Erschienen in
Journal of Computer and Systems Sciences International / Ausgabe 5/2020
Print ISSN: 1064-2307
Elektronische ISSN: 1555-6530
DOI
https://doi.org/10.1134/S1064230720050093

Weitere Artikel der Ausgabe 5/2020

Journal of Computer and Systems Sciences International 5/2020 Zur Ausgabe