Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 1/2023

24.06.2022 | Technical Article

Tribological Behavior of a Multi-walled Carbon Nanotube Coated Porous Ti-Ta Shape Memory Alloy

verfasst von: Ahmed G. Hassan, M. A. Mat Yajid, S. N. Saud, T. A. Abu Bakar, Ahmed Alsakkaf

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The improvement of the unique tribological characteristics (self-lubricating and load-bearing capacity) of multi-walled carbon nanotubes (MWCNTs) coated on various shape memory alloys (SMAs) is demanded various practical applications. In this study, the surface of porous Ti-30 at.% Ta (Ti-Ta) SMAs were coated with functionalized MWCNTs (thickness 22.5 ± 0.2 μm) using the electrophoretic deposition method and characterized. First, powdered MWCNTs were dispersed in a solution containing 62:21:17 ethanol to acetone to water to coat the SMAs. Next, the mixture pH and electrophoretic deposition voltage were varied to customize the coating quality. A pH of 7 and a voltage of 40 V was optimal. Scan Electron Microscope micrographs of the SMA-coated surface revealed the homogeneous distribution of the MWCNTs. As shown by the pull-off analysis, the coating strongly adhered to the alloy surface (strength of 7.27 MPa without appreciable delamination). The tribological characteristics of the resulting Ti-Ta SMA surface were enhanced due to the MWCNT coatings. In wet conditions, the uncoated and coated SMA displayed nearly similar coefficients of friction (CoF). However, under dry sliding conditions, the CoF of the coated SMA was much lower (0.06) than the CoF of the uncoated SMA (0.16). In addition, the MWCNT-coated SMA showed excellent wear resistance in the contact modes: the coated alloy surface exhibited an almost tenfold lower rate of wear (0.0083 mm3/Nm) than the uncoated surface (0.0313 mm3/Nm) under dry conditions. Conversely, the wear rate of both the uncoated and coated alloy surfaces under wet conditions was comparable. The proposed MWCNT-coated Ti-Ta SMA surface obtained using the electrophoretic deposition method has great potential for diverse tribological purposes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Bhattacharya, Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect, Vol 2 Oxford University Press, 2003. K. Bhattacharya, Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect, Vol 2 Oxford University Press, 2003.
2.
Zurück zum Zitat S. Miyazaki, H.Y. Kim and H. Hosoda, Development and Characterization of Ni-free Ti-base Shape Memory and Superelastic Alloys, Mater. Sci. Eng., A, 2006, 438, p 18–24. CrossRef S. Miyazaki, H.Y. Kim and H. Hosoda, Development and Characterization of Ni-free Ti-base Shape Memory and Superelastic Alloys, Mater. Sci. Eng., A, 2006, 438, p 18–24. CrossRef
3.
Zurück zum Zitat D. Wever et al., Cytotoxic, Allergic and Genotoxic Activity of a Nickel-Titanium Alloy, Biomaterials, 1997, 18(16), p 1115–1120. CrossRef D. Wever et al., Cytotoxic, Allergic and Genotoxic Activity of a Nickel-Titanium Alloy, Biomaterials, 1997, 18(16), p 1115–1120. CrossRef
4.
Zurück zum Zitat M. Niinomi, Fatigue Performance and Cyto-Toxicity of Low Rigidity Titanium Alloy, Ti–29Nb–13Ta–4.6 Zr, Biomaterials, 2003, 24(16), p 2673–2683. CrossRef M. Niinomi, Fatigue Performance and Cyto-Toxicity of Low Rigidity Titanium Alloy, Ti–29Nb–13Ta–4.6 Zr, Biomaterials, 2003, 24(16), p 2673–2683. CrossRef
5.
Zurück zum Zitat P. Laheurte et al., Mechanical Properties of Low Modulus β Titanium Alloys Designed from the Electronic Approach, J. Mech. Behav. Biomed. Mater., 2010, 3(8), p 565–573. CrossRef P. Laheurte et al., Mechanical Properties of Low Modulus β Titanium Alloys Designed from the Electronic Approach, J. Mech. Behav. Biomed. Mater., 2010, 3(8), p 565–573. CrossRef
7.
Zurück zum Zitat A. Yolun et al., Fabrication, Characterization, and in vivo Biocompatibility Evaluation of Titanium-Niobium Implants, Proc. Inst. Mech. Eng. [H], 2021, 235(1), p 99–108. CrossRef A. Yolun et al., Fabrication, Characterization, and in vivo Biocompatibility Evaluation of Titanium-Niobium Implants, Proc. Inst. Mech. Eng. [H], 2021, 235(1), p 99–108. CrossRef
8.
Zurück zum Zitat T. Aydoğmuş, D.K.H. Palani and F. Kelen, Processing of Porous β-type Ti74Nb26 Alloys For Biomedical Applications, J. Alloy. Compd., 2021, 872, p 159737. CrossRef T. Aydoğmuş, D.K.H. Palani and F. Kelen, Processing of Porous β-type Ti74Nb26 Alloys For Biomedical Applications, J. Alloy. Compd., 2021, 872, p 159737. CrossRef
9.
Zurück zum Zitat A. Bahador et al., Effect of Deformation on the Microstructure, Transformation Temperature and Superelasticity of Ti-23 at% Nb Shape-Memory Alloys, Mater. Des., 2017, 118, p 152–162. CrossRef A. Bahador et al., Effect of Deformation on the Microstructure, Transformation Temperature and Superelasticity of Ti-23 at% Nb Shape-Memory Alloys, Mater. Des., 2017, 118, p 152–162. CrossRef
10.
Zurück zum Zitat D. Mareci et al., Comparative Corrosion Study of Ti-Ta Alloys for Dental Applications, Acta Biomater., 2009, 5(9), p 3625–3639. CrossRef D. Mareci et al., Comparative Corrosion Study of Ti-Ta Alloys for Dental Applications, Acta Biomater., 2009, 5(9), p 3625–3639. CrossRef
11.
Zurück zum Zitat M.K. Ibrahim et al., Effect of Sn Additions on the Microstructure, Mechanical Properties, Corrosion and Bioactivity Behaviour of Biomedical Ti-Ta Shape Memory Alloys, J. Therm. Anal. Calorim., 2018, 131(2), p 1165–1175. CrossRef M.K. Ibrahim et al., Effect of Sn Additions on the Microstructure, Mechanical Properties, Corrosion and Bioactivity Behaviour of Biomedical Ti-Ta Shape Memory Alloys, J. Therm. Anal. Calorim., 2018, 131(2), p 1165–1175. CrossRef
12.
Zurück zum Zitat M.K. Ibrahim et al., Role of Ag Addition on Microstructure, Mechanical Properties, Corrosion Behavior and Biocompatibility of Porous Ti-30 at% Ta Shape Memory Alloys, J. Cent. South Univ., 2020, 27(11), p 3175–3187. CrossRef M.K. Ibrahim et al., Role of Ag Addition on Microstructure, Mechanical Properties, Corrosion Behavior and Biocompatibility of Porous Ti-30 at% Ta Shape Memory Alloys, J. Cent. South Univ., 2020, 27(11), p 3175–3187. CrossRef
13.
Zurück zum Zitat M.-D. Bermúdez et al., Erosion–Corrosion of Stainless Steels, Titanium, Tantalum and Zirconium, Wear, 2005, 258(1–4), p 693–700. CrossRef M.-D. Bermúdez et al., Erosion–Corrosion of Stainless Steels, Titanium, Tantalum and Zirconium, Wear, 2005, 258(1–4), p 693–700. CrossRef
14.
Zurück zum Zitat H. Kato et al., Bonding of Alkali-and Heat-Treated Tantalum Implants to Bone, J. Biomed. Mater. Res.: Off. J. Soc. Biomater., Japn. Soc. Biomater., Aus. Soc. Biomater. Korean Soc. Biomater., 2000, 53(1), p 28–35. CrossRef H. Kato et al., Bonding of Alkali-and Heat-Treated Tantalum Implants to Bone, J. Biomed. Mater. Res.: Off. J. Soc. Biomater., Japn. Soc. Biomater., Aus. Soc. Biomater. Korean Soc. Biomater., 2000, 53(1), p 28–35. CrossRef
15.
Zurück zum Zitat S. Dittrick et al., Wear Performance of Laser Processed Tantalum Coatings, Mater. Sci. Eng., C, 2011, 31(8), p 1832–1835. CrossRef S. Dittrick et al., Wear Performance of Laser Processed Tantalum Coatings, Mater. Sci. Eng., C, 2011, 31(8), p 1832–1835. CrossRef
16.
Zurück zum Zitat J. Schultze and A. Hassel, Encyclopedia of Electrochemistry, Wiley-VCH, Weinheim, Bd, 2003, 4, p 216–235. J. Schultze and A. Hassel, Encyclopedia of Electrochemistry, Wiley-VCH, Weinheim, Bd, 2003, 4, p 216–235.
17.
Zurück zum Zitat M. Sowa et al., Modification of Tantalum Surface via Plasma Electrolytic Oxidation in Silicate Solutions, Electrochim. Acta, 2013, 114, p 627–636. CrossRef M. Sowa et al., Modification of Tantalum Surface via Plasma Electrolytic Oxidation in Silicate Solutions, Electrochim. Acta, 2013, 114, p 627–636. CrossRef
18.
Zurück zum Zitat N. Verma et al., Anodic Oxide Films on Niobium and Tantalum in Different Aqueous Electrolytes and their Impedance Characteristics, Acta Phys. Pol., A, 2016, 129, p 297–303. CrossRef N. Verma et al., Anodic Oxide Films on Niobium and Tantalum in Different Aqueous Electrolytes and their Impedance Characteristics, Acta Phys. Pol., A, 2016, 129, p 297–303. CrossRef
19.
Zurück zum Zitat A. Nishida et al., Biological Response to Nanostructure of Carbon Nanotube/Titanium Composite Surfaces, Nano Biomed., 2015, 7(1), p 11–20. A. Nishida et al., Biological Response to Nanostructure of Carbon Nanotube/Titanium Composite Surfaces, Nano Biomed., 2015, 7(1), p 11–20.
20.
Zurück zum Zitat A. Fraczek-Szczypta et al., Interaction of Carbon Nanotubes Coatings with Titanium Substrate, Appl. Phys. A, 2017, 123(2), p 120. CrossRef A. Fraczek-Szczypta et al., Interaction of Carbon Nanotubes Coatings with Titanium Substrate, Appl. Phys. A, 2017, 123(2), p 120. CrossRef
21.
Zurück zum Zitat M. Geetha et al., Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants–a Review, Prog. Mater Sci., 2009, 54(3), p 397–425. CrossRef M. Geetha et al., Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants–a Review, Prog. Mater Sci., 2009, 54(3), p 397–425. CrossRef
22.
Zurück zum Zitat J.C. Oh, E. Yun and S. Lee, Correlation of Microstructure with the Hardness and Wear Resistance of (TiC, SiC)/Ti-6Al-4V Surface Composites Fabricated by High-Energy Electron-Beam Irradiation, Metall. and Mater. Trans. A., 2004, 35(2), p 525. CrossRef J.C. Oh, E. Yun and S. Lee, Correlation of Microstructure with the Hardness and Wear Resistance of (TiC, SiC)/Ti-6Al-4V Surface Composites Fabricated by High-Energy Electron-Beam Irradiation, Metall. and Mater. Trans. A., 2004, 35(2), p 525. CrossRef
23.
Zurück zum Zitat Q. Niu et al., Friction and Wear Performance of Titanium Alloys Against Tungsten Carbide Under dry Sliding and Water Lubrication, Tribol. Trans., 2013, 56(1), p 101–108. CrossRef Q. Niu et al., Friction and Wear Performance of Titanium Alloys Against Tungsten Carbide Under dry Sliding and Water Lubrication, Tribol. Trans., 2013, 56(1), p 101–108. CrossRef
24.
Zurück zum Zitat S. Kaur, K. Ghadirinejad and R.H. Oskouei, An Overview on the Tribological Performance of Titanium Alloys with Surface Modifications for Biomedical Applications, Lubricants, 2019, 7(8), p 65. CrossRef S. Kaur, K. Ghadirinejad and R.H. Oskouei, An Overview on the Tribological Performance of Titanium Alloys with Surface Modifications for Biomedical Applications, Lubricants, 2019, 7(8), p 65. CrossRef
25.
Zurück zum Zitat W. Zhai et al., Carbon Nanomaterials in Tribology, Carbon, 2017, 119, p 150–171. CrossRef W. Zhai et al., Carbon Nanomaterials in Tribology, Carbon, 2017, 119, p 150–171. CrossRef
26.
Zurück zum Zitat J. Umeda et al., Friction Behavior of Network-Structured CNT Coating on Pure Titanium Plate, Appl. Surf. Sci., 2015, 357, p 721–727. CrossRef J. Umeda et al., Friction Behavior of Network-Structured CNT Coating on Pure Titanium Plate, Appl. Surf. Sci., 2015, 357, p 721–727. CrossRef
27.
Zurück zum Zitat Z.A. Uwais et al., Surface Modification of Metallic Biomaterials for Better Tribological Properties: A Review, Arab. J. Sci. Eng., 2017, 42(11), p 4493–4512. CrossRef Z.A. Uwais et al., Surface Modification of Metallic Biomaterials for Better Tribological Properties: A Review, Arab. J. Sci. Eng., 2017, 42(11), p 4493–4512. CrossRef
28.
Zurück zum Zitat J. Cumings and A. Zettl, Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes, Science, 2000, 289(5479), p 602–604. CrossRef J. Cumings and A. Zettl, Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes, Science, 2000, 289(5479), p 602–604. CrossRef
29.
Zurück zum Zitat G. Singh et al., Enhancing Corrosion and Wear Resistance of Ti6Al4V Alloy using CNTs Mixed Electro-Discharge Process, Micromachines, 2020, 11(9), p 850. CrossRef G. Singh et al., Enhancing Corrosion and Wear Resistance of Ti6Al4V Alloy using CNTs Mixed Electro-Discharge Process, Micromachines, 2020, 11(9), p 850. CrossRef
30.
Zurück zum Zitat Y. Zhang, Y. Bai and B. Yan, Functionalized Carbon Nanotubes for Potential Medicinal Applications, Drug Discov. Today, 2010, 15(11–12), p 428–435. CrossRef Y. Zhang, Y. Bai and B. Yan, Functionalized Carbon Nanotubes for Potential Medicinal Applications, Drug Discov. Today, 2010, 15(11–12), p 428–435. CrossRef
31.
Zurück zum Zitat H. Liao et al., Applications of Carbon Nanotubes in Biomedical Studies, Biomedical Nanotechnology. Springer, 2011, p 223–241CrossRef H. Liao et al., Applications of Carbon Nanotubes in Biomedical Studies, Biomedical Nanotechnology. Springer, 2011, p 223–241CrossRef
32.
Zurück zum Zitat M.S. Kang et al., Nanocomposites for Enhanced Osseointegration of Dental and Orthopedic Implants Revisited: Surface Functionalization by Carbon Nanomaterial Coatings, J. Compos. Sci., 2021, 5(1), p 23. CrossRef M.S. Kang et al., Nanocomposites for Enhanced Osseointegration of Dental and Orthopedic Implants Revisited: Surface Functionalization by Carbon Nanomaterial Coatings, J. Compos. Sci., 2021, 5(1), p 23. CrossRef
33.
Zurück zum Zitat A. Fraczek-Szczypta et al., Carbon Nanomaterials Coatings–Properties and Influence on Nerve Cells Response, Diam. Relat. Mater., 2018, 84, p 127–140. CrossRef A. Fraczek-Szczypta et al., Carbon Nanomaterials Coatings–Properties and Influence on Nerve Cells Response, Diam. Relat. Mater., 2018, 84, p 127–140. CrossRef
34.
Zurück zum Zitat A. Abrishamchian et al., Preparation and Characterization of Multi-Walled Carbon Nanotube/Hydroxyapatite Nanocomposite Film Dip Coated on Ti–6Al–4V by sol–gel Method for Biomedical Applications: An in vitro Study, Mater. Sci. Eng., C, 2013, 33(4), p 2002–2010. CrossRef A. Abrishamchian et al., Preparation and Characterization of Multi-Walled Carbon Nanotube/Hydroxyapatite Nanocomposite Film Dip Coated on Ti–6Al–4V by sol–gel Method for Biomedical Applications: An in vitro Study, Mater. Sci. Eng., C, 2013, 33(4), p 2002–2010. CrossRef
35.
Zurück zum Zitat X. Ji et al., Sol-gel-derived Hydroxyapatite-carbon Nanotube/Titania Coatings on Titanium Substrates, Int. J. Mol. Sci., 2012, 13(4), p 5242–5253. CrossRef X. Ji et al., Sol-gel-derived Hydroxyapatite-carbon Nanotube/Titania Coatings on Titanium Substrates, Int. J. Mol. Sci., 2012, 13(4), p 5242–5253. CrossRef
36.
Zurück zum Zitat Y.-P. Lu et al., Plasma-Sprayed Hydroxyapatite+ Titania Composite Bond Coat for Hydroxyapatite Coating on Titanium Substrate, Biomaterials, 2004, 25(18), p 4393–4403. CrossRef Y.-P. Lu et al., Plasma-Sprayed Hydroxyapatite+ Titania Composite Bond Coat for Hydroxyapatite Coating on Titanium Substrate, Biomaterials, 2004, 25(18), p 4393–4403. CrossRef
37.
Zurück zum Zitat J. Cai et al., Microstructure, Mechanical and Tribological Properties of aC/aC: Ti Nanomultilayer Film, Surf. Coat. Technol., 2013, 232, p 403–411. CrossRef J. Cai et al., Microstructure, Mechanical and Tribological Properties of aC/aC: Ti Nanomultilayer Film, Surf. Coat. Technol., 2013, 232, p 403–411. CrossRef
38.
Zurück zum Zitat A.R. Boccaccini et al., Electrophoretic Deposition of Carbon Nanotubes, Carbon, 2006, 44(15), p 3149–3160. CrossRef A.R. Boccaccini et al., Electrophoretic Deposition of Carbon Nanotubes, Carbon, 2006, 44(15), p 3149–3160. CrossRef
39.
Zurück zum Zitat B. Thomas, A. Boccaccini and M. Shaffer, Multi-Walled Carbon Nanotube Coatings Using Electrophoretic Deposition (EPD), J. Am. Ceram. Soc., 2005, 88(4), p 980–982. CrossRef B. Thomas, A. Boccaccini and M. Shaffer, Multi-Walled Carbon Nanotube Coatings Using Electrophoretic Deposition (EPD), J. Am. Ceram. Soc., 2005, 88(4), p 980–982. CrossRef
40.
Zurück zum Zitat M. Atiq Ur Rehman et al., Electrophoretic Deposition of Carbon Nanotubes: Recent Progress and Remaining Challenges, Int. Mater. Rev., 2021, 66(8), p 533–562. CrossRef M. Atiq Ur Rehman et al., Electrophoretic Deposition of Carbon Nanotubes: Recent Progress and Remaining Challenges, Int. Mater. Rev., 2021, 66(8), p 533–562. CrossRef
41.
Zurück zum Zitat X. Li et al., Biomedical Investigation of CNT Based Coatings, Surf. Coat. Technol., 2011, 206(4), p 759–766. CrossRef X. Li et al., Biomedical Investigation of CNT Based Coatings, Surf. Coat. Technol., 2011, 206(4), p 759–766. CrossRef
42.
Zurück zum Zitat Z. Zhong, J. Qin and J. Ma, Electrophoretic Deposition of Biomimetic Zinc Substituted Hydroxyapatite Coatings with Chitosan and Carbon Nanotubes on Titanium, Ceram. Int., 2015, 41(7), p 8878–8884. CrossRef Z. Zhong, J. Qin and J. Ma, Electrophoretic Deposition of Biomimetic Zinc Substituted Hydroxyapatite Coatings with Chitosan and Carbon Nanotubes on Titanium, Ceram. Int., 2015, 41(7), p 8878–8884. CrossRef
43.
Zurück zum Zitat A. Wesełucha-Birczyńska et al., Vibrational Spectroscopic Analysis of a Metal/carbon Nanotube Coating Interface and the Effect of its Interaction with Albumin, Vib. Spectrosc., 2016, 85, p 185–195. CrossRef A. Wesełucha-Birczyńska et al., Vibrational Spectroscopic Analysis of a Metal/carbon Nanotube Coating Interface and the Effect of its Interaction with Albumin, Vib. Spectrosc., 2016, 85, p 185–195. CrossRef
44.
Zurück zum Zitat S. Dey et al., Development of Superhydrophobic Corrosion Resistance Coating on Mild Steel by Electrophoretic Deposition, Surf. Coat. Technol., 2018, 341, p 24–30. CrossRef S. Dey et al., Development of Superhydrophobic Corrosion Resistance Coating on Mild Steel by Electrophoretic Deposition, Surf. Coat. Technol., 2018, 341, p 24–30. CrossRef
45.
Zurück zum Zitat H. Maleki-Ghaleh and J. Khalil-Allafi, Characterization, Mechanical and in vitro Biological Behavior of Hydroxyapatite-Titanium-Carbon Nanotube Composite Coatings Deposited on NiTi Alloy by Electrophoretic Deposition, Surf. Coat. Technol., 2019, 363, p 179–190. CrossRef H. Maleki-Ghaleh and J. Khalil-Allafi, Characterization, Mechanical and in vitro Biological Behavior of Hydroxyapatite-Titanium-Carbon Nanotube Composite Coatings Deposited on NiTi Alloy by Electrophoretic Deposition, Surf. Coat. Technol., 2019, 363, p 179–190. CrossRef
46.
Zurück zum Zitat A.R. Boccaccini and I. Zhitomirsky, Application of Electrophoretic and Electrolytic Deposition Techniques in Ceramics Processing, Curr. Opin. Solid State Mater. Sci., 2002, 6(3), p 251–260. CrossRef A.R. Boccaccini and I. Zhitomirsky, Application of Electrophoretic and Electrolytic Deposition Techniques in Ceramics Processing, Curr. Opin. Solid State Mater. Sci., 2002, 6(3), p 251–260. CrossRef
47.
Zurück zum Zitat A.G. Hassan et al., Effects of Varying Electrodeposition Voltages on Surface Morphology and Corrosion Behavior of Multi-Walled Carbon Nanotube Coated on Porous Ti-30 at.%-Ta Shape Memory Alloys, Surf. Coat. Technol., 2020, 401, p 126257. CrossRef A.G. Hassan et al., Effects of Varying Electrodeposition Voltages on Surface Morphology and Corrosion Behavior of Multi-Walled Carbon Nanotube Coated on Porous Ti-30 at.%-Ta Shape Memory Alloys, Surf. Coat. Technol., 2020, 401, p 126257. CrossRef
48.
Zurück zum Zitat E. Hirata et al., Multiwalled Carbon Nanotube-Coating of 3D Collagen Scaffolds for Bone Tissue Engineering, Carbon, 2011, 49(10), p 3284–3291. CrossRef E. Hirata et al., Multiwalled Carbon Nanotube-Coating of 3D Collagen Scaffolds for Bone Tissue Engineering, Carbon, 2011, 49(10), p 3284–3291. CrossRef
49.
Zurück zum Zitat T. Kokubo and H. Takadama, How Useful is SBF in Predicting in vivo Bone Bioactivity?, Biomaterials, 2006, 27(15), p 2907–2915. CrossRef T. Kokubo and H. Takadama, How Useful is SBF in Predicting in vivo Bone Bioactivity?, Biomaterials, 2006, 27(15), p 2907–2915. CrossRef
50.
Zurück zum Zitat W. Chen et al., Tribological Application of Carbon Nanotubes in a Metal-Based Composite Coating and Composites, Carbon, 2003, 41(2), p 215–222. CrossRef W. Chen et al., Tribological Application of Carbon Nanotubes in a Metal-Based Composite Coating and Composites, Carbon, 2003, 41(2), p 215–222. CrossRef
51.
Zurück zum Zitat Data Sheet MULTI-WALLED CARBON NANOTUBES, Adnano Technologies Private LimitedTechnical. India. Data Sheet MULTI-WALLED CARBON NANOTUBES, Adnano Technologies Private LimitedTechnical. India.
52.
Zurück zum Zitat E. Dlugon et al., Carbon Nanotube-Based Coatings on Titanium, Bull. Mater. Sci., 2015, 38(5), p 1339–1344. CrossRef E. Dlugon et al., Carbon Nanotube-Based Coatings on Titanium, Bull. Mater. Sci., 2015, 38(5), p 1339–1344. CrossRef
53.
Zurück zum Zitat M.S. Shaffer, X. Fan and A. Windle, Dispersion and Packing of Carbon Nanotubes, Carbon, 1998, 36(11), p 1603–1612. CrossRef M.S. Shaffer, X. Fan and A. Windle, Dispersion and Packing of Carbon Nanotubes, Carbon, 1998, 36(11), p 1603–1612. CrossRef
54.
Zurück zum Zitat A. Roshanghias et al., On the Effects of Thickness on Adhesion of TiW Diffusion Barrier Coatings in Silicon Integrated Circuits, Surf. Coat. Technol., 2014, 259, p 386–392. CrossRef A. Roshanghias et al., On the Effects of Thickness on Adhesion of TiW Diffusion Barrier Coatings in Silicon Integrated Circuits, Surf. Coat. Technol., 2014, 259, p 386–392. CrossRef
55.
Zurück zum Zitat H. Omidvar et al., A Method for Coating Carbon Nanotubes with Titanium, New Carbon Mater., 2012, 27(6), p 401–408. CrossRef H. Omidvar et al., A Method for Coating Carbon Nanotubes with Titanium, New Carbon Mater., 2012, 27(6), p 401–408. CrossRef
56.
Zurück zum Zitat M.J. Sampaio et al., Tailoring the Properties of Immobilized Titanium Dioxide/Carbon Nanotube Composites for Photocatalytic Water Treatment, J. Environ. Chem. Eng., 2013, 1(4), p 945–953. CrossRef M.J. Sampaio et al., Tailoring the Properties of Immobilized Titanium Dioxide/Carbon Nanotube Composites for Photocatalytic Water Treatment, J. Environ. Chem. Eng., 2013, 1(4), p 945–953. CrossRef
57.
Zurück zum Zitat B. Liu and H.C. Zeng, Carbon Nanotubes Supported Mesoporous Mesocrystals of Anatase TiO2, Chem. Mater., 2008, 20(8), p 2711–2718. CrossRef B. Liu and H.C. Zeng, Carbon Nanotubes Supported Mesoporous Mesocrystals of Anatase TiO2, Chem. Mater., 2008, 20(8), p 2711–2718. CrossRef
58.
Zurück zum Zitat J. Qian and K. Lu, Multiwall Carbon Nanotube and TiO2 Sol Assembly, J. Nanosci. Nanotechnol., 2009, 9(10), p 5816–5822. CrossRef J. Qian and K. Lu, Multiwall Carbon Nanotube and TiO2 Sol Assembly, J. Nanosci. Nanotechnol., 2009, 9(10), p 5816–5822. CrossRef
59.
Zurück zum Zitat Z. Németh et al., Preparation of Homogeneous Titania Coating on the Surface of MWNT, Compos. Sci. Technol., 2011, 71(2), p 87–94. CrossRef Z. Németh et al., Preparation of Homogeneous Titania Coating on the Surface of MWNT, Compos. Sci. Technol., 2011, 71(2), p 87–94. CrossRef
60.
Zurück zum Zitat A. Jitianu et al., Synthesis and Characterization of Carbon Nanotubes-TiO2 Nanocomposites, Carbon, 2004, 42(5–6), p 1147–1151. CrossRef A. Jitianu et al., Synthesis and Characterization of Carbon Nanotubes-TiO2 Nanocomposites, Carbon, 2004, 42(5–6), p 1147–1151. CrossRef
61.
Zurück zum Zitat S. Mallakpour and E. Khadem, Carbon Nanotube–Metal Oxide Nanocomposites: Fabrication, Properties and Applications, Chem. Eng. J., 2016, 302, p 344–367. CrossRef S. Mallakpour and E. Khadem, Carbon Nanotube–Metal Oxide Nanocomposites: Fabrication, Properties and Applications, Chem. Eng. J., 2016, 302, p 344–367. CrossRef
62.
Zurück zum Zitat S.-W. Lee and W.M. Sigmund, Formation of Anatase TiO 2 nanopArticles on Carbon Nanotubes, Chem. Commun., 2003, 6, p 780–781. CrossRef S.-W. Lee and W.M. Sigmund, Formation of Anatase TiO 2 nanopArticles on Carbon Nanotubes, Chem. Commun., 2003, 6, p 780–781. CrossRef
63.
Zurück zum Zitat A. Cheng et al., Additively Manufactured 3D Porous Ti-6Al-4V Constructs Mimic Trabecular Bone Structure and Regulate Osteoblast Proliferation, Differentiation and Local Factor Production in a Porosity and Surface Roughness Dependent Manner, Biofabrication, 2014, 6(4), p 045007. CrossRef A. Cheng et al., Additively Manufactured 3D Porous Ti-6Al-4V Constructs Mimic Trabecular Bone Structure and Regulate Osteoblast Proliferation, Differentiation and Local Factor Production in a Porosity and Surface Roughness Dependent Manner, Biofabrication, 2014, 6(4), p 045007. CrossRef
64.
Zurück zum Zitat Goyal, N. and R. Kaur, Effect Of Various Implant Surface Treatments On Osseointegration-A Literature Review. Indian Journal of Dental Sciences, 2012. 4(1). Goyal, N. and R. Kaur, Effect Of Various Implant Surface Treatments On Osseointegration-A Literature Review. Indian Journal of Dental Sciences, 2012. 4(1).
65.
Zurück zum Zitat A. Jemat et al., Surface Modifications and their Effects on Titanium Dental Implants, BioMed Res. Int., 2015, 2015, p 1–11. CrossRef A. Jemat et al., Surface Modifications and their Effects on Titanium Dental Implants, BioMed Res. Int., 2015, 2015, p 1–11. CrossRef
66.
Zurück zum Zitat F. Vargas et al., Mechanical and Tribological Performance of Al2O3-TiO2 Coatings Elaborated by Flame and Plasma Spraying, Surf. Coat. Technol., 2010, 205(4), p 1132–1136. CrossRef F. Vargas et al., Mechanical and Tribological Performance of Al2O3-TiO2 Coatings Elaborated by Flame and Plasma Spraying, Surf. Coat. Technol., 2010, 205(4), p 1132–1136. CrossRef
67.
Zurück zum Zitat V.F. Lins, E.S. Cecconello and T. Matencio, Effect of the Current Density on Morphology, Porosity, and Tribological Properties of Electrodeposited Nickel on Copper, J. Mater. Eng. Perform., 2008, 17(5), p 741–745. CrossRef V.F. Lins, E.S. Cecconello and T. Matencio, Effect of the Current Density on Morphology, Porosity, and Tribological Properties of Electrodeposited Nickel on Copper, J. Mater. Eng. Perform., 2008, 17(5), p 741–745. CrossRef
68.
Zurück zum Zitat I. Piwoński, Preparation Method and Some Tribological Properties of Porous Titanium Dioxide Layers, Thin Solid Films, 2007, 515(7–8), p 3499–3506. CrossRef I. Piwoński, Preparation Method and Some Tribological Properties of Porous Titanium Dioxide Layers, Thin Solid Films, 2007, 515(7–8), p 3499–3506. CrossRef
69.
Zurück zum Zitat H. Unal and A. Mimaroglu, Friction and Wear Characteristics of PEEK and its Composite Under Water Lubrication, J. Reinf. Plast. Compos., 2006, 25(16), p 1659–1667. CrossRef H. Unal and A. Mimaroglu, Friction and Wear Characteristics of PEEK and its Composite Under Water Lubrication, J. Reinf. Plast. Compos., 2006, 25(16), p 1659–1667. CrossRef
70.
Zurück zum Zitat A. Sak et al., Influence of Polyetheretherketone Coatings on the Ti-13Nb-13Zr Titanium Alloy’s Bio-Tribological Properties and Corrosion Resistance, Mater. Sci. Eng., C, 2016, 63, p 52–61. CrossRef A. Sak et al., Influence of Polyetheretherketone Coatings on the Ti-13Nb-13Zr Titanium Alloy’s Bio-Tribological Properties and Corrosion Resistance, Mater. Sci. Eng., C, 2016, 63, p 52–61. CrossRef
71.
Zurück zum Zitat X. Chen et al., Dry Friction and Wear Characteristics of Nickel/Carbon Nanotube Electroless Composite Deposits, Tribol. Int., 2006, 39(1), p 22–28. CrossRef X. Chen et al., Dry Friction and Wear Characteristics of Nickel/Carbon Nanotube Electroless Composite Deposits, Tribol. Int., 2006, 39(1), p 22–28. CrossRef
72.
Zurück zum Zitat K. Song et al., Enhanced Wear Resistance of Transparent Epoxy Composite Coatings with Vertically Aligned Halloysite Nanotubes, ACS Appl. Mater. Interfaces., 2016, 8(51), p 35552–35564. CrossRef K. Song et al., Enhanced Wear Resistance of Transparent Epoxy Composite Coatings with Vertically Aligned Halloysite Nanotubes, ACS Appl. Mater. Interfaces., 2016, 8(51), p 35552–35564. CrossRef
73.
Zurück zum Zitat M. Alishahi et al., The Effect of Carbon Nanotubes on the Corrosion and Tribological Behavior of Electroless Ni-P-CNT Composite Coating, Appl. Surf. Sci., 2012, 258(7), p 2439–2446. CrossRef M. Alishahi et al., The Effect of Carbon Nanotubes on the Corrosion and Tribological Behavior of Electroless Ni-P-CNT Composite Coating, Appl. Surf. Sci., 2012, 258(7), p 2439–2446. CrossRef
74.
Zurück zum Zitat H. Bakhsheshi-Rad et al., Fabrication and Characterisation of Novel ZnO/MWCNT Duplex Coating Deposited on Mg Alloy by PVD Coupled with Dip-Coating Techniques, J. Alloy. Compd., 2017, 728, p 159–168. CrossRef H. Bakhsheshi-Rad et al., Fabrication and Characterisation of Novel ZnO/MWCNT Duplex Coating Deposited on Mg Alloy by PVD Coupled with Dip-Coating Techniques, J. Alloy. Compd., 2017, 728, p 159–168. CrossRef
75.
Zurück zum Zitat Umeda, J., et al. Tribological Properties of Titanium Plate Coated with Carbon Nanotubes. in Key Engineering Materials. 2013. Trans Tech Publ. Umeda, J., et al. Tribological Properties of Titanium Plate Coated with Carbon Nanotubes. in Key Engineering Materials. 2013. Trans Tech Publ.
76.
Zurück zum Zitat M. Rodríguez et al., Effects of the Dispersion Time on the Microstructure and Wear Resistance of WC/Co-CNTs HVOF Sprayed Coatings, Surf. Coat. Technol., 2014, 258, p 38–48. CrossRef M. Rodríguez et al., Effects of the Dispersion Time on the Microstructure and Wear Resistance of WC/Co-CNTs HVOF Sprayed Coatings, Surf. Coat. Technol., 2014, 258, p 38–48. CrossRef
77.
Zurück zum Zitat T. Scharf et al., Self-Lubricating Carbon Nanotube Reinforced Nickel Matrix Composites, J. Appl. Phys., 2009, 106(1), p 013508. CrossRef T. Scharf et al., Self-Lubricating Carbon Nanotube Reinforced Nickel Matrix Composites, J. Appl. Phys., 2009, 106(1), p 013508. CrossRef
78.
Zurück zum Zitat A. Hirata and N. Yoshioka, Sliding Friction Properties of Carbon Nanotube Coatings Deposited by Microwave Plasma Chemical Vapor Deposition, Tribol. Int., 2004, 37(11–12), p 893–898. CrossRef A. Hirata and N. Yoshioka, Sliding Friction Properties of Carbon Nanotube Coatings Deposited by Microwave Plasma Chemical Vapor Deposition, Tribol. Int., 2004, 37(11–12), p 893–898. CrossRef
79.
Zurück zum Zitat K. Miyoshi et al., Solid lubrication by Multiwalled Carbon Nanotubes in Air and in Vacuum, Tribol. Lett., 2005, 19(3), p 191–201. CrossRef K. Miyoshi et al., Solid lubrication by Multiwalled Carbon Nanotubes in Air and in Vacuum, Tribol. Lett., 2005, 19(3), p 191–201. CrossRef
80.
Zurück zum Zitat Miyoshi, K., et al. Solid Lubrication by Multiwalled Carbon Nanotubes in Air and in Vacuum for Space and Aeronautics Applications. in World Tribology Congress. 2005. Miyoshi, K., et al. Solid Lubrication by Multiwalled Carbon Nanotubes in Air and in Vacuum for Space and Aeronautics Applications. in World Tribology Congress. 2005.
81.
Zurück zum Zitat X. Zhang et al., Carbon Nanotube− MoS2 Composites as Solid Lubricants, ACS Appl. Mater. Interfaces., 2009, 1(3), p 735–739. CrossRef X. Zhang et al., Carbon Nanotube− MoS2 Composites as Solid Lubricants, ACS Appl. Mater. Interfaces., 2009, 1(3), p 735–739. CrossRef
82.
Zurück zum Zitat S. Arai et al., Excellent Solid Lubrication of Electrodeposited Nickel-Multiwalled Carbon Nanotube Composite Films, Mater. Lett., 2008, 62(20), p 3545–3548. CrossRef S. Arai et al., Excellent Solid Lubrication of Electrodeposited Nickel-Multiwalled Carbon Nanotube Composite Films, Mater. Lett., 2008, 62(20), p 3545–3548. CrossRef
83.
Zurück zum Zitat H. Bakhsheshi-Rad et al., Characterisation and Thermodynamic Calculations of Biodegradable Mg-2.2 Zn-3.7 Ce and Mg-Ca-2.2 Zn-3.7 Ce Alloys, Mater. Sci. Technol., 2017, 33(11), p 1333–1345. CrossRef H. Bakhsheshi-Rad et al., Characterisation and Thermodynamic Calculations of Biodegradable Mg-2.2 Zn-3.7 Ce and Mg-Ca-2.2 Zn-3.7 Ce Alloys, Mater. Sci. Technol., 2017, 33(11), p 1333–1345. CrossRef
84.
Zurück zum Zitat C. Gachot et al., Dry friction Between Laser-Patterned Surfaces: Role of Alignment, Structural Wavelength and Surface Chemistry, Tribol. Lett., 2013, 49(1), p 193–202. CrossRef C. Gachot et al., Dry friction Between Laser-Patterned Surfaces: Role of Alignment, Structural Wavelength and Surface Chemistry, Tribol. Lett., 2013, 49(1), p 193–202. CrossRef
85.
Zurück zum Zitat S.J. Oh, D. Cook and H. Townsend, Characterization of Iron Oxides Commonly Formed as Corrosion Products on Steel, Hyperfine Interact., 1998, 112(1), p 59–66. CrossRef S.J. Oh, D. Cook and H. Townsend, Characterization of Iron Oxides Commonly Formed as Corrosion Products on Steel, Hyperfine Interact., 1998, 112(1), p 59–66. CrossRef
Metadaten
Titel
Tribological Behavior of a Multi-walled Carbon Nanotube Coated Porous Ti-Ta Shape Memory Alloy
verfasst von
Ahmed G. Hassan
M. A. Mat Yajid
S. N. Saud
T. A. Abu Bakar
Ahmed Alsakkaf
Publikationsdatum
24.06.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 1/2023
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07077-9

Weitere Artikel der Ausgabe 1/2023

Journal of Materials Engineering and Performance 1/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.