Skip to main content
Erschienen in: Cellulose 11/2018

10.09.2018 | Original Paper

Tunicate cellulose nanocrystal reinforced polyacrylamide hydrogels with tunable mechanical performance

verfasst von: Kangwei Mo, Tiantian Zhang, Wei Yan, Chunyu Chang

Erschienen in: Cellulose | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tunicate cellulose nanocrystals (TCNCs) are widely used as nanofillers for the reinforcements of polymeric materials because of their high aspect ratio and modulus. However, poor interfacial compatibility between TCNCs and polymer matrix always weakens the mechanical performance of nanocomposite materials. Herein, novel nanocomposite hydrogels composed of TCNCs and polyacrylamide (PAM) were generated by chemical crosslinking of PAM with TCNCs that worked as both multifunctional crosslinkers and interfacial compatible nanofillers. Our strategy for the preparation of hydrogels avoided using any toxic crosslinking agent. The morphology, swelling behavior, and mechanical properties of nanocomposite hydrogels could be tuned by varying the amount of initiator. This work provided a simple, universal, and sustainable method to synthesize nanocomposite hydrogels with tunable mechanical performance.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Capadona JR, Shanmuganathan K, Tyler DJ, Rowan SJ, Weder C (2008) Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319:1370–1374CrossRefPubMed Capadona JR, Shanmuganathan K, Tyler DJ, Rowan SJ, Weder C (2008) Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319:1370–1374CrossRefPubMed
Zurück zum Zitat Chang C, Zhang L, Chen S (2011) Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. J Mater Chem 21:3865–3871CrossRef Chang C, Zhang L, Chen S (2011) Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. J Mater Chem 21:3865–3871CrossRef
Zurück zum Zitat Chau M, France KJD, Kopera B et al (2016) Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chem Mater 28:3406–3415CrossRef Chau M, France KJD, Kopera B et al (2016) Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chem Mater 28:3406–3415CrossRef
Zurück zum Zitat Cheng Q, Ye D, Yang W, Zhang S, Chen H, Chang C, Zhang L (2018) Construction of transparent cellulose-based nanocomposite papers and potential application in flexible solar cells. ACS Sustain Chem Eng 6:8040–8047CrossRef Cheng Q, Ye D, Yang W, Zhang S, Chen H, Chang C, Zhang L (2018) Construction of transparent cellulose-based nanocomposite papers and potential application in flexible solar cells. ACS Sustain Chem Eng 6:8040–8047CrossRef
Zurück zum Zitat Cong H, Ren X, Wang P, Yu S (2012) Macroscopic multifunctional graphene-based hydrogels and aero gels by a metal ion induced self-assembly process. ACS Nano 6:2693–2703CrossRefPubMed Cong H, Ren X, Wang P, Yu S (2012) Macroscopic multifunctional graphene-based hydrogels and aero gels by a metal ion induced self-assembly process. ACS Nano 6:2693–2703CrossRefPubMed
Zurück zum Zitat De Souza Lima MM, Borsali R (2004) Rod like cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787CrossRef De Souza Lima MM, Borsali R (2004) Rod like cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787CrossRef
Zurück zum Zitat Franson NM, Peppas NA (1983) Influence of copolymer composition on non-fickian water transport through glassy copolymers. J Appl Polym Sci 28:1299–1310CrossRef Franson NM, Peppas NA (1983) Influence of copolymer composition on non-fickian water transport through glassy copolymers. J Appl Polym Sci 28:1299–1310CrossRef
Zurück zum Zitat Gulyuz U, Okay O (2014) Self-healing poly(acrylic acid) hydrogels with shapememory behavior of high mechanical strength. Macromolecules 47:6889–6899CrossRef Gulyuz U, Okay O (2014) Self-healing poly(acrylic acid) hydrogels with shapememory behavior of high mechanical strength. Macromolecules 47:6889–6899CrossRef
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRefPubMed Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRefPubMed
Zurück zum Zitat Haraguchi K (2007) Nanocomposite hydrogels. Curr Opin Solid State Mater Sci 11:47–54CrossRef Haraguchi K (2007) Nanocomposite hydrogels. Curr Opin Solid State Mater Sci 11:47–54CrossRef
Zurück zum Zitat Haraguchi K, Li H (2005) Control of the coil-to-globule transition and ultra-high mechanical properties of PNIPA in nanocomposite hydrogels. Angew Chem Int Ed 44:6500–6504CrossRef Haraguchi K, Li H (2005) Control of the coil-to-globule transition and ultra-high mechanical properties of PNIPA in nanocomposite hydrogels. Angew Chem Int Ed 44:6500–6504CrossRef
Zurück zum Zitat Haraguchi K, Takehisa T, Fan S (2002) Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropyl AM) and clay. Macromolecules 35:10162–10171CrossRef Haraguchi K, Takehisa T, Fan S (2002) Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropyl AM) and clay. Macromolecules 35:10162–10171CrossRef
Zurück zum Zitat Haraguchi K, Ebato M, Takehisa T (2006) Polymer-clay nanocomposites exhibiting abnormal necking phenomena accompanied by extremely large reversible elongations and excellent transparency. Adv Mater 18:2250–2254CrossRef Haraguchi K, Ebato M, Takehisa T (2006) Polymer-clay nanocomposites exhibiting abnormal necking phenomena accompanied by extremely large reversible elongations and excellent transparency. Adv Mater 18:2250–2254CrossRef
Zurück zum Zitat Haraguchi K, Uyama K, Tanimoto H (2011) Self-healing in nanocomposite hydrogels. Macromol Rapid Commun 32:1253–1258CrossRefPubMed Haraguchi K, Uyama K, Tanimoto H (2011) Self-healing in nanocomposite hydrogels. Macromol Rapid Commun 32:1253–1258CrossRefPubMed
Zurück zum Zitat Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007CrossRef Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007CrossRef
Zurück zum Zitat Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRef Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRef
Zurück zum Zitat Jing G, Wang L, Yu H et al (2013) Recent progress on study of hybrid hydrogels for water treatment. Colloids Surf A 416:86–94CrossRef Jing G, Wang L, Yu H et al (2013) Recent progress on study of hybrid hydrogels for water treatment. Colloids Surf A 416:86–94CrossRef
Zurück zum Zitat Khademhosseini A, Vacanti JP, Langer R (2009) Progress in tissue engineering. Sci Am 300:64–71CrossRefPubMed Khademhosseini A, Vacanti JP, Langer R (2009) Progress in tissue engineering. Sci Am 300:64–71CrossRefPubMed
Zurück zum Zitat Lee J, Park S, Roh H, Oh S, Kim S, Kim M, Kim D, Park J (2018) Preparation and characterization of superabsorbent polymers based on starch aldehydes and carboxymethyl cellulose. Polymers 10:605CrossRef Lee J, Park S, Roh H, Oh S, Kim S, Kim M, Kim D, Park J (2018) Preparation and characterization of superabsorbent polymers based on starch aldehydes and carboxymethyl cellulose. Polymers 10:605CrossRef
Zurück zum Zitat Li Y, Chen H, Liu D et al (2015) pH-responsive shape memory poly(ethyleneglycol)–poly(ε-caprolactone)-based polyurethane/cellulose nanocrystals nanocomposite. ACS Appl Mater Interfaces 7:12988–12999CrossRefPubMed Li Y, Chen H, Liu D et al (2015) pH-responsive shape memory poly(ethyleneglycol)–poly(ε-caprolactone)-based polyurethane/cellulose nanocrystals nanocomposite. ACS Appl Mater Interfaces 7:12988–12999CrossRefPubMed
Zurück zum Zitat Liu Y, Zhu M, Liu X et al (2006) High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kinetics. Polymer 47:1–5CrossRef Liu Y, Zhu M, Liu X et al (2006) High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kinetics. Polymer 47:1–5CrossRef
Zurück zum Zitat Liu M, Ishida Y, Ebina Y et al (2013) Photolatently modulable hydrogels using unilamellar titania nanosheets as photocatalytic crosslinkers. Nat Commun 4:2029CrossRefPubMed Liu M, Ishida Y, Ebina Y et al (2013) Photolatently modulable hydrogels using unilamellar titania nanosheets as photocatalytic crosslinkers. Nat Commun 4:2029CrossRefPubMed
Zurück zum Zitat McKee JR, Appel EA, Seitsonen J et al (2014) Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods. Adv Funct Mater 24:2706–2713CrossRef McKee JR, Appel EA, Seitsonen J et al (2014) Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods. Adv Funct Mater 24:2706–2713CrossRef
Zurück zum Zitat Peng N, Hu D, Zeng J, Li Y, Liang L, Chang C (2016) Superabsorbent cellulose-clay nanocomposite hydrogels for highly efficient removal of dye in water. ACS Sustain Chem Eng 4:7217–7224CrossRef Peng N, Hu D, Zeng J, Li Y, Liang L, Chang C (2016) Superabsorbent cellulose-clay nanocomposite hydrogels for highly efficient removal of dye in water. ACS Sustain Chem Eng 4:7217–7224CrossRef
Zurück zum Zitat Rao YQ (2007) Gelatin-clay nanocomposites of improved properties. Polymer 48:5369–5375CrossRef Rao YQ (2007) Gelatin-clay nanocomposites of improved properties. Polymer 48:5369–5375CrossRef
Zurück zum Zitat Sacui IA, Nieuwendaal RC, Burnett DJ, Stranick SJ, Jorfi M, Weder C, Foster EJ, Olsson RT, Gilman JW (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138CrossRefPubMed Sacui IA, Nieuwendaal RC, Burnett DJ, Stranick SJ, Jorfi M, Weder C, Foster EJ, Olsson RT, Gilman JW (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138CrossRefPubMed
Zurück zum Zitat Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287:1–11CrossRef Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287:1–11CrossRef
Zurück zum Zitat Sturcova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromol 6:1055–1061CrossRef Sturcova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromol 6:1055–1061CrossRef
Zurück zum Zitat Xu Y, Wu Q, Sun Y et al (2010) Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4:7358–7362CrossRefPubMed Xu Y, Wu Q, Sun Y et al (2010) Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4:7358–7362CrossRefPubMed
Zurück zum Zitat Yang J, Zhao JJ, Xu F et al (2013) Revealing strong nanocomposite hydrogels reinforced by cellulose nanocrystals: insight into morphologies and interactions. ACS Appl Mater Interfaces 5:12960–12967CrossRefPubMed Yang J, Zhao JJ, Xu F et al (2013) Revealing strong nanocomposite hydrogels reinforced by cellulose nanocrystals: insight into morphologies and interactions. ACS Appl Mater Interfaces 5:12960–12967CrossRefPubMed
Zurück zum Zitat Yang J, Zhao JJ, Han CR et al (2014) Tough nanocomposite hydrogels from cellulose nanocrystals/poly(AM) clusters: influence of the charge density, aspect ratio and surface coating with PEG. Cellulose 21:541–551CrossRef Yang J, Zhao JJ, Han CR et al (2014) Tough nanocomposite hydrogels from cellulose nanocrystals/poly(AM) clusters: influence of the charge density, aspect ratio and surface coating with PEG. Cellulose 21:541–551CrossRef
Zurück zum Zitat Yang J, Zhang X, Xu F (2015) Design of cellulose nanocrystals template-assisted composite hydrogels: insights from static to dynamic alignment. Macromolecules 48:1231–1239CrossRef Yang J, Zhang X, Xu F (2015) Design of cellulose nanocrystals template-assisted composite hydrogels: insights from static to dynamic alignment. Macromolecules 48:1231–1239CrossRef
Zurück zum Zitat Zhang L, Shi G (2011) Preparation of highly conductive graphene hydrogels for fabricating super capacitors with high rate capability. J Phys Chem C 115:17206–17212CrossRef Zhang L, Shi G (2011) Preparation of highly conductive graphene hydrogels for fabricating super capacitors with high rate capability. J Phys Chem C 115:17206–17212CrossRef
Zurück zum Zitat Zhang T, Cheng Q, Ye D, Chang C (2017) Tunicate cellulose nanocrystals reinforced nanocomposite hydrogels comprised by hybrid cross-linked networks. Carbohydr Polym 169:139–148CrossRefPubMed Zhang T, Cheng Q, Ye D, Chang C (2017) Tunicate cellulose nanocrystals reinforced nanocomposite hydrogels comprised by hybrid cross-linked networks. Carbohydr Polym 169:139–148CrossRefPubMed
Zurück zum Zitat Zhou J, Chang C, Zhang R, Zhang L (2007) Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol Biosci 7:804–809CrossRefPubMed Zhou J, Chang C, Zhang R, Zhang L (2007) Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol Biosci 7:804–809CrossRefPubMed
Metadaten
Titel
Tunicate cellulose nanocrystal reinforced polyacrylamide hydrogels with tunable mechanical performance
verfasst von
Kangwei Mo
Tiantian Zhang
Wei Yan
Chunyu Chang
Publikationsdatum
10.09.2018
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 11/2018
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-2025-7

Weitere Artikel der Ausgabe 11/2018

Cellulose 11/2018 Zur Ausgabe