Skip to main content
Erschienen in: Flow, Turbulence and Combustion 1/2019

18.07.2018

Vitiated High Karlovitz n-decane/air Turbulent Flames: Scaling Laws and Micro-mixing Modeling Analysis

verfasst von: Alexandre Bouaniche, Nicolas Jaouen, Pascale Domingo, Luc Vervisch

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Turbulent flames with high Karlovitz numbers have deserved further attention in the most recent literature. For a fixed value of the Damköhler number (ratio between an integral mechanical time and a chemical time), the increase of the Karlovitz number (ratio between a chemical time and a micro-mixing time) by an order of magnitude implies the increase of the turbulent Reynolds number by two orders of magnitude (Bray, Symp. (Int.) Combust. 26, 1–26 1996). In the practice of real burners featuring a limited range of variation of their turbulent Reynolds number, high Karlovitz combustion actually goes with a drastic reduction of the Damköhler number. Within this context, the relation between the dilution by burnt gases and the apparition of high Karlovitz flames is discussed. Basic scaling laws are reported which suggest that the overall decrease of the burning rate due to very fast mixing can indeed be compensated by the energy brought to the reaction zone by burnt gases. To estimate the validity of these scaling laws, in particular the response of the quenching Karlovitz versus the dilution level with a vitiated stream, the micro-mixing rate is varied in a multiple-inlet canonical turbulent and reactive micro-mixing problem. A reduced n-decane/air chemical kinetics is used, which has been derived from a more detailed scheme using a combination of a directed relation graphs analysis with a Genetic Algorithm. The multiple-inlet canonical micro-mixing problem includes liquid fuel injection and dilution by burnt gases, both calibrated from conditions representative of an aeronautical combustion chamber. The results confirm the possibility of reaching, with the help of a vitiated mixture, very high Karlovitz combustion before quenching occurs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
This scaling may also be retrieved from high-activation energy asymptotic developments after matching fluxes with vitiated fresh gases [65].
 
Literatur
1.
Zurück zum Zitat Aspden, A.J., Day, M.S., Bell, J.B.: Turbulence-chemistry interaction in lean premixed hydrogen combustion. Proc. Combust. Inst. 35(2), 1321–1329 (2015)CrossRef Aspden, A.J., Day, M.S., Bell, J.B.: Turbulence-chemistry interaction in lean premixed hydrogen combustion. Proc. Combust. Inst. 35(2), 1321–1329 (2015)CrossRef
2.
Zurück zum Zitat Aspden, A.J., Day, M.S., Bell, J.B.: Three-dimensional direct numerical simulation of turbulent lean premixed methane combustion with detailed kinetics. Combust. Flame 166, 266–283 (2016)CrossRef Aspden, A.J., Day, M.S., Bell, J.B.: Three-dimensional direct numerical simulation of turbulent lean premixed methane combustion with detailed kinetics. Combust. Flame 166, 266–283 (2016)CrossRef
3.
Zurück zum Zitat Bagdanavicius, A., Bowen, P.J., Bradley, D., Lawes, M., Mansour, M.S.: Stretch rate effects and flame surface densities in premixed turbulent combustion up to 1.25 MPa. Combust. Flame 162(11), 4158–4166 (2015)CrossRef Bagdanavicius, A., Bowen, P.J., Bradley, D., Lawes, M., Mansour, M.S.: Stretch rate effects and flame surface densities in premixed turbulent combustion up to 1.25 MPa. Combust. Flame 162(11), 4158–4166 (2015)CrossRef
4.
Zurück zum Zitat Bédat, B., Cheng, R.K.: Experimental study of premixed flames in intense isotropic turbulence. Combust. Flame 100(3), 485–494 (1995)CrossRef Bédat, B., Cheng, R.K.: Experimental study of premixed flames in intense isotropic turbulence. Combust. Flame 100(3), 485–494 (1995)CrossRef
5.
Zurück zum Zitat Bobbitt, B., Blanquart, G.: Vorticity isotropy in high Karlovitz number premixed flames. Phys. Fluids 28, 1070 (2016) Bobbitt, B., Blanquart, G.: Vorticity isotropy in high Karlovitz number premixed flames. Phys. Fluids 28, 1070 (2016)
6.
Zurück zum Zitat Bradley, D., Lawes, M., Liu, K., Mansour, M.S.: Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures. Combust. Flame 34(1), 1519–1526 (2013) Bradley, D., Lawes, M., Liu, K., Mansour, M.S.: Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures. Combust. Flame 34(1), 1519–1526 (2013)
7.
Zurück zum Zitat Carlsson, H., Yu, R., Bai, X.S.: Direct numerical simulation of lean premixed CH4/air and H2/air flames at high Karlovitz numbers. Int. J. Hydrog. Energy 39(35), 20,216–20,232 (2014)CrossRef Carlsson, H., Yu, R., Bai, X.S.: Direct numerical simulation of lean premixed CH4/air and H2/air flames at high Karlovitz numbers. Int. J. Hydrog. Energy 39(35), 20,216–20,232 (2014)CrossRef
8.
Zurück zum Zitat Carlsson, H., Yu, R., Bai, X.S.: Flame structure analysis for categorization of lean premixed CH4/air and H2/air flames at high Karlovitz numbers: direct numerical simulation studies. Proc. Combust. Inst. 35(2), 1425–1432 (2015)CrossRef Carlsson, H., Yu, R., Bai, X.S.: Flame structure analysis for categorization of lean premixed CH4/air and H2/air flames at high Karlovitz numbers: direct numerical simulation studies. Proc. Combust. Inst. 35(2), 1425–1432 (2015)CrossRef
9.
Zurück zum Zitat Cicoria, D., Chan, C.K.: Large Eddy simulation of lean turbulent hydrogen-enriched methane-air premixed flames at high Karlovitz numbers. Int. J. Hydrog. Energy 41(47), 22,479–22,496 (2016)CrossRef Cicoria, D., Chan, C.K.: Large Eddy simulation of lean turbulent hydrogen-enriched methane-air premixed flames at high Karlovitz numbers. Int. J. Hydrog. Energy 41(47), 22,479–22,496 (2016)CrossRef
10.
Zurück zum Zitat Haiou, W., Hawkes, R., Chen, J.H.: A direct numerical simulation study of flame structure and stabilisation of an experimental high Ka CH4/air premixed jet flame. Combust. Flame 180, 110–123 (2017)CrossRef Haiou, W., Hawkes, R., Chen, J.H.: A direct numerical simulation study of flame structure and stabilisation of an experimental high Ka CH4/air premixed jet flame. Combust. Flame 180, 110–123 (2017)CrossRef
11.
Zurück zum Zitat Han, I., Huh, K.Y.: Effects of the Karlovitz number on the evolution of the flame surface density in turbulent premixed flames. Proc. Combust. Inst. 32(1), 1419–1425 (2009)CrossRef Han, I., Huh, K.Y.: Effects of the Karlovitz number on the evolution of the flame surface density in turbulent premixed flames. Proc. Combust. Inst. 32(1), 1419–1425 (2009)CrossRef
12.
Zurück zum Zitat Huang, C.C., Shy, S.S., Liu, C.C., Yan, Y.Y.: A transition on minimum ignition energy for lean turbulent methane combustion in flamelet and distributed regimes. Proc. Combust. Inst. 31(1), 1401–1409 (2007)CrossRef Huang, C.C., Shy, S.S., Liu, C.C., Yan, Y.Y.: A transition on minimum ignition energy for lean turbulent methane combustion in flamelet and distributed regimes. Proc. Combust. Inst. 31(1), 1401–1409 (2007)CrossRef
13.
Zurück zum Zitat Kariuki, J., Dawson, J.R., Mastorakos, E.: Measurements in turbulent premixed bluff body flames close to blow-off. Combust. Flame 159(8), 2589–2607 (2012)CrossRef Kariuki, J., Dawson, J.R., Mastorakos, E.: Measurements in turbulent premixed bluff body flames close to blow-off. Combust. Flame 159(8), 2589–2607 (2012)CrossRef
14.
Zurück zum Zitat Karlovitz, B.: Open turbulent flames. Symp. (Int.) Combust. 4(1), 60–67 (1953)CrossRef Karlovitz, B.: Open turbulent flames. Symp. (Int.) Combust. 4(1), 60–67 (1953)CrossRef
15.
Zurück zum Zitat Lapointe, S., Blanquart, G.: Fuel and chemistry effects in high Karlovitz premixed turbulent flames. Combust. Flame 167, 294–307 (2016)CrossRef Lapointe, S., Blanquart, G.: Fuel and chemistry effects in high Karlovitz premixed turbulent flames. Combust. Flame 167, 294–307 (2016)CrossRef
16.
Zurück zum Zitat Lapointe, S., Savard, B., Blanquart, G.: Differential diffusion effects, distributed burning, and local extinctions in high Karlovitz premixed flames. Combust. Flame 162 (9), 3341–3355 (2015)CrossRef Lapointe, S., Savard, B., Blanquart, G.: Differential diffusion effects, distributed burning, and local extinctions in high Karlovitz premixed flames. Combust. Flame 162 (9), 3341–3355 (2015)CrossRef
17.
Zurück zum Zitat Poludnenko, A.Y., Oran, E.S.: The interaction fo high-speed turbulence with flames: turbulent flame speed. Combust. Flame 158(2), 301–326 (2011)CrossRef Poludnenko, A.Y., Oran, E.S.: The interaction fo high-speed turbulence with flames: turbulent flame speed. Combust. Flame 158(2), 301–326 (2011)CrossRef
18.
Zurück zum Zitat Ranjan, R., Muralidharan, B., Nagaoka, Y., Menon, S.: Subgrid-scale modeling of reaction-diffusion and scalar transport in turbulent premixed flames. Combust. Sci. Technol. 188(9), 1496–1537 (2016)CrossRef Ranjan, R., Muralidharan, B., Nagaoka, Y., Menon, S.: Subgrid-scale modeling of reaction-diffusion and scalar transport in turbulent premixed flames. Combust. Sci. Technol. 188(9), 1496–1537 (2016)CrossRef
19.
Zurück zum Zitat Savard, B., Blanquart, G.: Broken reaction zone and differential diffusion effects in high Karlovitz n-C7H16 premixed turbulent flames. Combust. Flame 162(5), 2020–2033 (2015)CrossRef Savard, B., Blanquart, G.: Broken reaction zone and differential diffusion effects in high Karlovitz n-C7H16 premixed turbulent flames. Combust. Flame 162(5), 2020–2033 (2015)CrossRef
20.
Zurück zum Zitat Savard, B., Bobbitt, B., Blanquart, G.: Structure of a high Karlovitz n-C7H16 premixed turbulent flame. Proc. Combust. Inst. 35(2), 1377–1384 (2015)CrossRef Savard, B., Bobbitt, B., Blanquart, G.: Structure of a high Karlovitz n-C7H16 premixed turbulent flame. Proc. Combust. Inst. 35(2), 1377–1384 (2015)CrossRef
21.
Zurück zum Zitat Shepherd, I.G., Cheng, R.K., Plessing, T., Kortschik, C., Peters, N.: Premixed flame front structure in intense turbulence. Proc. Combust. Inst. 29(2), 1833–1840 (2002)CrossRef Shepherd, I.G., Cheng, R.K., Plessing, T., Kortschik, C., Peters, N.: Premixed flame front structure in intense turbulence. Proc. Combust. Inst. 29(2), 1833–1840 (2002)CrossRef
22.
Zurück zum Zitat Shy, S.S., Liu, C.C., Lin, J.Y., Chen, L.L., Lipatnikov, A.N., Yang, S.I.: Correlations of high-pressure lean methane and syngas turbulent burning velocities: effects of turbulent Reynolds, Damköhler, and Karlovitz numbers. Proc. Combust. Inst. 35 (2), 1509–1516 (2015)CrossRef Shy, S.S., Liu, C.C., Lin, J.Y., Chen, L.L., Lipatnikov, A.N., Yang, S.I.: Correlations of high-pressure lean methane and syngas turbulent burning velocities: effects of turbulent Reynolds, Damköhler, and Karlovitz numbers. Proc. Combust. Inst. 35 (2), 1509–1516 (2015)CrossRef
23.
Zurück zum Zitat Sitte, M.P., Bach, E., Kariuki, J., Bauer, H.J., Mastorakos, E.: Simulations and experiments on the ignition probability in turbulent premixed bluff-body flames. Combust. Theor. Model. 20(3), 548–565 (2016)CrossRef Sitte, M.P., Bach, E., Kariuki, J., Bauer, H.J., Mastorakos, E.: Simulations and experiments on the ignition probability in turbulent premixed bluff-body flames. Combust. Theor. Model. 20(3), 548–565 (2016)CrossRef
24.
Zurück zum Zitat Sjöholm, J., Rosell, J., Li, B., Richter, M., Li, Z., Bai, X.S., Aldén, M.: Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence. Proc. Combust. Inst. 34(1), 1475–1482 (2013)CrossRef Sjöholm, J., Rosell, J., Li, B., Richter, M., Li, Z., Bai, X.S., Aldén, M.: Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence. Proc. Combust. Inst. 34(1), 1475–1482 (2013)CrossRef
25.
Zurück zum Zitat Wang, H., Hawkes, E.R., Chen, J.H.: Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame. Phys. Fluids 28, 095,107 (2016)CrossRef Wang, H., Hawkes, E.R., Chen, J.H.: Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame. Phys. Fluids 28, 095,107 (2016)CrossRef
26.
Zurück zum Zitat Yang, S.I., Shy, S.S.: Global quenching of premixed CH4/air flames: effects of turbulent straining, equivalence ratio, and radiative heat loss. Proc. Combust. Inst. 29 (2), 1841–1847 (2002)CrossRef Yang, S.I., Shy, S.S.: Global quenching of premixed CH4/air flames: effects of turbulent straining, equivalence ratio, and radiative heat loss. Proc. Combust. Inst. 29 (2), 1841–1847 (2002)CrossRef
27.
Zurück zum Zitat Yuen, F.T.C., Gülder, Ö.L.: Turbulent premixed flame front dynamics and implications for limits of flamelet hypothesis. Proc. Combust. Inst. 34(1), 1393–1400 (2013)CrossRef Yuen, F.T.C., Gülder, Ö.L.: Turbulent premixed flame front dynamics and implications for limits of flamelet hypothesis. Proc. Combust. Inst. 34(1), 1393–1400 (2013)CrossRef
28.
Zurück zum Zitat Zhou, B., Brackmann, C., Li, Q., Wang, Z., Petersson, P., Li, Z., Aldén, M., Bai, X.S.: Distributed reactions in highly turbulent premixed methane/air flames: Part I. Flame structure characterization. Combust. Flame 162(7), 2937–2953 (2015)CrossRef Zhou, B., Brackmann, C., Li, Q., Wang, Z., Petersson, P., Li, Z., Aldén, M., Bai, X.S.: Distributed reactions in highly turbulent premixed methane/air flames: Part I. Flame structure characterization. Combust. Flame 162(7), 2937–2953 (2015)CrossRef
29.
Zurück zum Zitat Zhou, B., Brackmann, C., Li, Z., Aldén, M., Bai, X.S.: Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime. Proc. Combust. Inst. 35(2), 1409–1416 (2015)CrossRef Zhou, B., Brackmann, C., Li, Z., Aldén, M., Bai, X.S.: Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime. Proc. Combust. Inst. 35(2), 1409–1416 (2015)CrossRef
30.
Zurück zum Zitat Zhou, B., Brackmann, C., Wang, Z., Li, Z., Richter, M., Aldén, M., Bai, X.S.: Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: scalar distributions and correlations. Combust. Flame 175, 220–236 (2017)CrossRef Zhou, B., Brackmann, C., Wang, Z., Li, Z., Richter, M., Aldén, M., Bai, X.S.: Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: scalar distributions and correlations. Combust. Flame 175, 220–236 (2017)CrossRef
31.
Zurück zum Zitat Chomiak, J., Jarosinski, J.: Flame quenching by turbulence. Combust. Flame 48, 241–249 (1982)CrossRef Chomiak, J., Jarosinski, J.: Flame quenching by turbulence. Combust. Flame 48, 241–249 (1982)CrossRef
32.
Zurück zum Zitat Karlovitz, B., Lewis, B.: Comment on the paper “Flame quenching by turbulence”. Combust. Flame 54(1–3), 229 (1983)CrossRef Karlovitz, B., Lewis, B.: Comment on the paper “Flame quenching by turbulence”. Combust. Flame 54(1–3), 229 (1983)CrossRef
33.
Zurück zum Zitat Borghi, R.: Mise au point sur la structure des flammes turbulentes. J. Chim. Phys. 81(6), 361–370 (1984)CrossRef Borghi, R.: Mise au point sur la structure des flammes turbulentes. J. Chim. Phys. 81(6), 361–370 (1984)CrossRef
34.
Zurück zum Zitat Borghi, R.: Turbulent combustion modelling. Prog. Energy Combust. Sci. 14, 245–292 (1988)CrossRef Borghi, R.: Turbulent combustion modelling. Prog. Energy Combust. Sci. 14, 245–292 (1988)CrossRef
35.
36.
Zurück zum Zitat Peters, N.: Multiscale combustion and turbulence. Proc. Combust. Inst. 32(1), 1–25 (2009)CrossRef Peters, N.: Multiscale combustion and turbulence. Proc. Combust. Inst. 32(1), 1–25 (2009)CrossRef
37.
Zurück zum Zitat Libby, P.A.: Introduction to Turbulence. Combustion. Taylor & Francis, New York (1996) Libby, P.A.: Introduction to Turbulence. Combustion. Taylor & Francis, New York (1996)
38.
Zurück zum Zitat Bray, K.N.C.: The challenge of turbulent combustion. Symp. (Int.) Combust. 26, 1–26 (1996)CrossRef Bray, K.N.C.: The challenge of turbulent combustion. Symp. (Int.) Combust. 26, 1–26 (1996)CrossRef
39.
Zurück zum Zitat Farcy, B., Vervisch, L., Domingo, P., Perret, N.: Reduced-order modeling for the control of selective non-catalytic reduction (SNCR). AIChE J. 62(3), 928–938 (2016)CrossRef Farcy, B., Vervisch, L., Domingo, P., Perret, N.: Reduced-order modeling for the control of selective non-catalytic reduction (SNCR). AIChE J. 62(3), 928–938 (2016)CrossRef
40.
Zurück zum Zitat Jaouen, N., Vervisch, L., Domingo, P., Ribert, G.: Automatic reduction and optimisation of chemistry for turbulent combustion modeling: impact of the canonical problem. Combust. Flame 175, 60–79 (2017)CrossRef Jaouen, N., Vervisch, L., Domingo, P., Ribert, G.: Automatic reduction and optimisation of chemistry for turbulent combustion modeling: impact of the canonical problem. Combust. Flame 175, 60–79 (2017)CrossRef
41.
Zurück zum Zitat Jaouen, N.: An Automated Approach to Derive and Optimise Reduced Chemical Mechanisms for Turbulent Combustion. Ph.D. thesis, Normandy University, INSA Rouen Normandie (2016) Jaouen, N.: An Automated Approach to Derive and Optimise Reduced Chemical Mechanisms for Turbulent Combustion. Ph.D. thesis, Normandy University, INSA Rouen Normandie (2016)
42.
Zurück zum Zitat Curl, R.I.: Dispersed phase mixing. Theory and effects in simple reactors. AIChE 9(2), 175–181 (1963)CrossRef Curl, R.I.: Dispersed phase mixing. Theory and effects in simple reactors. AIChE 9(2), 175–181 (1963)CrossRef
43.
Zurück zum Zitat Dopazo, C.: Relaxation of initial probability density functions in the turbulent convection of scalar fields. Phys. Fluids 22(1), 20–30 (1979)CrossRefMATH Dopazo, C.: Relaxation of initial probability density functions in the turbulent convection of scalar fields. Phys. Fluids 22(1), 20–30 (1979)CrossRefMATH
44.
Zurück zum Zitat Janicka, J., Kolbe, W., Kollmann, W.: Closure of the transport equation for the probability density function of turbulent scalar fields. J. Non-Equilib. Thermodyn. 4, 47–66 (1979)CrossRefMATH Janicka, J., Kolbe, W., Kollmann, W.: Closure of the transport equation for the probability density function of turbulent scalar fields. J. Non-Equilib. Thermodyn. 4, 47–66 (1979)CrossRefMATH
45.
Zurück zum Zitat Xu, J., Pope, S.: Pdf calculations of turbulent nonpremixed flames with local extinction. Combust. Flame 123, 281–307 (2000)CrossRef Xu, J., Pope, S.: Pdf calculations of turbulent nonpremixed flames with local extinction. Combust. Flame 123, 281–307 (2000)CrossRef
46.
Zurück zum Zitat Sundaram, B., Klimenko, A.Y., Cleary, M.J., Maas, U.: Prediction of NOx in premixed high-pressure lean methane flames with an MMC-partially stirred reactor. Proc. Combust. Inst. 35(2), 1517–1525 (2015)CrossRef Sundaram, B., Klimenko, A.Y., Cleary, M.J., Maas, U.: Prediction of NOx in premixed high-pressure lean methane flames with an MMC-partially stirred reactor. Proc. Combust. Inst. 35(2), 1517–1525 (2015)CrossRef
47.
Zurück zum Zitat Kerstein, A.R.: Hierarchical parcel-swapping representation of turbulent mixing. Part 2. Application to channel flow. J. Fluid Mech. 750, 421–463 (2014)MathSciNetCrossRef Kerstein, A.R.: Hierarchical parcel-swapping representation of turbulent mixing. Part 2. Application to channel flow. J. Fluid Mech. 750, 421–463 (2014)MathSciNetCrossRef
48.
Zurück zum Zitat Sirignano, W.A.: Fuel droplet vaporization and spray combustion theory. Prog. Energy Combust. Sci. 8, 291–322 (1983)CrossRef Sirignano, W.A.: Fuel droplet vaporization and spray combustion theory. Prog. Energy Combust. Sci. 8, 291–322 (1983)CrossRef
49.
Zurück zum Zitat Sirignano, W.A.: Advances in droplet array combustion theory and modeling. Prog. Energy Combust. Sci. 42, 54–86 (2014)CrossRef Sirignano, W.A.: Advances in droplet array combustion theory and modeling. Prog. Energy Combust. Sci. 42, 54–86 (2014)CrossRef
50.
Zurück zum Zitat Spalding, D.B.: The combustion of liquid fuels. Symp. (Int.) Combust. 4, 847–864 (1953)CrossRef Spalding, D.B.: The combustion of liquid fuels. Symp. (Int.) Combust. 4, 847–864 (1953)CrossRef
51.
Zurück zum Zitat Nomura, H., Murakoshi, T., Suganuma, Y., Ujiie, Y., Hashimoto, N., Nishida, H.: Microgravity experiments of fuel droplet evaporation in sub- and supercritical environments. Proc. Combust. Inst. 36(2), 2425–2432 (2017)CrossRef Nomura, H., Murakoshi, T., Suganuma, Y., Ujiie, Y., Hashimoto, N., Nishida, H.: Microgravity experiments of fuel droplet evaporation in sub- and supercritical environments. Proc. Combust. Inst. 36(2), 2425–2432 (2017)CrossRef
52.
Zurück zum Zitat Luche, J.: Elaboration of Reduced Kinetic Models of Combustion. Application to the a Kerosene Mechanism. Ph.D. thesis, Orléans University (2003) Luche, J.: Elaboration of Reduced Kinetic Models of Combustion. Application to the a Kerosene Mechanism. Ph.D. thesis, Orléans University (2003)
53.
Zurück zum Zitat Luche, J., Reuillon, M., Boettner, J.C., Cathonnet, M.: Reduction of large detailed kinetic mechanisms: application to kerosene/air combustion. Combust. Sci. Technol. 176(11), 1935–1963 (2004)CrossRef Luche, J., Reuillon, M., Boettner, J.C., Cathonnet, M.: Reduction of large detailed kinetic mechanisms: application to kerosene/air combustion. Combust. Sci. Technol. 176(11), 1935–1963 (2004)CrossRef
54.
Zurück zum Zitat Dagaut, P.: On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel. Phys. Chem. Chem. Phys. 4(11), 2079–2094 (2002)CrossRef Dagaut, P.: On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel. Phys. Chem. Chem. Phys. 4(11), 2079–2094 (2002)CrossRef
55.
Zurück zum Zitat Wang, H., Xu, R., Wang, K., Bowman, C.T., Hanson, R.K., Davidson, D.F., Brezinsky, K., Egolfopoulos, F.N.: A physics-based approach to modeling real-fuel combustion chemistry - I: evidence from experiments, and thermodynamic, chemical kinetic and statistical considerations. Combust. Flame. https://doi.org/10.1016/j.combustflame.2018.03.019 (2018) Wang, H., Xu, R., Wang, K., Bowman, C.T., Hanson, R.K., Davidson, D.F., Brezinsky, K., Egolfopoulos, F.N.: A physics-based approach to modeling real-fuel combustion chemistry - I: evidence from experiments, and thermodynamic, chemical kinetic and statistical considerations. Combust. Flame. https://​doi.​org/​10.​1016/​j.​combustflame.​2018.​03.​019 (2018)
56.
Zurück zum Zitat Lu, T., Law, C.K.: A directed relation graph method for mechanism reduction. Proc. Combust. Inst. 30(1), 1333–1341 (2005)CrossRef Lu, T., Law, C.K.: A directed relation graph method for mechanism reduction. Proc. Combust. Inst. 30(1), 1333–1341 (2005)CrossRef
57.
Zurück zum Zitat Pepiot, P., Pitsch, H.: An efficient error propagation based reduction method for large chemical kinetic mechanisms. Combust. Flame 154(1–2), 67–81 (2008)MATH Pepiot, P., Pitsch, H.: An efficient error propagation based reduction method for large chemical kinetic mechanisms. Combust. Flame 154(1–2), 67–81 (2008)MATH
58.
Zurück zum Zitat Jaouen, N., Vervisch, L., Domingo, P.: Auto-thermal reforming (ATR) of natural gas: an automated derivation of optimised reduced chemical schemes. Proc. Combust. Inst. 36(3), 3321–3330 (2017)CrossRef Jaouen, N., Vervisch, L., Domingo, P.: Auto-thermal reforming (ATR) of natural gas: an automated derivation of optimised reduced chemical schemes. Proc. Combust. Inst. 36(3), 3321–3330 (2017)CrossRef
59.
Zurück zum Zitat Dopazo, C., O’Brien, E.: Functional formulation of nonisothermal turbulent reactive flows. Phys. Fluids 17, 1968–1975 (1974)CrossRefMATH Dopazo, C., O’Brien, E.: Functional formulation of nonisothermal turbulent reactive flows. Phys. Fluids 17, 1968–1975 (1974)CrossRefMATH
61.
Zurück zum Zitat de Goey, L., Boonkkamp, J.T.T.: A flamelet description of premixed laminar flames and the relation with flame stretch. Combust. Flame 119, 253–271 (1999)CrossRef de Goey, L., Boonkkamp, J.T.T.: A flamelet description of premixed laminar flames and the relation with flame stretch. Combust. Flame 119, 253–271 (1999)CrossRef
62.
Zurück zum Zitat Liñán, A., Williams, F.A.: Fundamental Aspects of Combustion. Oxford University Press, Oxford (1993) Liñán, A., Williams, F.A.: Fundamental Aspects of Combustion. Oxford University Press, Oxford (1993)
63.
64.
Zurück zum Zitat Wang, K., Ribert, G., Domingo, P., Vervisch, L.: Self-similar behavior and chemistry tabulation of burnt-gases diluted premixed flamelets including heat-loss. Combust. Theor. Model. 4(14), 541–570 (2010)CrossRefMATH Wang, K., Ribert, G., Domingo, P., Vervisch, L.: Self-similar behavior and chemistry tabulation of burnt-gases diluted premixed flamelets including heat-loss. Combust. Theor. Model. 4(14), 541–570 (2010)CrossRefMATH
65.
Zurück zum Zitat Boulanger, J.: Asymptotic Analysis and Direct Numerical Simulation of Partially Premixed Combustion. Ph.D. thesis, INSA de Rouen Normandie (2002) Boulanger, J.: Asymptotic Analysis and Direct Numerical Simulation of Partially Premixed Combustion. Ph.D. thesis, INSA de Rouen Normandie (2002)
67.
Zurück zum Zitat Peters, N.: Length scales in laminar and turbulent flames. In: Oran, E.S., Boris, J.A. (eds.) Numerical Approaches to Combustion Modeling, Prog. Astronautics and Aeronautics, vol. 135, pp. 155–182. AIAA, Washington (1991) Peters, N.: Length scales in laminar and turbulent flames. In: Oran, E.S., Boris, J.A. (eds.) Numerical Approaches to Combustion Modeling, Prog. Astronautics and Aeronautics, vol. 135, pp. 155–182. AIAA, Washington (1991)
68.
Zurück zum Zitat Moureau, V., Domingo, P., Vervisch, L.: From Large-Eddy simulation to direct numerical simulation of a lean premixed swirl flame: filtered laminar flame-pdf modeling. Combust. Flame 158(7), 1340–1357 (2011)CrossRef Moureau, V., Domingo, P., Vervisch, L.: From Large-Eddy simulation to direct numerical simulation of a lean premixed swirl flame: filtered laminar flame-pdf modeling. Combust. Flame 158(7), 1340–1357 (2011)CrossRef
69.
Zurück zum Zitat Meier, W., Weigand, P., Duan, X., Giezendanner-Thoben, R.: Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame. Combust. Flame 150(1/2), 2–26 (2007)CrossRef Meier, W., Weigand, P., Duan, X., Giezendanner-Thoben, R.: Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame. Combust. Flame 150(1/2), 2–26 (2007)CrossRef
Metadaten
Titel
Vitiated High Karlovitz n-decane/air Turbulent Flames: Scaling Laws and Micro-mixing Modeling Analysis
verfasst von
Alexandre Bouaniche
Nicolas Jaouen
Pascale Domingo
Luc Vervisch
Publikationsdatum
18.07.2018
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 1/2019
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-018-9946-y

Weitere Artikel der Ausgabe 1/2019

Flow, Turbulence and Combustion 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.