Skip to main content
Erschienen in: Microsystem Technologies 11/2021

19.02.2020 | Technical Paper

A 10 nm MOS and its applications

verfasst von: Jyotsna Kumar Mandal, Raktim Chakraborty

Erschienen in: Microsystem Technologies | Ausgabe 11/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A 10 nm Metal Oxide Semiconductor Field Effect Transistor (MOSFET) and Complementary Metal Oxide Semiconductor (CMOS) are presented in this paper. A channel length of 24.6 nm and an optimized threshold voltage of 0.40961 v at drain voltage of 0.005 v are accomplished in this paper. The CMOS is considered using the 10 nm MOSFET and the improved characteristics of the device have been showcased. Indium Gallium Arsenide (In0.53Ga0.47As) is passed down as semiconductor material and Hafnium Oxide (HfO2) as oxide layer representative in the both n and p type10nm MOSFET. The Observation regarding the electrical features of the device has been carried out. The parameters which are taken for the observation are supplied gate voltage (VGS), Drain to Source Voltage(VDS), Threshold Voltage(VTH) and Drain Current(ID). The study regarding the device electrical characteristics has revealed that, it is working at an minimal threshold voltage (VTH) 0.40961v, drive current (ION) of 21.945 × 10−6A um−1, and leakage current (IOFF) of 14.853 × 10−11 A um−1.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Atan NB, Ahmad IB, Majlis BB (2014)“Effects of high-K dielectrics with metal gate for electrical characteristics of 18 nm NMOS device. In: Proceedings of IEEEICSE, pp 56–59 Atan NB, Ahmad IB, Majlis BB (2014)“Effects of high-K dielectrics with metal gate for electrical characteristics of 18 nm NMOS device. In: Proceedings of IEEEICSE, pp 56–59
Zurück zum Zitat Clark RD (2014) Emerging applications for high k materials in vlsi technology. Materials 7:2913–2944CrossRef Clark RD (2014) Emerging applications for high k materials in vlsi technology. Materials 7:2913–2944CrossRef
Zurück zum Zitat Faizah ZN, Ahmad I, Ker PJ, Maheran AA (2015) Modeling of 14 nm Gate Length n-Type MOSFET. In: Proceedings of RSM2015, Malaysia. Faizah ZN, Ahmad I, Ker PJ, Maheran AA (2015) Modeling of 14 nm Gate Length n-Type MOSFET. In: Proceedings of RSM2015, Malaysia.
Zurück zum Zitat Huang AP, Yang CZ, Paul CK (2010) Hafnium-based high-k gate dielectrics. In: Paul KC (ed) Advances in solid state circuits technologies. INTECH, Croatia Huang AP, Yang CZ, Paul CK (2010) Hafnium-based high-k gate dielectrics. In: Paul KC (ed) Advances in solid state circuits technologies. INTECH, Croatia
Zurück zum Zitat Leung G, Pan A, Chui CO (2015) Junctionless silicon and In 0.53 Ga 0.47 as transistors part II: device variability from random dopant fluctuation. IEEE Trans Electron Dev 62(10):3208–3214CrossRef Leung G, Pan A, Chui CO (2015) Junctionless silicon and In 0.53 Ga 0.47 as transistors part II: device variability from random dopant fluctuation. IEEE Trans Electron Dev 62(10):3208–3214CrossRef
Zurück zum Zitat Lim EJ, Kwong DL, Yeo YC (2009) Work function engineering within a single metal gate stack: manipulation terbium- and aluminium-induced interface dipoles of opposing polarity. IEEE Trans Electron Dev 56(3):466–473CrossRef Lim EJ, Kwong DL, Yeo YC (2009) Work function engineering within a single metal gate stack: manipulation terbium- and aluminium-induced interface dipoles of opposing polarity. IEEE Trans Electron Dev 56(3):466–473CrossRef
Zurück zum Zitat Lubow A, Ismail-Beigi S, Ma TP (2010) Comparison of drive currents in metal-oxide-semiconductor field-effect transistors made of Si, Ge, GaAs, InGaAs, and InAs channels. Appl Phys Lett 96(12):122105CrossRef Lubow A, Ismail-Beigi S, Ma TP (2010) Comparison of drive currents in metal-oxide-semiconductor field-effect transistors made of Si, Ge, GaAs, InGaAs, and InAs channels. Appl Phys Lett 96(12):122105CrossRef
Zurück zum Zitat Maheran AA, Faizah ZN, Menon PS, Ahmad I, Apte PR et al (2014) Statistical process modeling for 32 nm high-K/Metal gate PMOS device. In: Proceddings of IEEE-ICSE, pp 232–235 Maheran AA, Faizah ZN, Menon PS, Ahmad I, Apte PR et al (2014) Statistical process modeling for 32 nm high-K/Metal gate PMOS device. In: Proceddings of IEEE-ICSE, pp 232–235
Zurück zum Zitat Maity NP, Thakkur RR, Reshmi M, Thapa RK, Baishya S (2016) Analysis of interface charge densities for high-k dielectric materials based metal-oxide-semiconductor devices. Int J Nanosci 15(3):1660011CrossRef Maity NP, Thakkur RR, Reshmi M, Thapa RK, Baishya S (2016) Analysis of interface charge densities for high-k dielectric materials based metal-oxide-semiconductor devices. Int J Nanosci 15(3):1660011CrossRef
Zurück zum Zitat Maity NP, Reshmi M, Baishya S (2017) Voltage and oxide thickness dependent tunneling current density and tunnel resistivity model: application to high-k material HfO2 based MOS devices. Superlatt Microstruct 111:628–641CrossRef Maity NP, Reshmi M, Baishya S (2017) Voltage and oxide thickness dependent tunneling current density and tunnel resistivity model: application to high-k material HfO2 based MOS devices. Superlatt Microstruct 111:628–641CrossRef
Zurück zum Zitat Medisetty SJ, Dutta P (2016) Performance analysis of junctionless double gate MOSFET using silicon and In0.53Ga0.47As. In: International Conference on Communication and Signal Processing, India, pp 991–995 Medisetty SJ, Dutta P (2016) Performance analysis of junctionless double gate MOSFET using silicon and In0.53Ga0.47As. In: International Conference on Communication and Signal Processing, India, pp 991–995
Zurück zum Zitat Narendra SG (2002) Effect of MOSFET threshold voltage variation on high-performance circuits, PHD Thesis, Massachusetts Institute of Technology Narendra SG (2002) Effect of MOSFET threshold voltage variation on high-performance circuits, PHD Thesis, Massachusetts Institute of Technology
Zurück zum Zitat Song Y, Zhang C, Dowdy R, Chabak K (2014) III-V Junctionless gate-all around nanowire MOSFETs for high linearity low poer applications. IEEE Electron Dev Lett 35(3):324–326CrossRef Song Y, Zhang C, Dowdy R, Chabak K (2014) III-V Junctionless gate-all around nanowire MOSFETs for high linearity low poer applications. IEEE Electron Dev Lett 35(3):324–326CrossRef
Zurück zum Zitat Wicked Sago (2013) What is CMOS Memory? Wicked Sago. Accessed 3 March 2013 Wicked Sago (2013) What is CMOS Memory? Wicked Sago. Accessed 3 March 2013
Metadaten
Titel
A 10 nm MOS and its applications
verfasst von
Jyotsna Kumar Mandal
Raktim Chakraborty
Publikationsdatum
19.02.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 11/2021
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-020-04781-1

Weitere Artikel der Ausgabe 11/2021

Microsystem Technologies 11/2021 Zur Ausgabe

Neuer Inhalt