Skip to main content
Erschienen in: Microsystem Technologies 8/2013

01.08.2013 | Technical Paper

A flexible polyimide cable for implantable neural probe arrays

verfasst von: Ming-Yuan Cheng, Woo-Tae Park, Aibin Yu, Rui-Feng Xue, Kwan Ling Tan, Daquan Yu, Sang-Hyun Lee, Chee Lip Gan, Minkyu Je

Erschienen in: Microsystem Technologies | Ausgabe 8/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A flexible polyimide cable developed for implantable neural probe array application is presented. The flexible cable is used to connect two implantable platforms—one in direct touch with the brain containing a neural probe array and its interface IC, and the other on the skull including a wireless link IC, a coil and an antenna for power and data transfer through the transcutaneous link. The cable needs to be highly flexible to minimize post-insertion injury caused by the probe array in the presence of brain micro-motion. Polyimide is used to form a flexible substrate and an insulator layer of the cable. For the advanced neural recording system, a large amount of neural recording data has to be communicated between the two platforms through the flexible cable. High-rate data transmission performance of the fabricated flexible cable is characterized and discussed. The measured insertion loss (IL) of the flexible cable is less than 3 dB and the isolation between two adjacent interconnects is better than 17 dB up to 2 GHz. The data transmission through the flexible cable is verified to be highly reliable at 100 Mbps. For surgical manipulation and long term implantation of the neural probe microsystem, the flexible cable needs to have excellent mechanical strength and resistance to fatigue. The mechanical characteristics and fatigue strength of the flexible cable are also measured and discussed. The measured maximum tensile stress and strain of the flexible cable before failure are 251.2 ± 7.1 MPa (14.35 ± 0.3 N) and 4.16 ± 0.11 %, respectively. The Young’s modulus of the fabricated flexible cable is 8.21 GPa. From the fatigue strength testing, the measured resistance change of the flexible cable’s interconnect is less than 4.8 % after 250,000 cycles of cyclic mechanical stretch.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bai Q, Wise KD, Anderson DJ (2000) A high-yield microassembly structure for three-dimensional microelectrode arrays. IEEE Trans Bio Med Eng 47:281–289 Bai Q, Wise KD, Anderson DJ (2000) A high-yield microassembly structure for three-dimensional microelectrode arrays. IEEE Trans Bio Med Eng 47:281–289
Zurück zum Zitat Eisenstadt WR, Eo Y (1992) S-parameter-based IC interconnect transmission line characterization. IEEE Trans Compon Hybrids Manuf Technol 15:483–490CrossRef Eisenstadt WR, Eo Y (1992) S-parameter-based IC interconnect transmission line characterization. IEEE Trans Compon Hybrids Manuf Technol 15:483–490CrossRef
Zurück zum Zitat Goldstein SR, Salcman M (1973) Mechanical factors in design of chronic recording intracortical microelectrodes. IEEE Trans Bio Med Eng 20:260–269CrossRef Goldstein SR, Salcman M (1973) Mechanical factors in design of chronic recording intracortical microelectrodes. IEEE Trans Bio Med Eng 20:260–269CrossRef
Zurück zum Zitat Herwik S, Kisban S, Aarts AAA, Seidl K, Girardeau G, Benchenane K, Zugaro MB, Wiener SI, Paul O, Neves HP, Ruther P (2009) Fabrication technology for silicon-based microprobe arrays used in acute and sub-chronic neural recording. J Micromech Microeng 19:1–11CrossRef Herwik S, Kisban S, Aarts AAA, Seidl K, Girardeau G, Benchenane K, Zugaro MB, Wiener SI, Paul O, Neves HP, Ruther P (2009) Fabrication technology for silicon-based microprobe arrays used in acute and sub-chronic neural recording. J Micromech Microeng 19:1–11CrossRef
Zurück zum Zitat Hetke JF, Lund JL, Najafi K, Wise KD, Anderson DJ (1994) Silicon ribbon cables for chronically implantable microelectrode arrays. IEEE Trans Bio Med Eng 41:314–321CrossRef Hetke JF, Lund JL, Najafi K, Wise KD, Anderson DJ (1994) Silicon ribbon cables for chronically implantable microelectrode arrays. IEEE Trans Bio Med Eng 41:314–321CrossRef
Zurück zum Zitat Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–171CrossRef Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–171CrossRef
Zurück zum Zitat Lee YT, Lin CW, Lin CM, Yeh SR, Chang YC, Fang W (2010) A pseudo 3D glass microprobe array: glass microprobe with embedded silicon for alignment and electrical interconnection during assembly. J Micromech Microeng 20:1–9 Lee YT, Lin CW, Lin CM, Yeh SR, Chang YC, Fang W (2010) A pseudo 3D glass microprobe array: glass microprobe with embedded silicon for alignment and electrical interconnection during assembly. J Micromech Microeng 20:1–9
Zurück zum Zitat Meyer JU, Stieglitz T, Scholz O, Haberer W, Beutel H (2001) High density interconnects and flexible hybrid assemblies for active biomedical implants. IEEE Trans Adv Packag 24:366–374CrossRef Meyer JU, Stieglitz T, Scholz O, Haberer W, Beutel H (2001) High density interconnects and flexible hybrid assemblies for active biomedical implants. IEEE Trans Adv Packag 24:366–374CrossRef
Zurück zum Zitat Norlin P, Kindlundh M, Mouroux A, Yoshida K, Hofmann UG (2002) A 32-site neural recording probe fabricated by DRIE of SOI substrates. J Micromech Microeng 12:414–419CrossRef Norlin P, Kindlundh M, Mouroux A, Yoshida K, Hofmann UG (2002) A 32-site neural recording probe fabricated by DRIE of SOI substrates. J Micromech Microeng 12:414–419CrossRef
Zurück zum Zitat Pang C, Cham JG, Nenadic Z, Musallam S, Tai SC, Burdick JW, Andersen RA (2005) A new multi-site probe array with monolithieally integrated parylene flexible cable for neural prostheses. In: Prof of Intl Conf IEEE Eng Med and Bio, Shanghai, China, pp 7114–7117 Pang C, Cham JG, Nenadic Z, Musallam S, Tai SC, Burdick JW, Andersen RA (2005) A new multi-site probe array with monolithieally integrated parylene flexible cable for neural prostheses. In: Prof of Intl Conf IEEE Eng Med and Bio, Shanghai, China, pp 7114–7117
Zurück zum Zitat Rousche PJ, Pellinen DS, Pivin DP, Williams JC, Vetter RJ, Kipke DR (2001) Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans Bio Med Eng 48:361–371CrossRef Rousche PJ, Pellinen DS, Pivin DP, Williams JC, Vetter RJ, Kipke DR (2001) Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans Bio Med Eng 48:361–371CrossRef
Zurück zum Zitat Rubehn B, Stieglitz T (2010) In vitro evaluation of the long-term stability of polyimide as a material for neural implants. Biomaterials 31:3449–3458CrossRef Rubehn B, Stieglitz T (2010) In vitro evaluation of the long-term stability of polyimide as a material for neural implants. Biomaterials 31:3449–3458CrossRef
Zurück zum Zitat Stieglitz T, Beutel HE, Schuettler M, Meyer JU (2000) Micromachined, polyimide-based devices for flexible neural interfaces. Biomed Microdevices 2:283–294CrossRef Stieglitz T, Beutel HE, Schuettler M, Meyer JU (2000) Micromachined, polyimide-based devices for flexible neural interfaces. Biomed Microdevices 2:283–294CrossRef
Zurück zum Zitat Takeuchi S, Suzuki T, Mabuchi K, Fujita H (2004) 3D flexible multichannel neural probe array. J Micromech Microeng 14:104–107CrossRef Takeuchi S, Suzuki T, Mabuchi K, Fujita H (2004) 3D flexible multichannel neural probe array. J Micromech Microeng 14:104–107CrossRef
Zurück zum Zitat Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453:1098–1101CrossRef Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453:1098–1101CrossRef
Zurück zum Zitat Wise KD, Bhatti PT, Wang JB, Friedrich CR (2008) High-density cochlear implants with position sensing and control. Hearing Res 242:22–30CrossRef Wise KD, Bhatti PT, Wang JB, Friedrich CR (2008) High-density cochlear implants with position sensing and control. Hearing Res 242:22–30CrossRef
Zurück zum Zitat Yao Y, Gulari MN, Casey B, Wiler JA, Wise KD (2007) Silicon microelectrodes with flexible integrated cables for neural implant applications. In: Proc of EMBS Conf Neural Eng, Kohala Coast, pp 398–401 Yao Y, Gulari MN, Casey B, Wiler JA, Wise KD (2007) Silicon microelectrodes with flexible integrated cables for neural implant applications. In: Proc of EMBS Conf Neural Eng, Kohala Coast, pp 398–401
Metadaten
Titel
A flexible polyimide cable for implantable neural probe arrays
verfasst von
Ming-Yuan Cheng
Woo-Tae Park
Aibin Yu
Rui-Feng Xue
Kwan Ling Tan
Daquan Yu
Sang-Hyun Lee
Chee Lip Gan
Minkyu Je
Publikationsdatum
01.08.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 8/2013
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-012-1707-6

Weitere Artikel der Ausgabe 8/2013

Microsystem Technologies 8/2013 Zur Ausgabe

Neuer Inhalt