Skip to main content

2018 | OriginalPaper | Buchkapitel

A General-Purpose NURBS Mesh Generation Method for Complex Geometries

verfasst von : Yuto Otoguro, Kenji Takizawa, Tayfun E. Tezduyar

Erschienen in: Frontiers in Computational Fluid-Structure Interaction and Flow Simulation

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spatial discretization with NURBS meshes is increasingly being used in computational analysis, including computational flow analysis with complex geometries. In flow analysis, compared to standard discretization methods, isogeometric discretization provides more accurate representation of the solid surfaces and increased accuracy in the flow solution. The Space-Time Computational Analysis (STCA), where the core method is the ST Variational Multiscale method, is increasingly relying on the ST Isogeometric Analysis (ST-IGA) as one of its key components, quite often also with IGA basis functions in time. The ST Slip Interface (ST-SI) and ST Topology Change methods are two other key components of the STCA, and complementary nature of all these ST methods makes the STCA powerful and practical. To make the ST-IGA use, and in a wider context the IGA use, even more practical in computational flow analysis with complex geometries, NURBS volume mesh generation needs to be easier and more automated. To that end, we present a general-purpose NURBS mesh generation method. The method is based on multi-block-structured mesh generation with existing techniques, projection of that mesh to a NURBS mesh made of patches that correspond to the blocks, and recovery of the original model surfaces to the extent they are suitable for accurate and robust fluid mechanics computations. It is expected to retain the refinement distribution and element quality of the multi-block-structured mesh that we start with. The flexibility of discretization with the general-purpose mesh generation is supplemented with the ST-SI method, which allows, without loss of accuracy, C−1 continuity between NURBS patches and thus removes the matching requirement between the patches. We present mesh-quality performance studies for 2D and 3D meshes, including those for complex models, and test computation for a turbocharger turbine and exhaust manifold. These demonstrate that the general-purpose mesh generation method proposed makes the IGA use in computational flow analysis even more practical.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs, “Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement”, Computer Methods in Applied Mechanics and Engineering, 194 (2005) 4135–4195.MathSciNetMATHCrossRef T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs, “Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement”, Computer Methods in Applied Mechanics and Engineering, 194 (2005) 4135–4195.MathSciNetMATHCrossRef
3.
Zurück zum Zitat Y. Bazilevs, V.M. Calo, Y. Zhang, and T.J.R. Hughes, “Isogeometric fluid–structure interaction analysis with applications to arterial blood flow”, Computational Mechanics, 38 (2006) 310–322.MathSciNetMATHCrossRef Y. Bazilevs, V.M. Calo, Y. Zhang, and T.J.R. Hughes, “Isogeometric fluid–structure interaction analysis with applications to arterial blood flow”, Computational Mechanics, 38 (2006) 310–322.MathSciNetMATHCrossRef
4.
Zurück zum Zitat Y. Bazilevs, V.M. Calo, T.J.R. Hughes, and Y. Zhang, “Isogeometric fluid–structure interaction: theory, algorithms, and computations”, Computational Mechanics, 43 (2008) 3–37.MathSciNetMATHCrossRef Y. Bazilevs, V.M. Calo, T.J.R. Hughes, and Y. Zhang, “Isogeometric fluid–structure interaction: theory, algorithms, and computations”, Computational Mechanics, 43 (2008) 3–37.MathSciNetMATHCrossRef
5.
Zurück zum Zitat Y. Bazilevs and T.J.R. Hughes, “NURBS-based isogeometric analysis for the computation of flows about rotating components”, Computational Mechanics, 43 (2008) 143–150.MATHCrossRef Y. Bazilevs and T.J.R. Hughes, “NURBS-based isogeometric analysis for the computation of flows about rotating components”, Computational Mechanics, 43 (2008) 143–150.MATHCrossRef
25.
Zurück zum Zitat A.N. Brooks and T.J.R. Hughes, “Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations”, Computer Methods in Applied Mechanics and Engineering, 32 (1982) 199–259.MathSciNetMATHCrossRef A.N. Brooks and T.J.R. Hughes, “Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations”, Computer Methods in Applied Mechanics and Engineering, 32 (1982) 199–259.MathSciNetMATHCrossRef
26.
Zurück zum Zitat T.J.R. Hughes, “Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods”, Computer Methods in Applied Mechanics and Engineering, 127 (1995) 387–401.MathSciNetMATHCrossRef T.J.R. Hughes, “Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods”, Computer Methods in Applied Mechanics and Engineering, 127 (1995) 387–401.MathSciNetMATHCrossRef
27.
Zurück zum Zitat T.J.R. Hughes, A.A. Oberai, and L. Mazzei, “Large eddy simulation of turbulent channel flows by the variational multiscale method”, Physics of Fluids, 13 (2001) 1784–1799.MATHCrossRef T.J.R. Hughes, A.A. Oberai, and L. Mazzei, “Large eddy simulation of turbulent channel flows by the variational multiscale method”, Physics of Fluids, 13 (2001) 1784–1799.MATHCrossRef
28.
Zurück zum Zitat Y. Bazilevs, V.M. Calo, J.A. Cottrell, T.J.R. Hughes, A. Reali, and G. Scovazzi, “Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows”, Computer Methods in Applied Mechanics and Engineering, 197 (2007) 173–201.MathSciNetMATHCrossRef Y. Bazilevs, V.M. Calo, J.A. Cottrell, T.J.R. Hughes, A. Reali, and G. Scovazzi, “Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows”, Computer Methods in Applied Mechanics and Engineering, 197 (2007) 173–201.MathSciNetMATHCrossRef
29.
Zurück zum Zitat Y. Bazilevs and I. Akkerman, “Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual–based variational multiscale method”, Journal of Computational Physics, 229 (2010) 3402–3414.MathSciNetMATHCrossRef Y. Bazilevs and I. Akkerman, “Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual–based variational multiscale method”, Journal of Computational Physics, 229 (2010) 3402–3414.MathSciNetMATHCrossRef
30.
Zurück zum Zitat T.J.R. Hughes, W.K. Liu, and T.K. Zimmermann, “Lagrangian–Eulerian finite element formulation for incompressible viscous flows”, Computer Methods in Applied Mechanics and Engineering, 29 (1981) 329–349.MathSciNetMATHCrossRef T.J.R. Hughes, W.K. Liu, and T.K. Zimmermann, “Lagrangian–Eulerian finite element formulation for incompressible viscous flows”, Computer Methods in Applied Mechanics and Engineering, 29 (1981) 329–349.MathSciNetMATHCrossRef
33.
Zurück zum Zitat Y. Bazilevs, K. Takizawa, and T.E. Tezduyar, Computational Fluid–Structure Interaction: Methods and Applications. Wiley, February 2013, ISBN 978-0470978771.MATHCrossRef Y. Bazilevs, K. Takizawa, and T.E. Tezduyar, Computational Fluid–Structure Interaction: Methods and Applications. Wiley, February 2013, ISBN 978-0470978771.MATHCrossRef
37.
Zurück zum Zitat Y. Bazilevs and T.J.R. Hughes, “Weak imposition of Dirichlet boundary conditions in fluid mechanics”, Computers and Fluids, 36 (2007) 12–26.MathSciNetMATHCrossRef Y. Bazilevs and T.J.R. Hughes, “Weak imposition of Dirichlet boundary conditions in fluid mechanics”, Computers and Fluids, 36 (2007) 12–26.MathSciNetMATHCrossRef
38.
Zurück zum Zitat Y. Bazilevs, C. Michler, V.M. Calo, and T.J.R. Hughes, “Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 780–790.MathSciNetMATHCrossRef Y. Bazilevs, C. Michler, V.M. Calo, and T.J.R. Hughes, “Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 780–790.MathSciNetMATHCrossRef
39.
Zurück zum Zitat M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “Wind turbine aerodynamics using ALE-VMS: Validation and role of weakly enforced boundary conditions”, Computational Mechanics, 50 (2012) 499–511.MathSciNetMATHCrossRef M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “Wind turbine aerodynamics using ALE-VMS: Validation and role of weakly enforced boundary conditions”, Computational Mechanics, 50 (2012) 499–511.MathSciNetMATHCrossRef
40.
Zurück zum Zitat M.-C. Hsu and Y. Bazilevs, “Fluid–structure interaction modeling of wind turbines: simulating the full machine”, Computational Mechanics, 50 (2012) 821–833.MATHCrossRef M.-C. Hsu and Y. Bazilevs, “Fluid–structure interaction modeling of wind turbines: simulating the full machine”, Computational Mechanics, 50 (2012) 821–833.MATHCrossRef
42.
Zurück zum Zitat Y. Bazilevs, M.-C. Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, and T.E. Tezduyar, “3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics”, International Journal for Numerical Methods in Fluids, 65 (2011) 207–235, https://doi.org/10.1002/fld.2400.MATHCrossRef Y. Bazilevs, M.-C. Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, and T.E. Tezduyar, “3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics”, International Journal for Numerical Methods in Fluids, 65 (2011) 207–235, https://​doi.​org/​10.​1002/​fld.​2400.MATHCrossRef
43.
Zurück zum Zitat Y. Bazilevs, M.-C. Hsu, J. Kiendl, R. Wüchner, and K.-U. Bletzinger, “3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades”, International Journal for Numerical Methods in Fluids, 65 (2011) 236–253.MATHCrossRef Y. Bazilevs, M.-C. Hsu, J. Kiendl, R. Wüchner, and K.-U. Bletzinger, “3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades”, International Journal for Numerical Methods in Fluids, 65 (2011) 236–253.MATHCrossRef
44.
Zurück zum Zitat M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “High-performance computing of wind turbine aerodynamics using isogeometric analysis”, Computers and Fluids, 49 (2011) 93–100.MathSciNetMATHCrossRef M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “High-performance computing of wind turbine aerodynamics using isogeometric analysis”, Computers and Fluids, 49 (2011) 93–100.MathSciNetMATHCrossRef
45.
Zurück zum Zitat Y. Bazilevs, M.-C. Hsu, and M.A. Scott, “Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines”, Computer Methods in Applied Mechanics and Engineering, 249–252 (2012) 28–41.MathSciNetMATHCrossRef Y. Bazilevs, M.-C. Hsu, and M.A. Scott, “Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines”, Computer Methods in Applied Mechanics and Engineering, 249–252 (2012) 28–41.MathSciNetMATHCrossRef
46.
Zurück zum Zitat M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “Finite element simulation of wind turbine aerodynamics: Validation study using NREL Phase VI experiment”, Wind Energy, 17 (2014) 461–481.CrossRef M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “Finite element simulation of wind turbine aerodynamics: Validation study using NREL Phase VI experiment”, Wind Energy, 17 (2014) 461–481.CrossRef
47.
Zurück zum Zitat A. Korobenko, M.-C. Hsu, I. Akkerman, J. Tippmann, and Y. Bazilevs, “Structural mechanics modeling and FSI simulation of wind turbines”, Mathematical Models and Methods in Applied Sciences, 23 (2013) 249–272.MathSciNetMATHCrossRef A. Korobenko, M.-C. Hsu, I. Akkerman, J. Tippmann, and Y. Bazilevs, “Structural mechanics modeling and FSI simulation of wind turbines”, Mathematical Models and Methods in Applied Sciences, 23 (2013) 249–272.MathSciNetMATHCrossRef
54.
Zurück zum Zitat Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan, “FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades”, Journal of Applied Mechanics, 83 (6) (2016) 061010.CrossRef Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan, “FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades”, Journal of Applied Mechanics, 83 (6) (2016) 061010.CrossRef
55.
Zurück zum Zitat Y. Bazilevs, J.R. Gohean, T.J.R. Hughes, R.D. Moser, and Y. Zhang, “Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device”, Computer Methods in Applied Mechanics and Engineering, 198 (2009) 3534–3550.MathSciNetMATHCrossRef Y. Bazilevs, J.R. Gohean, T.J.R. Hughes, R.D. Moser, and Y. Zhang, “Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device”, Computer Methods in Applied Mechanics and Engineering, 198 (2009) 3534–3550.MathSciNetMATHCrossRef
56.
Zurück zum Zitat Y. Bazilevs, M.-C. Hsu, D. Benson, S. Sankaran, and A. Marsden, “Computational fluid–structure interaction: Methods and application to a total cavopulmonary connection”, Computational Mechanics, 45 (2009) 77–89.MathSciNetMATHCrossRef Y. Bazilevs, M.-C. Hsu, D. Benson, S. Sankaran, and A. Marsden, “Computational fluid–structure interaction: Methods and application to a total cavopulmonary connection”, Computational Mechanics, 45 (2009) 77–89.MathSciNetMATHCrossRef
57.
Zurück zum Zitat Y. Bazilevs, M.-C. Hsu, Y. Zhang, W. Wang, X. Liang, T. Kvamsdal, R. Brekken, and J. Isaksen, “A fully-coupled fluid–structure interaction simulation of cerebral aneurysms”, Computational Mechanics, 46 (2010) 3–16.MathSciNetMATHCrossRef Y. Bazilevs, M.-C. Hsu, Y. Zhang, W. Wang, X. Liang, T. Kvamsdal, R. Brekken, and J. Isaksen, “A fully-coupled fluid–structure interaction simulation of cerebral aneurysms”, Computational Mechanics, 46 (2010) 3–16.MathSciNetMATHCrossRef
58.
Zurück zum Zitat Y. Bazilevs, M.-C. Hsu, Y. Zhang, W. Wang, T. Kvamsdal, S. Hentschel, and J. Isaksen, “Computational fluid–structure interaction: Methods and application to cerebral aneurysms”, Biomechanics and Modeling in Mechanobiology, 9 (2010) 481–498.CrossRef Y. Bazilevs, M.-C. Hsu, Y. Zhang, W. Wang, T. Kvamsdal, S. Hentschel, and J. Isaksen, “Computational fluid–structure interaction: Methods and application to cerebral aneurysms”, Biomechanics and Modeling in Mechanobiology, 9 (2010) 481–498.CrossRef
59.
Zurück zum Zitat M.-C. Hsu and Y. Bazilevs, “Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations”, Finite Elements in Analysis and Design, 47 (2011) 593–599.MathSciNetCrossRef M.-C. Hsu and Y. Bazilevs, “Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations”, Finite Elements in Analysis and Design, 47 (2011) 593–599.MathSciNetCrossRef
64.
Zurück zum Zitat M.-C. Hsu, D. Kamensky, F. Xu, J. Kiendl, C. Wang, M.C.H. Wu, J. Mineroff, A. Reali, Y. Bazilevs, and M.S. Sacks, “Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models”, Computational Mechanics, 55 (2015) 1211–1225, https://doi.org/10.1007/s00466-015-1166-x.MATHCrossRef M.-C. Hsu, D. Kamensky, F. Xu, J. Kiendl, C. Wang, M.C.H. Wu, J. Mineroff, A. Reali, Y. Bazilevs, and M.S. Sacks, “Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models”, Computational Mechanics, 55 (2015) 1211–1225, https://​doi.​org/​10.​1007/​s00466-015-1166-x.MATHCrossRef
65.
Zurück zum Zitat D. Kamensky, M.-C. Hsu, D. Schillinger, J.A. Evans, A. Aggarwal, Y. Bazilevs, M.S. Sacks, and T.J.R. Hughes, “An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves”, Computer Methods in Applied Mechanics and Engineering, 284 (2015) 1005–1053.MathSciNetMATHCrossRef D. Kamensky, M.-C. Hsu, D. Schillinger, J.A. Evans, A. Aggarwal, Y. Bazilevs, M.S. Sacks, and T.J.R. Hughes, “An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves”, Computer Methods in Applied Mechanics and Engineering, 284 (2015) 1005–1053.MathSciNetMATHCrossRef
66.
Zurück zum Zitat I. Akkerman, Y. Bazilevs, D.J. Benson, M.W. Farthing, and C.E. Kees, “Free-surface flow and fluid–object interaction modeling with emphasis on ship hydrodynamics”, Journal of Applied Mechanics, 79 (2012) 010905.CrossRef I. Akkerman, Y. Bazilevs, D.J. Benson, M.W. Farthing, and C.E. Kees, “Free-surface flow and fluid–object interaction modeling with emphasis on ship hydrodynamics”, Journal of Applied Mechanics, 79 (2012) 010905.CrossRef
67.
Zurück zum Zitat I. Akkerman, J. Dunaway, J. Kvandal, J. Spinks, and Y. Bazilevs, “Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS”, Computational Mechanics, 50 (2012) 719–727.CrossRef I. Akkerman, J. Dunaway, J. Kvandal, J. Spinks, and Y. Bazilevs, “Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS”, Computational Mechanics, 50 (2012) 719–727.CrossRef
69.
Zurück zum Zitat M.C.H. Wu, D. Kamensky, C. Wang, A.J. Herrema, F. Xu, M.S. Pigazzini, A. Verma, A.L. Marsden, Y. Bazilevs, and M.-C. Hsu, “Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear”, Computer Methods in Applied Mechanics and Engineering, (2017), Published online. https://doi.org/10.1016/j.cma.2016.09.032.MathSciNetCrossRef M.C.H. Wu, D. Kamensky, C. Wang, A.J. Herrema, F. Xu, M.S. Pigazzini, A. Verma, A.L. Marsden, Y. Bazilevs, and M.-C. Hsu, “Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear”, Computer Methods in Applied Mechanics and Engineering, (2017), Published online. https://​doi.​org/​10.​1016/​j.​cma.​2016.​09.​032.MathSciNetCrossRef
108.
Zurück zum Zitat A. Corsini, C. Menichini, F. Rispoli, A. Santoriello, and T.E. Tezduyar, “A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reactionlike terms”, Journal of Applied Mechanics, 76 (2009) 021211, https://doi.org/10.1115/1.3062967.CrossRef A. Corsini, C. Menichini, F. Rispoli, A. Santoriello, and T.E. Tezduyar, “A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reactionlike terms”, Journal of Applied Mechanics, 76 (2009) 021211, https://​doi.​org/​10.​1115/​1.​3062967.CrossRef
109.
Zurück zum Zitat F. Rispoli, R. Saavedra, F. Menichini, and T.E. Tezduyar, “Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZβ shock-capturing”, Journal of Applied Mechanics, 76 (2009) 021209, https://doi.org/10.1115/1.3057496.CrossRef F. Rispoli, R. Saavedra, F. Menichini, and T.E. Tezduyar, “Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZβ shock-capturing”, Journal of Applied Mechanics, 76 (2009) 021209, https://​doi.​org/​10.​1115/​1.​3057496.CrossRef
118.
Zurück zum Zitat M.F. Wheeler, “An elliptic collocation-finite element method with interior penalties”, SIAM Journal on Numerical Analysis, 15 (1978) 152–161.MathSciNetMATHCrossRef M.F. Wheeler, “An elliptic collocation-finite element method with interior penalties”, SIAM Journal on Numerical Analysis, 15 (1978) 152–161.MathSciNetMATHCrossRef
119.
Zurück zum Zitat P. Houston, C. Schwab, and E. Suli, “Discontinuous hp-finite element methods for advection-diffusion reaction problems”, SIAM Journal on Numerical Analysis, 39 (2002) 2133–2163.MathSciNetMATHCrossRef P. Houston, C. Schwab, and E. Suli, “Discontinuous hp-finite element methods for advection-diffusion reaction problems”, SIAM Journal on Numerical Analysis, 39 (2002) 2133–2163.MathSciNetMATHCrossRef
Metadaten
Titel
A General-Purpose NURBS Mesh Generation Method for Complex Geometries
verfasst von
Yuto Otoguro
Kenji Takizawa
Tayfun E. Tezduyar
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-96469-0_10

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.