Skip to main content
Erschienen in: Acta Mechanica Sinica 6/2018

09.08.2018 | Research Paper

A numerical study for WENO scheme-based on different lattice Boltzmann flux solver for compressible flows

verfasst von: You Li, Xiao-Dong Niu, Hai-Zhuan Yuan, Adnan Khan, Xiang Li

Erschienen in: Acta Mechanica Sinica | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the finite difference weighted essentially non-oscillatory (WENO) scheme is incorporated into the recently developed four kinds of lattice Boltzmann flux solver (LBFS) to simulate compressible flows, including inviscid LBFS I, viscous LBFS II, hybrid LBFS III and hybrid LBFS IV. Hybrid LBFS can automatically realize the switch between inviscid LBFS I and viscous LBFS II through introducing a switch function. The resultant hybrid WENO–LBFS scheme absorbs the advantages of WENO scheme and hybrid LBFS. We investigate the performance of WENO scheme based on four kinds of LBFS systematically. Numerical results indicate that the devopled hybrid WENO–LBFS scheme has high accuracy, high resolution and no oscillations. It can not only accurately calculate smooth solutions, but also can effectively capture contact discontinuities and strong shock waves.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Harten, A., Osher, S.: Uniformly high-order accurate non-oscillatory schemes. I. SIAM. J. Numer. Anal. 24(2), 279–309 (1987)MathSciNetCrossRef Harten, A., Osher, S.: Uniformly high-order accurate non-oscillatory schemes. I. SIAM. J. Numer. Anal. 24(2), 279–309 (1987)MathSciNetCrossRef
2.
Zurück zum Zitat Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)MathSciNetCrossRef Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)MathSciNetCrossRef
3.
Zurück zum Zitat Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)MathSciNetCrossRef Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)MathSciNetCrossRef
4.
Zurück zum Zitat Jiang, G.S., Shu, C.W.: Efficient implementation of weighted eno schemes. J. Comput. Phys. 126(1), 202–228 (1996)MathSciNetCrossRef Jiang, G.S., Shu, C.W.: Efficient implementation of weighted eno schemes. J. Comput. Phys. 126(1), 202–228 (1996)MathSciNetCrossRef
5.
Zurück zum Zitat Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. ICASE Report No. 97-65 (1997) Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. ICASE Report No. 97-65 (1997)
6.
Zurück zum Zitat Balsara, D.S., Shu, C.W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160(2), 405–452 (2000)MathSciNetCrossRef Balsara, D.S., Shu, C.W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160(2), 405–452 (2000)MathSciNetCrossRef
7.
Zurück zum Zitat Friedrich, O.: Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J. Comput. Phys. 144(1), 194–212 (1998)MathSciNetCrossRef Friedrich, O.: Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J. Comput. Phys. 144(1), 194–212 (1998)MathSciNetCrossRef
8.
Zurück zum Zitat Shi, J., Hu, C., Shu, C.W.: A technique of treating negative weights in weno schemes. J. Comput. Phys. 175(1), 108–127 (2002)CrossRef Shi, J., Hu, C., Shu, C.W.: A technique of treating negative weights in weno schemes. J. Comput. Phys. 175(1), 108–127 (2002)CrossRef
9.
Zurück zum Zitat Borges, R., Carmona, M., Costa, B.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3191–3211 (2008)MathSciNetCrossRef Borges, R., Carmona, M., Costa, B.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3191–3211 (2008)MathSciNetCrossRef
10.
Zurück zum Zitat Fan, P., Shen, Y.Q., Tian, B.L., et al.: A new smoothness indicator for improving the weighted essentially non-oscillatory scheme. J. Comput. Phys. 269(1), 329–354 (2014)MathSciNetCrossRef Fan, P., Shen, Y.Q., Tian, B.L., et al.: A new smoothness indicator for improving the weighted essentially non-oscillatory scheme. J. Comput. Phys. 269(1), 329–354 (2014)MathSciNetCrossRef
11.
Zurück zum Zitat Hu, X.Y., Wang, B., Adams, N.A.: An efficient low-dissipation hybrid weighted essentially non-oscillatory scheme. J. Comput. Phys. 301, 415–424 (2015)MathSciNetCrossRef Hu, X.Y., Wang, B., Adams, N.A.: An efficient low-dissipation hybrid weighted essentially non-oscillatory scheme. J. Comput. Phys. 301, 415–424 (2015)MathSciNetCrossRef
12.
Zurück zum Zitat Shahbazi, K.: High-order hybrid fourier continuation-weno scheme for 3D compressible Navier–Stokes equations. In: 46th AIAA Fluid Dynamics Conference, Washington (2016) Shahbazi, K.: High-order hybrid fourier continuation-weno scheme for 3D compressible Navier–Stokes equations. In: 46th AIAA Fluid Dynamics Conference, Washington (2016)
13.
Zurück zum Zitat Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)CrossRef Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)CrossRef
14.
Zurück zum Zitat Funaro, D.: Polynamial Approximation of Differential Equations. Springer, Berlin (1992)MATH Funaro, D.: Polynamial Approximation of Differential Equations. Springer, Berlin (1992)MATH
15.
Zurück zum Zitat Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM. Rev. 25(1), 35–61 (1983)MathSciNetCrossRef Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM. Rev. 25(1), 35–61 (1983)MathSciNetCrossRef
16.
Zurück zum Zitat Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the Harten-Lax-van Leer riemann solve. Shock Waves 4(1), 25–34 (1994)CrossRef Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the Harten-Lax-van Leer riemann solve. Shock Waves 4(1), 25–34 (1994)CrossRef
17.
Zurück zum Zitat Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (2009)CrossRef Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (2009)CrossRef
18.
Zurück zum Zitat Titarev, V.A., Toro, E.F.: Finite-volume weno schemes for three-dimensional conservation laws. J. Comput. Phys. 201(1), 238–260 (2004)MathSciNetCrossRef Titarev, V.A., Toro, E.F.: Finite-volume weno schemes for three-dimensional conservation laws. J. Comput. Phys. 201(1), 238–260 (2004)MathSciNetCrossRef
19.
Zurück zum Zitat Xu, K.: A gas-kinetic bgk scheme for the navier-stock equations and its connection with artificial dissipation and godunov method. J. Comput. Phys. 171, 289–335 (2001)MathSciNetCrossRef Xu, K.: A gas-kinetic bgk scheme for the navier-stock equations and its connection with artificial dissipation and godunov method. J. Comput. Phys. 171, 289–335 (2001)MathSciNetCrossRef
20.
Zurück zum Zitat Yang, L.M., Shu, C., Wu, J.: A simple distribution function-based gas-kinetic scheme for simulation of viscous incompressible and compressible flows. J. Comput. Phys. 274, 611–632 (2014)MathSciNetCrossRef Yang, L.M., Shu, C., Wu, J.: A simple distribution function-based gas-kinetic scheme for simulation of viscous incompressible and compressible flows. J. Comput. Phys. 274, 611–632 (2014)MathSciNetCrossRef
21.
Zurück zum Zitat Sun, Y., Shu, C., Teo, C.J., et al.: Explicit formulations of gas-kinetic flux solver for simulation of incompressible and compressible viscous flows. J. Comput. Phys. 300, 492–519 (2015)MathSciNetCrossRef Sun, Y., Shu, C., Teo, C.J., et al.: Explicit formulations of gas-kinetic flux solver for simulation of incompressible and compressible viscous flows. J. Comput. Phys. 300, 492–519 (2015)MathSciNetCrossRef
22.
Zurück zum Zitat Sun, Y., Shu, C., Yang, L.M., et al.: A switch function-based gas-kinetic scheme for simulation of inviscid and viscous compressible flows. Adv. Appl. Math. Mech. 8(5), 703–721 (2016)MathSciNetCrossRef Sun, Y., Shu, C., Yang, L.M., et al.: A switch function-based gas-kinetic scheme for simulation of inviscid and viscous compressible flows. Adv. Appl. Math. Mech. 8(5), 703–721 (2016)MathSciNetCrossRef
23.
Zurück zum Zitat Pan, L., Li, J.Q., Xu, K.: A few benchmark test cases for higher-order euler solvers. Numer. Math. Theory Methods 10(4), 711–736 (2017)MathSciNetCrossRef Pan, L., Li, J.Q., Xu, K.: A few benchmark test cases for higher-order euler solvers. Numer. Math. Theory Methods 10(4), 711–736 (2017)MathSciNetCrossRef
24.
Zurück zum Zitat Chou, S.Y., Baganoff, D.: Kinetic flux-vector splitting for the Navier–Stock equations. J. Comput. Phys. 130(2), 217–230 (1997)CrossRef Chou, S.Y., Baganoff, D.: Kinetic flux-vector splitting for the Navier–Stock equations. J. Comput. Phys. 130(2), 217–230 (1997)CrossRef
25.
Zurück zum Zitat Xu, K.: Gas-kinetic schemes for unsteady compressible flow simulations. In: Lecture series: van Kareman Institute for fluid dynamics A vol. 3, pp. C1–C202 (1998) Xu, K.: Gas-kinetic schemes for unsteady compressible flow simulations. In: Lecture series: van Kareman Institute for fluid dynamics A vol. 3, pp. C1–C202 (1998)
26.
Zurück zum Zitat He, X., Li, N.: Lattice Boltzmann simulation of electrochemical systems. Comput. Phys. Commun. 129(1), 158–166 (2000)MathSciNetCrossRef He, X., Li, N.: Lattice Boltzmann simulation of electrochemical systems. Comput. Phys. Commun. 129(1), 158–166 (2000)MathSciNetCrossRef
27.
Zurück zum Zitat Niu, X.D., Shu, C., Chew, Y.T.: A thermal lattice Boltzmann model with diffuse scattering boundary condition for micro thermal flows. Comput. Fluids 36(2), 273–281 (2007)CrossRef Niu, X.D., Shu, C., Chew, Y.T.: A thermal lattice Boltzmann model with diffuse scattering boundary condition for micro thermal flows. Comput. Fluids 36(2), 273–281 (2007)CrossRef
28.
Zurück zum Zitat Yuan, H.Z., Niu, X.D., Shu, S., et al.: A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating a flexible filament in an incompressible flow. Comput. Math. Appl. 67(5), 1039–1056 (2014)MathSciNetCrossRef Yuan, H.Z., Niu, X.D., Shu, S., et al.: A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating a flexible filament in an incompressible flow. Comput. Math. Appl. 67(5), 1039–1056 (2014)MathSciNetCrossRef
29.
Zurück zum Zitat Wang, Y., Shu, C., Yang, L.M., et al.: A decoupling multiple-relaxation-time lattice Boltzmann flux solver for non-newtonian power-law fluid flows. J. Non-Newton. Fluid 235, 20–28 (2016)MathSciNetCrossRef Wang, Y., Shu, C., Yang, L.M., et al.: A decoupling multiple-relaxation-time lattice Boltzmann flux solver for non-newtonian power-law fluid flows. J. Non-Newton. Fluid 235, 20–28 (2016)MathSciNetCrossRef
30.
Zurück zum Zitat Li, Q., Luo, K.H., Kang, Q.J., et al.: Lattice boltzmann methods for multiphase flow and phase-change heat transfer. Prog. Energy Combust. Sci. 52, 62–105 (2016)CrossRef Li, Q., Luo, K.H., Kang, Q.J., et al.: Lattice boltzmann methods for multiphase flow and phase-change heat transfer. Prog. Energy Combust. Sci. 52, 62–105 (2016)CrossRef
31.
Zurück zum Zitat Xu, A., Shyy, W., Zhao, T.S.: Lattice Boltzmann modeling of transport phenomena in fuel cell and flow batteries. Acta Mech. Sin. 33(3), 555–574 (2017)MathSciNetCrossRef Xu, A., Shyy, W., Zhao, T.S.: Lattice Boltzmann modeling of transport phenomena in fuel cell and flow batteries. Acta Mech. Sin. 33(3), 555–574 (2017)MathSciNetCrossRef
32.
Zurück zum Zitat Ji, C.Z., Shu, C., Zhao, N.: A lattice Boltzmann method-based flux solver and its application to solve shock tube problem. Mod. Phys. Lett. B. 23(3), 313–316 (2009)CrossRef Ji, C.Z., Shu, C., Zhao, N.: A lattice Boltzmann method-based flux solver and its application to solve shock tube problem. Mod. Phys. Lett. B. 23(3), 313–316 (2009)CrossRef
33.
Zurück zum Zitat Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)MathSciNetCrossRef Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)MathSciNetCrossRef
34.
Zurück zum Zitat Steger, J.L., Warming, R.F.: Flux vector splitting of the inviscid gas dynamic equations with application to finite-difference methods. J. Comput. Phys. 40(2), 263–293 (1981)MathSciNetCrossRef Steger, J.L., Warming, R.F.: Flux vector splitting of the inviscid gas dynamic equations with application to finite-difference methods. J. Comput. Phys. 40(2), 263–293 (1981)MathSciNetCrossRef
35.
Zurück zum Zitat Shu, C.W.: High order weighted essentially non-oscillatory schemes for convection dominated problem. SIAM. Rev. 51(1), 82–126 (2009)MathSciNetCrossRef Shu, C.W.: High order weighted essentially non-oscillatory schemes for convection dominated problem. SIAM. Rev. 51(1), 82–126 (2009)MathSciNetCrossRef
36.
Zurück zum Zitat Qu, K., Shu, C., Chew, Y.T.: Alternative method to construct equilibrium distribution functions in lattice-Blotzmann method simulation of inviscid compressible flows at high mach number. Phys. Rev. E 75(3), 036706 (2007)MathSciNetCrossRef Qu, K., Shu, C., Chew, Y.T.: Alternative method to construct equilibrium distribution functions in lattice-Blotzmann method simulation of inviscid compressible flows at high mach number. Phys. Rev. E 75(3), 036706 (2007)MathSciNetCrossRef
37.
Zurück zum Zitat Qu, K., Shu, C., Chew, Y.T.: Simulation of shock-wave propagation with finite volume lattice Boltzmann method. Int. J. Mod. Phys. C 18(4), 447–454 (2007)MathSciNetCrossRef Qu, K., Shu, C., Chew, Y.T.: Simulation of shock-wave propagation with finite volume lattice Boltzmann method. Int. J. Mod. Phys. C 18(4), 447–454 (2007)MathSciNetCrossRef
38.
Zurück zum Zitat Yang, L.M., Shu, C., Wu, J.: A moment conservation-based non-free parameter compressible lattice Boltzmann model and its application for flux evaluation at cell interface. Comput. Fluids 79(6), 190–199 (2013)MathSciNetCrossRef Yang, L.M., Shu, C., Wu, J.: A moment conservation-based non-free parameter compressible lattice Boltzmann model and its application for flux evaluation at cell interface. Comput. Fluids 79(6), 190–199 (2013)MathSciNetCrossRef
39.
Zurück zum Zitat Shu, C., Wang, Y., Yang, L.M., et al.: Lattice Boltzmann flux solver: an efficient approach for numerical simulation of fluid flows. Trans. Nanjing Univ. Aeronaut. Astronaut. 31(1), 1–15 (2014) Shu, C., Wang, Y., Yang, L.M., et al.: Lattice Boltzmann flux solver: an efficient approach for numerical simulation of fluid flows. Trans. Nanjing Univ. Aeronaut. Astronaut. 31(1), 1–15 (2014)
40.
Zurück zum Zitat Shu, C., Wang, Y., Teo, C.J., et al.: Development of lattice boltzmann flux solver for simulation of incompressible flows. Adv. Appl. Math. Mech. 6(4), 436–460 (2014)MathSciNetCrossRef Shu, C., Wang, Y., Teo, C.J., et al.: Development of lattice boltzmann flux solver for simulation of incompressible flows. Adv. Appl. Math. Mech. 6(4), 436–460 (2014)MathSciNetCrossRef
41.
Zurück zum Zitat Wang, Y., Shu, C., Teo, C.J., et al.: An efficient immersed boundary-lattice Boltzmann flux solver for simulation of 3D incompressible flows with complex geometry. Comput. Fluids 124, 54–66 (2015)MathSciNetCrossRef Wang, Y., Shu, C., Teo, C.J., et al.: An efficient immersed boundary-lattice Boltzmann flux solver for simulation of 3D incompressible flows with complex geometry. Comput. Fluids 124, 54–66 (2015)MathSciNetCrossRef
42.
Zurück zum Zitat Wang, Y., Shu, C., Huang, H.B., et al.: Multiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio. J. Comput. Phys. 280, 404–423 (2015)MathSciNetCrossRef Wang, Y., Shu, C., Huang, H.B., et al.: Multiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio. J. Comput. Phys. 280, 404–423 (2015)MathSciNetCrossRef
43.
Zurück zum Zitat Wang, Y., Yang, L.M., Shu, C.: From lattice Boltzmann method to lattice Boltzmann flux solver. Entropy 17(11), 7713–7735 (2015)CrossRef Wang, Y., Yang, L.M., Shu, C.: From lattice Boltzmann method to lattice Boltzmann flux solver. Entropy 17(11), 7713–7735 (2015)CrossRef
44.
Zurück zum Zitat Yang, L.M., Shu, C., Wu, J.: A hybrid lattice Boltzmann flux solver for simulation of viscous compressible flows. Adv. Appl. Math. Mech. 8(6), 887–910 (2016)MathSciNetCrossRef Yang, L.M., Shu, C., Wu, J.: A hybrid lattice Boltzmann flux solver for simulation of viscous compressible flows. Adv. Appl. Math. Mech. 8(6), 887–910 (2016)MathSciNetCrossRef
45.
Zurück zum Zitat Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and application. Phys. Rep. 222(3), 145–197 (1992)CrossRef Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and application. Phys. Rep. 222(3), 145–197 (1992)CrossRef
46.
Zurück zum Zitat Guo, Z.L., Shu, C.: Lattice Boltzmann Method and Its Applications in Engineering. World Scientific, Singapore (2013)CrossRef Guo, Z.L., Shu, C.: Lattice Boltzmann Method and Its Applications in Engineering. World Scientific, Singapore (2013)CrossRef
47.
Zurück zum Zitat Yang, L.M., Shu, C., Wu, J.: A hybrid lattice Boltzmann flux solver for simulation of 3D compressible viscous flows. In: Eighth International Conference on Computational Fluid Dynamics, Chengdu, China, 14–18 July (2014) Yang, L.M., Shu, C., Wu, J.: A hybrid lattice Boltzmann flux solver for simulation of 3D compressible viscous flows. In: Eighth International Conference on Computational Fluid Dynamics, Chengdu, China, 14–18 July (2014)
48.
Zurück zum Zitat Li, Y., Yuan, H.Z., Niu, X.D., et al.: Weno scheme-based lattice Boltzmann flux solver for simulation of compressible flows. Commun. Comput. Phys. 23(4), 1012–1036 (2018) Li, Y., Yuan, H.Z., Niu, X.D., et al.: Weno scheme-based lattice Boltzmann flux solver for simulation of compressible flows. Commun. Comput. Phys. 23(4), 1012–1036 (2018)
49.
Zurück zum Zitat Yang, L.M., Shu, C., Wu, J.: Development and comparative studies of three non-free parameter lattice Boltzmann models for simulation of compressible flows. Adv. Appl. Math. Mech. 4(4), 454–472 (2012)MathSciNetCrossRef Yang, L.M., Shu, C., Wu, J.: Development and comparative studies of three non-free parameter lattice Boltzmann models for simulation of compressible flows. Adv. Appl. Math. Mech. 4(4), 454–472 (2012)MathSciNetCrossRef
50.
Zurück zum Zitat Xu, X., He, X.Y.: Lattice Boltzmann method and gas-kinetic BGK scheme in the low-mach number viscous flow simulations. J. Comput. Phys. 190, 100–117 (2003)MathSciNetCrossRef Xu, X., He, X.Y.: Lattice Boltzmann method and gas-kinetic BGK scheme in the low-mach number viscous flow simulations. J. Comput. Phys. 190, 100–117 (2003)MathSciNetCrossRef
51.
Zurück zum Zitat Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)MathSciNetCrossRef Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)MathSciNetCrossRef
Metadaten
Titel
A numerical study for WENO scheme-based on different lattice Boltzmann flux solver for compressible flows
verfasst von
You Li
Xiao-Dong Niu
Hai-Zhuan Yuan
Adnan Khan
Xiang Li
Publikationsdatum
09.08.2018
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 6/2018
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-018-0785-9

Weitere Artikel der Ausgabe 6/2018

Acta Mechanica Sinica 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.