Skip to main content
Erschienen in: Journal of Elasticity 1-2/2022

29.11.2022

Accretion Mechanics of Nonlinear Elastic Circular Cylindrical Bars Under Finite Torsion

verfasst von: Arash Yavari, Satya Prakash Pradhan

Erschienen in: Journal of Elasticity | Ausgabe 1-2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we formulate the initial-boundary value problem of accreting circular cylindrical bars under finite torsion. It is assumed that the bar grows as a result of printing stress-free cylindrical layers on its boundary while it is under a time-dependent torque (or a time-dependent twist) and is free to deform axially. In a deforming body, accretion induces eigenstrains, and consequently residual stresses. We formulate the anelasticity problem by first constructing the natural Riemannian metric of the growing bar. This metric explicitly depends on the history of deformation during the accretion process. To simplify the kinematics, we consider incompressible solids. For the example of incompressible neo-Hookean solids, we solve the governing equations numerically. We also linearize the governing equations and compare the linearized solutions with the numerical solutions of the neo-Hookean bars.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
This decomposition is due to Kondaurov and Nikitin [13], Takamizawa and Hayashi [36], Takamizawa and Matsuda [37], and Takamizawa [35]. One can find similar ideas in [39, 40]. This decomposition was popularized in the literature of biomechanics by Rodriguez et al. [26]. For a historical account of this decomposition in different fields see [27, 50].
 
2
Growing bodies are non-Euclidean in the sense that their natural configuration is not Euclidean, in general. Non-Euclidean solids—a term that was coined by Henri Poincaré [25]—has been used interchangeably for anelastic bodies in the recent literature [42, 52, 53].
 
3
This was first observed in the setting of linear accretion mechanics in the seminal work of Brown and Goodman [5] who studied accreting planets under self-gravity.
 
4
The idea of a time of attachment map is due to Metlov [21].
 
5
Family 3 deformations are universal for certain inhomogeneous and anisotropic bars as well [44, 47, 48]. In this paper, we restrict our calculations to isotropic and homogeneous bars.
 
6
Note that as soon as a layer is deposited it becomes part of the body and participates in the deformation process. If the load is fixed, one would have a classical twist-fit problem (Fig. 1). The time dependence of the load (or twist) makes the natural state of the body (the material metric) inhomogeneous. In other words, after completion of accretion if each cylindrical layer is allowed to relax independently of the rest of the body the collection of relaxed thin cylindrical shells can not be put back together in the Euclidean ambient space without local elastic deformations. This incompatibility of the local rest configurations depends on the state of deformation during accretion and indirectly on the applied load during accretion.
 
7
This is identical to what was obtained in [51] in the case of accreting bars under finite extension.
 
8
The physical components of the Cauchy stress are defined as \({\bar{\sigma}}^{ab}=\sigma ^{ab}\sqrt{g_{aa}\,g_{bb}}\) (no summation) [41].
 
9
This is a simple application of the Leibniz integral rule:
$$ \hat{k}'_{3}(t)=\frac{d}{dt}\int _{R_{0}}^{s(t)} f(t,R)\,dR =s'(t)\,f(t,s(t))+ \int _{R_{0}}^{s(t)} \frac{\partial f(t,R)}{\partial t}\,dR\,, $$
where
$$ f(t,R)=R\int _{R}^{s(t)}\frac{d\xi}{\lambda ^{3}(\tau (\xi ))}\,. $$
Note that
$$ f(t,s(t))=s(t) \int _{s(t)}^{s(t)} \frac{d\xi}{\lambda ^{3}(\tau (\xi ))}=0\,,\quad \frac{\partial f(t,R)}{\partial t}=R \,s'(t) \frac{1}{\lambda ^{3}(\tau (s(t)))}=\frac{R\,u_{0}}{\lambda ^{3}(t)} \,. $$
Thus
$$ \hat{k}'_{3}(t)=\int _{R_{0}}^{s(t)} \frac{R\,u_{0}}{\lambda ^{3}(t)} \,dR =\frac{u_{0}}{2\lambda ^{3}(t)}\big(s^{2}(t)-R_{0}^{2}\big) \,. $$
 
Literatur
1.
Zurück zum Zitat Abi-Akl, R., Cohen, T.: Surface growth on a deformable spherical substrate. Mech. Res. Commun. 103, 103457 (2020) CrossRef Abi-Akl, R., Cohen, T.: Surface growth on a deformable spherical substrate. Mech. Res. Commun. 103, 103457 (2020) CrossRef
2.
Zurück zum Zitat Abi-Akl, R., Abeyaratne, R., Cohen, T.: Kinetics of surface growth with coupled diffusion and the emergence of a universal growth path. Proc. R. Soc. A 475(2221), 20180465 (2019) MathSciNetMATHCrossRef Abi-Akl, R., Abeyaratne, R., Cohen, T.: Kinetics of surface growth with coupled diffusion and the emergence of a universal growth path. Proc. R. Soc. A 475(2221), 20180465 (2019) MathSciNetMATHCrossRef
3.
Zurück zum Zitat Arutyunyan, N.K., Naumov, V., Radaev, Y.N.: A mathematical model of a dynamically accreted deformable body. Part 1: kinematics and measure of deformation of the growing body. Izv. Akad. Nauk SSSR, Meh. Tverd. Tela 6, 85–96 (1990) Arutyunyan, N.K., Naumov, V., Radaev, Y.N.: A mathematical model of a dynamically accreted deformable body. Part 1: kinematics and measure of deformation of the growing body. Izv. Akad. Nauk SSSR, Meh. Tverd. Tela 6, 85–96 (1990)
4.
Zurück zum Zitat Bergel, G.L., Papadopoulos, P.: A finite element method for modeling surface growth and resorption of deformable solids. Comput. Mech. 68(4), 759–774 (2021) MathSciNetMATHCrossRef Bergel, G.L., Papadopoulos, P.: A finite element method for modeling surface growth and resorption of deformable solids. Comput. Mech. 68(4), 759–774 (2021) MathSciNetMATHCrossRef
5.
Zurück zum Zitat Brown, C., Goodman, L.: Gravitational stresses in accreted bodies. Proc. R. Soc. Lond. A, 276, 571–576 (1963) MATHCrossRef Brown, C., Goodman, L.: Gravitational stresses in accreted bodies. Proc. R. Soc. Lond. A, 276, 571–576 (1963) MATHCrossRef
7.
Zurück zum Zitat Drozdov, A.D.: Continuous accretion of a composite cylinder. Acta Mech. 128(1) (1998) Drozdov, A.D.: Continuous accretion of a composite cylinder. Acta Mech. 128(1) (1998)
8.
Zurück zum Zitat Drozdov, A.D.: Viscoelastic Structures: Mechanics of Growth and Aging. Academic Press, San Diego (1998) MATH Drozdov, A.D.: Viscoelastic Structures: Mechanics of Growth and Aging. Academic Press, San Diego (1998) MATH
9.
Zurück zum Zitat Ericksen, J.L.: Deformations possible in every isotropic, incompressible, perfectly elastic body. Z. Angew. Math. Phys. 5(6), 466–489 (1954) MathSciNetMATHCrossRef Ericksen, J.L.: Deformations possible in every isotropic, incompressible, perfectly elastic body. Z. Angew. Math. Phys. 5(6), 466–489 (1954) MathSciNetMATHCrossRef
10.
Zurück zum Zitat Goodbrake, C., Yavari, A., Goriely, A.: The anelastic Ericksen problem: universal deformations and universal eigenstrains in incompressible nonlinear anelasticity. J. Elast. 142(2), 291–381 (2020) MathSciNetMATHCrossRef Goodbrake, C., Yavari, A., Goriely, A.: The anelastic Ericksen problem: universal deformations and universal eigenstrains in incompressible nonlinear anelasticity. J. Elast. 142(2), 291–381 (2020) MathSciNetMATHCrossRef
11.
Zurück zum Zitat Hodge, N., Papadopoulos, P.: A continuum theory of surface growth. Proc. R. Soc. Lond. A 466(2123), 3135–3152 (2010) MathSciNetMATH Hodge, N., Papadopoulos, P.: A continuum theory of surface growth. Proc. R. Soc. Lond. A 466(2123), 3135–3152 (2010) MathSciNetMATH
12.
Zurück zum Zitat Klingbeil, W.W., Shield, R.T.: On a class of solutions in plane finite elasticity. Z. Angew. Math. Phys. 17(4), 489–511 (1966) MathSciNetCrossRef Klingbeil, W.W., Shield, R.T.: On a class of solutions in plane finite elasticity. Z. Angew. Math. Phys. 17(4), 489–511 (1966) MathSciNetCrossRef
13.
14.
Zurück zum Zitat Lychev, S.: Universal deformations of growing solids. Mech. Solids 46(6), 863–876 (2011) CrossRef Lychev, S.: Universal deformations of growing solids. Mech. Solids 46(6), 863–876 (2011) CrossRef
15.
Zurück zum Zitat Lychev, S., Manzhirov, A.: The mathematical theory of growing bodies. Finite deformations. J. Appl. Math. Mech. 77(4), 421–432 (2013) MathSciNetMATHCrossRef Lychev, S., Manzhirov, A.: The mathematical theory of growing bodies. Finite deformations. J. Appl. Math. Mech. 77(4), 421–432 (2013) MathSciNetMATHCrossRef
16.
Zurück zum Zitat Lychev, S., Manzhirov, A.: Reference configurations of growing bodies. Mech. Solids 48(5), 553–560 (2013) CrossRef Lychev, S., Manzhirov, A.: Reference configurations of growing bodies. Mech. Solids 48(5), 553–560 (2013) CrossRef
17.
Zurück zum Zitat Lychev, S., Koifman, K., Djuzhev, N.: Incompatible deformations in additively fabricated solids: discrete and continuous approaches. Symmetry 13(12), 2331 (2021) CrossRef Lychev, S., Koifman, K., Djuzhev, N.: Incompatible deformations in additively fabricated solids: discrete and continuous approaches. Symmetry 13(12), 2331 (2021) CrossRef
18.
Zurück zum Zitat Manzhirov, A.: The general non-inertial initial-boundaryvalue problem for a viscoelastic ageing solid with piecewise-continuous accretion. J. Appl. Math. Mech. 59(5), 805–816 (1995) MathSciNetMATHCrossRef Manzhirov, A.: The general non-inertial initial-boundaryvalue problem for a viscoelastic ageing solid with piecewise-continuous accretion. J. Appl. Math. Mech. 59(5), 805–816 (1995) MathSciNetMATHCrossRef
19.
Zurück zum Zitat Manzhirov, A.V.: Mechanics of growing solids: New track in mechanical engineering. In: ASME 2014 International Mechanical Engineering Congress and Exposition, p. V009T12A039. American Society of Mechanical Engineers, Montreal, Quebec, Canada (2014) Manzhirov, A.V.: Mechanics of growing solids: New track in mechanical engineering. In: ASME 2014 International Mechanical Engineering Congress and Exposition, p. V009T12A039. American Society of Mechanical Engineers, Montreal, Quebec, Canada (2014)
20.
Zurück zum Zitat Marsden, J., Hughes, T.: Mathematical Foundations of Elasticity. Dover, New York (1983) MATH Marsden, J., Hughes, T.: Mathematical Foundations of Elasticity. Dover, New York (1983) MATH
21.
Zurück zum Zitat Metlov, V.: On the accretion of inhomogeneous viscoelastic bodies under finite deformations. J. Appl. Math. Mech. 49(4), 490–498 (1985) MATHCrossRef Metlov, V.: On the accretion of inhomogeneous viscoelastic bodies under finite deformations. J. Appl. Math. Mech. 49(4), 490–498 (1985) MATHCrossRef
22.
Zurück zum Zitat Naumov, V.E.: Mechanics of growing deformable solids: a review. J. Eng. Mech. 120(2), 207–220 (1994) Naumov, V.E.: Mechanics of growing deformable solids: a review. J. Eng. Mech. 120(2), 207–220 (1994)
23.
Zurück zum Zitat Ogden, R.W.: Non-linear Elastic Deformations. Dover, New York (1984) MATH Ogden, R.W.: Non-linear Elastic Deformations. Dover, New York (1984) MATH
24.
Zurück zum Zitat Ong, J.J., O’Reilly, O.M.: On the equations of motion for rigid bodies with surface growth. Int. J. Eng. Sci. 42(19), 2159–2174 (2004) MathSciNetMATHCrossRef Ong, J.J., O’Reilly, O.M.: On the equations of motion for rigid bodies with surface growth. Int. J. Eng. Sci. 42(19), 2159–2174 (2004) MathSciNetMATHCrossRef
25.
Zurück zum Zitat Poincaré, H.: Science and Hypothesis. The Walter Scott Publishing Company, New York (1905) Poincaré, H.: Science and Hypothesis. The Walter Scott Publishing Company, New York (1905)
26.
Zurück zum Zitat Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455–467 (1994) CrossRef Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455–467 (1994) CrossRef
27.
Zurück zum Zitat Sadik, S., Yavari, A.: On the origins of the idea of the multiplicative decomposition of the deformation gradient. Math. Mech. Solids 22(4), 771–772 (2017) MathSciNetMATHCrossRef Sadik, S., Yavari, A.: On the origins of the idea of the multiplicative decomposition of the deformation gradient. Math. Mech. Solids 22(4), 771–772 (2017) MathSciNetMATHCrossRef
28.
Zurück zum Zitat Simo, J., Marsden, J.: Stress tensors, Riemannian metrics and the alternative descriptions in elasticity. In: Trends and Applications of Pure Mathematics to Mechanics, pp. 369–383. Springer, Berlin (1984) CrossRef Simo, J., Marsden, J.: Stress tensors, Riemannian metrics and the alternative descriptions in elasticity. In: Trends and Applications of Pure Mathematics to Mechanics, pp. 369–383. Springer, Berlin (1984) CrossRef
29.
Zurück zum Zitat Singh, M., Pipkin, A.C.: Note on Ericksen’s problem. Z. Angew. Math. Phys. 16(5), 706–709 (1965) CrossRef Singh, M., Pipkin, A.C.: Note on Ericksen’s problem. Z. Angew. Math. Phys. 16(5), 706–709 (1965) CrossRef
31.
Zurück zum Zitat Southwell, R.: Introduction to the Theory of Elasticity for Engineers and Physicists. Oxford University Press, London (1941) Southwell, R.: Introduction to the Theory of Elasticity for Engineers and Physicists. Oxford University Press, London (1941)
32.
Zurück zum Zitat Sozio, F., Yavari, A.: Nonlinear mechanics of surface growth for cylindrical and spherical elastic bodies. J. Mech. Phys. Solids 98, 12–48 (2017) MathSciNetMATHCrossRef Sozio, F., Yavari, A.: Nonlinear mechanics of surface growth for cylindrical and spherical elastic bodies. J. Mech. Phys. Solids 98, 12–48 (2017) MathSciNetMATHCrossRef
34.
Zurück zum Zitat Sozio, F., Faghih Shojaei, M., Sadik, S., Yavari, A.: Nonlinear mechanics of thermoelastic accretion. Z. Angew. Math. Phys. 71(3), 1–24 (2020) MathSciNetMATHCrossRef Sozio, F., Faghih Shojaei, M., Sadik, S., Yavari, A.: Nonlinear mechanics of thermoelastic accretion. Z. Angew. Math. Phys. 71(3), 1–24 (2020) MathSciNetMATHCrossRef
35.
Zurück zum Zitat Takamizawa, K.: Stress-free configuration of a thick-walled cylindrical model of the artery: an application of Riemann geometry to the biomechanics of soft tissues. J. Appl. Mech. 58(3), 840–842 (1991) CrossRef Takamizawa, K.: Stress-free configuration of a thick-walled cylindrical model of the artery: an application of Riemann geometry to the biomechanics of soft tissues. J. Appl. Mech. 58(3), 840–842 (1991) CrossRef
36.
Zurück zum Zitat Takamizawa, K., Hayashi, K.: Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20(1), 7–17 (1987) CrossRef Takamizawa, K., Hayashi, K.: Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20(1), 7–17 (1987) CrossRef
37.
Zurück zum Zitat Takamizawa, K., Matsuda, T.: Kinematics for bodies undergoing residual stress and its applications to the left ventricle. J. Appl. Mech. 57(2), 321–329 (1990) CrossRef Takamizawa, K., Matsuda, T.: Kinematics for bodies undergoing residual stress and its applications to the left ventricle. J. Appl. Mech. 57(2), 321–329 (1990) CrossRef
38.
Zurück zum Zitat Tomassetti, G., Cohen, T., Abeyaratne, R.: Steady accretion of an elastic body on a hard spherical surface and the notion of a four-dimensional reference space. J. Mech. Phys. Solids 96, 333–352 (2016) MathSciNetMATHCrossRef Tomassetti, G., Cohen, T., Abeyaratne, R.: Steady accretion of an elastic body on a hard spherical surface and the notion of a four-dimensional reference space. J. Mech. Phys. Solids 96, 333–352 (2016) MathSciNetMATHCrossRef
39.
Zurück zum Zitat Tranquillo, R.T., Murray, J.D.: Continuum model of fibroblast-driven wound contraction: inflammation-mediation. J. Theor. Biol. 158(2), 135–172 (1992) CrossRef Tranquillo, R.T., Murray, J.D.: Continuum model of fibroblast-driven wound contraction: inflammation-mediation. J. Theor. Biol. 158(2), 135–172 (1992) CrossRef
40.
Zurück zum Zitat Tranquillo, R.T., Murray, J.: Mechanistic model of wound contraction. J. Surg. Res. 55(2), 233–247 (1993) CrossRef Tranquillo, R.T., Murray, J.: Mechanistic model of wound contraction. J. Surg. Res. 55(2), 233–247 (1993) CrossRef
41.
42.
Zurück zum Zitat Truskinovsky, L., Zurlo, G.: Nonlinear elasticity of incompatible surface growth. Phys. Rev. B 99(5), 053001 (2019) MathSciNetCrossRef Truskinovsky, L., Zurlo, G.: Nonlinear elasticity of incompatible surface growth. Phys. Rev. B 99(5), 053001 (2019) MathSciNetCrossRef
44.
Zurück zum Zitat Yavari, A.: Universal deformations in inhomogeneous isotropic nonlinear elastic solids. Proc. R. Soc. A 477(2253), 20210547 (2021) MathSciNetCrossRef Yavari, A.: Universal deformations in inhomogeneous isotropic nonlinear elastic solids. Proc. R. Soc. A 477(2253), 20210547 (2021) MathSciNetCrossRef
45.
Zurück zum Zitat Yavari, A., Goriely, A.: Riemann-Cartan geometry of nonlinear dislocation mechanics. Arch. Ration. Mech. Anal. 205(1), 59–118 (2012) MathSciNetMATHCrossRef Yavari, A., Goriely, A.: Riemann-Cartan geometry of nonlinear dislocation mechanics. Arch. Ration. Mech. Anal. 205(1), 59–118 (2012) MathSciNetMATHCrossRef
46.
Zurück zum Zitat Yavari, A., Goriely, A.: The twist-fit problem: Finite torsional and shear eigenstrains in nonlinear elastic solids. Proc. R. Soc. Lond. A 471(2183) (2015) Yavari, A., Goriely, A.: The twist-fit problem: Finite torsional and shear eigenstrains in nonlinear elastic solids. Proc. R. Soc. Lond. A 471(2183) (2015)
47.
Zurück zum Zitat Yavari, A., Goriely, A.: Universal deformations in anisotropic nonlinear elastic solids. J. Mech. Phys. Solids 156, 104598 (2021) MathSciNetCrossRef Yavari, A., Goriely, A.: Universal deformations in anisotropic nonlinear elastic solids. J. Mech. Phys. Solids 156, 104598 (2021) MathSciNetCrossRef
48.
Zurück zum Zitat Yavari, A., Goriely, A.: The universal program of nonlinear hyperelasticity. J. Elast., 1–56 (2022) Yavari, A., Goriely, A.: The universal program of nonlinear hyperelasticity. J. Elast., 1–56 (2022)
50.
Zurück zum Zitat Yavari, A., Sozio, F.: On the direct and reverse multiplicative decompositions of deformation gradient in nonlinear anisotropic anelasticity. J. Mech. Phys. Solids 170, 105101 (2022) MathSciNetCrossRef Yavari, A., Sozio, F.: On the direct and reverse multiplicative decompositions of deformation gradient in nonlinear anisotropic anelasticity. J. Mech. Phys. Solids 170, 105101 (2022) MathSciNetCrossRef
51.
Zurück zum Zitat Yavari, A., Safa, Y., Soleiman Fallah, A.: Finite extension of accreting nonlinear elastic solid circular cylinders (2022) Yavari, A., Safa, Y., Soleiman Fallah, A.: Finite extension of accreting nonlinear elastic solid circular cylinders (2022)
52.
Zurück zum Zitat Zurlo, G., Truskinovsky, L.: Printing non-Euclidean solids. Phys. Rev. Lett. 119(4), 048001 (2017) CrossRef Zurlo, G., Truskinovsky, L.: Printing non-Euclidean solids. Phys. Rev. Lett. 119(4), 048001 (2017) CrossRef
53.
Zurück zum Zitat Zurlo, G., Truskinovsky, L.: Inelastic surface growth. Mech. Res. Commun. 93, 174–179 (2018) CrossRef Zurlo, G., Truskinovsky, L.: Inelastic surface growth. Mech. Res. Commun. 93, 174–179 (2018) CrossRef
Metadaten
Titel
Accretion Mechanics of Nonlinear Elastic Circular Cylindrical Bars Under Finite Torsion
verfasst von
Arash Yavari
Satya Prakash Pradhan
Publikationsdatum
29.11.2022
Verlag
Springer Netherlands
Erschienen in
Journal of Elasticity / Ausgabe 1-2/2022
Print ISSN: 0374-3535
Elektronische ISSN: 1573-2681
DOI
https://doi.org/10.1007/s10659-022-09957-6

Weitere Artikel der Ausgabe 1-2/2022

Journal of Elasticity 1-2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.