Skip to main content
Erschienen in: Mechanics of Composite Materials 4/2023

04.09.2023

An Analytical-Numerical Coupled Model for an Aeroelastic Analysis of Tail Flutter Based on Bending–Torsional Coupling

verfasst von: H. Nejatbakhsh, A. R. Ghasemi, A. Gharaei, H. R. Najafabadi

Erschienen in: Mechanics of Composite Materials | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aeroelastic instability is the mutual interaction of aerodynamic, structural, and inertial forces that can cause the flutter in aircraft structures. In this research, applying the coupling of a flutter with two degrees of freedom and the finite-element method, to a symmetric airfoil section of an aircraft tail, the flutter speed is investigated. The geometry and thickness of tail skin and isotropic and layups of composite materials are effective parameters of the torsional and bending stiffnesses of the airfoil section studied using the finite-element method. Lagrange’s equation is used to analyze the aeroelastic instability of the tail. Finally, the impact of the effective parameters on the flutter speed and instability of tail are discussed. The results obtained show that, at the same thickness, the flutter speed of angle-ply layups is higher than of quasi-isotropic composite laminates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. Omenzetter, K. Wild, and Y. Fujino, “Suppression of wind-induced instabilities of a long span bridge by a passive deck–flaps control system,” Part I: Formulation, J. Wind Eng. Industrial Aerodynamics, 87, No. 1, 61-79 (2000).CrossRef P. Omenzetter, K. Wild, and Y. Fujino, “Suppression of wind-induced instabilities of a long span bridge by a passive deck–flaps control system,” Part I: Formulation, J. Wind Eng. Industrial Aerodynamics, 87, No. 1, 61-79 (2000).CrossRef
2.
Zurück zum Zitat F. Mastroddi, M. Tozzi, and V. Capannolo, “On the use of geometry design variables in the MDO analysis of wing structures with aeroelastic constraints on stability and response,” Aerospace Sci. Technol., 15, No. 3, 196-206 (2011).CrossRef F. Mastroddi, M. Tozzi, and V. Capannolo, “On the use of geometry design variables in the MDO analysis of wing structures with aeroelastic constraints on stability and response,” Aerospace Sci. Technol., 15, No. 3, 196-206 (2011).CrossRef
3.
Zurück zum Zitat J. K. S. Dillinger, T. Klimmek, M. M. Abdalla, and Z. Gürdal, “Stiffness optimization of composite wings with aeroelastic constraints,” J. Aircraft, 50, No. 4, 1159-1168 (2013).CrossRef J. K. S. Dillinger, T. Klimmek, M. M. Abdalla, and Z. Gürdal, “Stiffness optimization of composite wings with aeroelastic constraints,” J. Aircraft, 50, No. 4, 1159-1168 (2013).CrossRef
4.
Zurück zum Zitat O. Stodieck, J. E. Cooper, P. M. Weaver, and P. Kealy, “Aeroelastic tailoring of a representative wing box using tow-steered composites,” AIAA J., 55, No. 4, 1425-1439 (2017).CrossRef O. Stodieck, J. E. Cooper, P. M. Weaver, and P. Kealy, “Aeroelastic tailoring of a representative wing box using tow-steered composites,” AIAA J., 55, No. 4, 1425-1439 (2017).CrossRef
5.
Zurück zum Zitat N. Babouskos and J. T. Katsikadelis, “Flutter instability of damped plates under combined conservative and non-conservative loads,” Archive of Appl, Mech., 79, No. 6, 541-556 (2009).CrossRef N. Babouskos and J. T. Katsikadelis, “Flutter instability of damped plates under combined conservative and non-conservative loads,” Archive of Appl, Mech., 79, No. 6, 541-556 (2009).CrossRef
6.
Zurück zum Zitat Z. Li, B. Wen, X. Dong, Z. Peng, Y. Qu, and W. Zhang, “Aerodynamic and aeroelastic characteristics of flexible wind turbine blades under periodic unsteady inflows,” J. Wind Eng. Industrial Aerodynamics, 197, 104057 (2020).CrossRef Z. Li, B. Wen, X. Dong, Z. Peng, Y. Qu, and W. Zhang, “Aerodynamic and aeroelastic characteristics of flexible wind turbine blades under periodic unsteady inflows,” J. Wind Eng. Industrial Aerodynamics, 197, 104057 (2020).CrossRef
7.
Zurück zum Zitat A. R. Ghasemi, A. Jahanshir, and M. H. Tarighat, “Numerical and analytical study of aeroelastic characteristics of wind turbine composite blades,” Wind and Structures, 18, No. 2, 103-116 (2014).CrossRef A. R. Ghasemi, A. Jahanshir, and M. H. Tarighat, “Numerical and analytical study of aeroelastic characteristics of wind turbine composite blades,” Wind and Structures, 18, No. 2, 103-116 (2014).CrossRef
8.
Zurück zum Zitat A. R. Ghasemi and M. Mohandes, “Composite Blades Of Wind Turbine: Design, Stress Analysis, Aeroelasticity, and Fatigue,” in: Wind Turbines-Design, Control And Applications, InTechOpen, 2016. 1-26. A. R. Ghasemi and M. Mohandes, “Composite Blades Of Wind Turbine: Design, Stress Analysis, Aeroelasticity, and Fatigue,” in: Wind Turbines-Design, Control And Applications, InTechOpen, 2016. 1-26.
9.
Zurück zum Zitat S. P. Evans, D. R. Bradney, and P. D. Clausen, “Development and experimental verification of a 5 kW small wind turbine aeroelastic model,” J. Wind Eng. Industrial Aerodynamics, 181, 104-111 (2018).CrossRef S. P. Evans, D. R. Bradney, and P. D. Clausen, “Development and experimental verification of a 5 kW small wind turbine aeroelastic model,” J. Wind Eng. Industrial Aerodynamics, 181, 104-111 (2018).CrossRef
10.
Zurück zum Zitat C. Saxton and F. F. Afagh, “Modelling and dynamic stability of a hingeless active fibre composite blade.” Archive of Appl, Mech., 80, No. 8, 843-868 (2010).CrossRef C. Saxton and F. F. Afagh, “Modelling and dynamic stability of a hingeless active fibre composite blade.” Archive of Appl, Mech., 80, No. 8, 843-868 (2010).CrossRef
11.
Zurück zum Zitat M. T. Piovan, S. Domini, and J. M. Ramirez, “In-plane and out-of-plane dynamics and buckling of functionally graded circular curved beams,” Composite Structures, 94, No. 11, 3194-3206 (2012).CrossRef M. T. Piovan, S. Domini, and J. M. Ramirez, “In-plane and out-of-plane dynamics and buckling of functionally graded circular curved beams,” Composite Structures, 94, No. 11, 3194-3206 (2012).CrossRef
12.
Zurück zum Zitat D. H. Hodges, “Non-linear in-plane deformation and buckling of rings and high arches,” Int. J. Non-Linear Mech., 34, No. 4, 723-737 (1999).CrossRef D. H. Hodges, “Non-linear in-plane deformation and buckling of rings and high arches,” Int. J. Non-Linear Mech., 34, No. 4, 723-737 (1999).CrossRef
13.
Zurück zum Zitat O. O. Ozgumus and M. O. Kaya, “Energy expressions and free vibration analysis of a rotating Timoshenko beam featuring bending–bending-torsion coupling,” Archive of Appl, Mech., 83, No. 1, 97-108 (2013).CrossRef O. O. Ozgumus and M. O. Kaya, “Energy expressions and free vibration analysis of a rotating Timoshenko beam featuring bending–bending-torsion coupling,” Archive of Appl, Mech., 83, No. 1, 97-108 (2013).CrossRef
14.
Zurück zum Zitat M. R. Amoozgar and H. Shahverdi, “Aeroelastic stability analysis of curved composite blades in hover using fully intrinsic equations,” Int. J. Aeronautical and Space Sciences, 20, No. 3, 653-663 (2019).CrossRef M. R. Amoozgar and H. Shahverdi, “Aeroelastic stability analysis of curved composite blades in hover using fully intrinsic equations,” Int. J. Aeronautical and Space Sciences, 20, No. 3, 653-663 (2019).CrossRef
15.
Zurück zum Zitat M. R. Amoozgar, S. A. Fazelzadeh, H. H. Khodaparast, M. I. Friswell, and J. E. Cooper, “Aeroelastic stability analysis of aircraft wings with initial curvature,” Aerospace Sci. Technol., 107, 106241 (2020).CrossRef M. R. Amoozgar, S. A. Fazelzadeh, H. H. Khodaparast, M. I. Friswell, and J. E. Cooper, “Aeroelastic stability analysis of aircraft wings with initial curvature,” Aerospace Sci. Technol., 107, 106241 (2020).CrossRef
16.
Zurück zum Zitat A. Elham and M. J. van Tooren, “Winglet multi-objective shape optimization,” Aerospace Sci. Technol., 37, 93-109 (2014).CrossRef A. Elham and M. J. van Tooren, “Winglet multi-objective shape optimization,” Aerospace Sci. Technol., 37, 93-109 (2014).CrossRef
17.
Zurück zum Zitat M. Ghalandari, S. Shamshirband, A. Mosavi, and K. W. Chau, “Flutter speed estimation using presented differential quadrature method formulation,” Eng. Applications of Computational Fluid Mech., 13, No. 1, 804-810 (2019).CrossRef M. Ghalandari, S. Shamshirband, A. Mosavi, and K. W. Chau, “Flutter speed estimation using presented differential quadrature method formulation,” Eng. Applications of Computational Fluid Mech., 13, No. 1, 804-810 (2019).CrossRef
18.
Zurück zum Zitat L. H. van Zyl and E. H. Mathews, “Aeroelastic analysis of T-tails using an enhanced Doublet Lattice Method,” J. Aircraft, 48, No. 3, 823-831 (2011).CrossRef L. H. van Zyl and E. H. Mathews, “Aeroelastic analysis of T-tails using an enhanced Doublet Lattice Method,” J. Aircraft, 48, No. 3, 823-831 (2011).CrossRef
19.
Zurück zum Zitat A. Attorni, L. Cavagna, and G. Quaranta, “Aircraft T-tail flutter predictions using computational fluid dynamics,” J. Fluids and Structures, 27, No. 2, 161-174 (2011).CrossRef A. Attorni, L. Cavagna, and G. Quaranta, “Aircraft T-tail flutter predictions using computational fluid dynamics,” J. Fluids and Structures, 27, No. 2, 161-174 (2011).CrossRef
20.
Zurück zum Zitat N. Nguyen-Thanh, K. Zhou, X. Zhuang, P. Areias, H. Nguyen-Xuan, Y. Bazilevs, and T. Rabczuk, “Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling,” J. Computer Methods Appl. Mech. Eng., 316, 1157-1178 (2017).CrossRef N. Nguyen-Thanh, K. Zhou, X. Zhuang, P. Areias, H. Nguyen-Xuan, Y. Bazilevs, and T. Rabczuk, “Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling,” J. Computer Methods Appl. Mech. Eng., 316, 1157-1178 (2017).CrossRef
21.
Zurück zum Zitat N. Valizadeh, S. Natarajan, O. A. Gonzalez-Estrada, T. Rabczuk, T. Q. Bui, and S. P. A. Bordas, “NURBS-based finite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter, “ J. Compos. Struct., 99, 309-326 (2013).CrossRef N. Valizadeh, S. Natarajan, O. A. Gonzalez-Estrada, T. Rabczuk, T. Q. Bui, and S. P. A. Bordas, “NURBS-based finite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter, “ J. Compos. Struct., 99, 309-326 (2013).CrossRef
22.
Zurück zum Zitat T. T. Truong, J. Lee, and T. Nguyen-Thoi, “Multi-objective optimization of multi-directional functionally graded beams using an effective deep feedforward neural network-SMPSO algorithm,” Structural and Multidisciplinary Optimization, 63, Iss. 6, 2889-2918 (2021). T. T. Truong, J. Lee, and T. Nguyen-Thoi, “Multi-objective optimization of multi-directional functionally graded beams using an effective deep feedforward neural network-SMPSO algorithm,” Structural and Multidisciplinary Optimization, 63, Iss. 6, 2889-2918 (2021).
23.
Zurück zum Zitat H. Guo, X. Zhuang, and T. Rabczuk, “A Deep Collocation Method for the Bending Analysis of Kirchhoff Plate,” Tech Science Press, 59, No. 2, 433-456 (2019). H. Guo, X. Zhuang, and T. Rabczuk, “A Deep Collocation Method for the Bending Analysis of Kirchhoff Plate,” Tech Science Press, 59, No. 2, 433-456 (2019).
24.
Zurück zum Zitat X. Zhuang, H. Guo, N. Alajlan, H. Zhu, and T. Rabczuk, “Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning,” Eur. J. Mech. - A/Solids, 87, Article 104225 (2021). X. Zhuang, H. Guo, N. Alajlan, H. Zhu, and T. Rabczuk, “Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning,” Eur. J. Mech. - A/Solids, 87, Article 104225 (2021).
25.
Zurück zum Zitat J. Murua, P. Martínez, H. Climent, L. van Zyl, and R. Palacios, “T-tail flutter: Potential-flow modelling, experimental validation and flight tests,” Progress in Aerospace Sciences, 71, 54-84 (2014).CrossRef J. Murua, P. Martínez, H. Climent, L. van Zyl, and R. Palacios, “T-tail flutter: Potential-flow modelling, experimental validation and flight tests,” Progress in Aerospace Sciences, 71, 54-84 (2014).CrossRef
26.
Zurück zum Zitat D. Tang and E. H. Dowell, “Computational/experimental aeroelastic study for a horizontal-tail model with free play,” AIAA Journal, 51, No. 2, 341-352 (2013).CrossRef D. Tang and E. H. Dowell, “Computational/experimental aeroelastic study for a horizontal-tail model with free play,” AIAA Journal, 51, No. 2, 341-352 (2013).CrossRef
27.
Zurück zum Zitat F. Afonso, J. Vale, É. Oliveira, F. Lau, and A. Suleman, “A review on non-linear aeroelasticity of high aspect-ratio wings,” Progress in Aerospace Sciences, 89, 40-57 (2017).CrossRef F. Afonso, J. Vale, É. Oliveira, F. Lau, and A. Suleman, “A review on non-linear aeroelasticity of high aspect-ratio wings,” Progress in Aerospace Sciences, 89, 40-57 (2017).CrossRef
28.
Zurück zum Zitat A. Hermanutz and M. Hornung, “Aeroelastic wing planform design optimization of a flutter UAV demonstrator,” Aerospace, 7, No. 4, 45 (2020). A. Hermanutz and M. Hornung, “Aeroelastic wing planform design optimization of a flutter UAV demonstrator,” Aerospace, 7, No. 4, 45 (2020).
29.
Zurück zum Zitat S. Kumar, A. K. Onkar, and M. Manjuprasad, “Stochastic modeling and reliability analysis of wing flutter,” J. Aerospace Eng., 33, No. 5, 04020044 (2020). S. Kumar, A. K. Onkar, and M. Manjuprasad, “Stochastic modeling and reliability analysis of wing flutter,” J. Aerospace Eng., 33, No. 5, 04020044 (2020).
30.
Zurück zum Zitat D. H. Hodges and G. A. Pierce, Introduction to Structural Dynamics and Aeroelasticity, 15, Cambridge University press (2011). D. H. Hodges and G. A. Pierce, Introduction to Structural Dynamics and Aeroelasticity, 15, Cambridge University press (2011).
31.
Zurück zum Zitat R. Aleksandrowicz and W. Lucjanek, Sailplane Stiffness Measurements, 5, OSTIV Publications (1958). R. Aleksandrowicz and W. Lucjanek, Sailplane Stiffness Measurements, 5, OSTIV Publications (1958).
32.
Zurück zum Zitat B. Budiansky, J. N. Kotanchik, and P. T. Chiarito, “A Torsional Stiffness Criterion for Preventing Flutter of Wings of Supersonic Missiles,” National Advisory Committee For Aeronautics Langley Field VA Langley Aeronautical Laboratory (1947). B. Budiansky, J. N. Kotanchik, and P. T. Chiarito, “A Torsional Stiffness Criterion for Preventing Flutter of Wings of Supersonic Missiles,” National Advisory Committee For Aeronautics Langley Field VA Langley Aeronautical Laboratory (1947).
Metadaten
Titel
An Analytical-Numerical Coupled Model for an Aeroelastic Analysis of Tail Flutter Based on Bending–Torsional Coupling
verfasst von
H. Nejatbakhsh
A. R. Ghasemi
A. Gharaei
H. R. Najafabadi
Publikationsdatum
04.09.2023
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 4/2023
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10129-3

Weitere Artikel der Ausgabe 4/2023

Mechanics of Composite Materials 4/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.