Skip to main content
Erschienen in: Journal of Materials Science 2/2015

01.01.2015 | Original Paper

Approximated equations for molar volumes of pure solid fcc metals and their liquids from zero Kelvin to above their melting points at standard pressure

verfasst von: George Kaptay

Erschienen in: Journal of Materials Science | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Approximated equations have been constructed to describe the temperature (T) dependence of the molar volumes (V) of fcc solid metals (Ag, Al, Au, Cu, Ir, Ni, Pb, Pd, Pt, and Rh) and their liquids below and above their melting points at standard pressure of 1 bar from zero Kelvin. Below the melting point, the following new approximated equation is suggested for both the solid and liquid metals: V = a + b * T (to the power of n), where a, b, and n are semi-empirical parameters (at n larger than 1; this equation obeys the boundary condition that the thermal expansion coefficient becomes zero at T = 0 K). This approximated equation reproduces the measured molar volume of solids from zero Kelvin to melting point with an accuracy of 0.2 % or better. As a compromise, the derivative of this equation reproduces the measured thermal expansion coefficient of solids only with an accuracy 10 % or better and only above 100 K. Above the melting point, the following well-known equation is used for both liquid and solid phases: V = c + d * T, where c and d are semi-empirical parameters. This equation implies that the thermal expansion coefficient above the melting point has an approximately constant value. It is found that the volume change upon melting extrapolated to zero K is about 58 % of that at the melting point for all the 10 fcc metals. The tabulated 4 equations (below and above the melting point/for fcc and liquid states) are provided for each of the 10 fcc metals. These equations will be useful for estimating phase equilibria of nano-materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
the exception is Ni, for which the parameters of Table 1 in [22] are probably given with a misprint.
 
Literatur
1.
Zurück zum Zitat Paradis PF, Ishikawa T, Lee GW, Holland-Moritz D, Brillo J, Rhim WK, Okada JT (2014) Materials properties measurements and particle beam interactions studies using electrostatic levitation. Mater Sci Eng R 76:1–53CrossRef Paradis PF, Ishikawa T, Lee GW, Holland-Moritz D, Brillo J, Rhim WK, Okada JT (2014) Materials properties measurements and particle beam interactions studies using electrostatic levitation. Mater Sci Eng R 76:1–53CrossRef
3.
Zurück zum Zitat Poirier DR (2014) Density, viscosity, and diffusion coefficients in hypoeutectic Al–Si liquid alloys: an assessment of available data. Metal Mater Trans B. doi:10.1007/s11663-014-0037-8 Poirier DR (2014) Density, viscosity, and diffusion coefficients in hypoeutectic Al–Si liquid alloys: an assessment of available data. Metal Mater Trans B. doi:10.​1007/​s11663-014-0037-8
4.
Zurück zum Zitat Gancarz T, Moser Z, Gasior W, Pstrus J, Henein H (2011) A comparison of surface tension, viscosity, and density of Sn and Sn–Ag alloys using different measurement techniques. Int J Thermophys 32:1210–1233CrossRef Gancarz T, Moser Z, Gasior W, Pstrus J, Henein H (2011) A comparison of surface tension, viscosity, and density of Sn and Sn–Ag alloys using different measurement techniques. Int J Thermophys 32:1210–1233CrossRef
5.
Zurück zum Zitat Terzieff P (2010) Some physico-chemical properties of liquid Ag–Sn–Zn. Phys. B 405:2668–2672CrossRef Terzieff P (2010) Some physico-chemical properties of liquid Ag–Sn–Zn. Phys. B 405:2668–2672CrossRef
6.
Zurück zum Zitat Hallstedt B, Dupin N, Hillert M, Höglund L, Lukas HL, Schuster JC, Solak N (2007) Thermodynamic models for crystalline phases. Composition dependent model for volume, bulk modulus and thermal expansion. CALPHAD 31:28–37CrossRef Hallstedt B, Dupin N, Hillert M, Höglund L, Lukas HL, Schuster JC, Solak N (2007) Thermodynamic models for crystalline phases. Composition dependent model for volume, bulk modulus and thermal expansion. CALPHAD 31:28–37CrossRef
7.
Zurück zum Zitat Kucharski M, Fima P (2004) The surface tension and density of Cu–Pb–Fe alloys. Arch Metall Mater 49:565–573 Kucharski M, Fima P (2004) The surface tension and density of Cu–Pb–Fe alloys. Arch Metall Mater 49:565–573
8.
Zurück zum Zitat Lu XG, Selleby M, Sundman B (2005) Implementation of a new model for pressure dependence of condensed phases in Thermo-Calc. CALPHAD 29:49–55CrossRef Lu XG, Selleby M, Sundman B (2005) Implementation of a new model for pressure dependence of condensed phases in Thermo-Calc. CALPHAD 29:49–55CrossRef
10.
Zurück zum Zitat Lee J, Sim KJ (2014) General equations of CALPHAD-type thermodynamic description for metallic nanoparticle systems. CALPHAD 44:129–132CrossRef Lee J, Sim KJ (2014) General equations of CALPHAD-type thermodynamic description for metallic nanoparticle systems. CALPHAD 44:129–132CrossRef
11.
Zurück zum Zitat Kaptay G, Janczak-Rusch J, Pigozzi G, Jeurgens LPH (2014) Theoretical analysis of melting point depression of pure metals in different initial configurations. J Mater Eng Perform 23:1600–1607CrossRef Kaptay G, Janczak-Rusch J, Pigozzi G, Jeurgens LPH (2014) Theoretical analysis of melting point depression of pure metals in different initial configurations. J Mater Eng Perform 23:1600–1607CrossRef
12.
Zurück zum Zitat Junkaew A, Ham B, Zhang X, Arróyave R (2014) Tailoring the formation of metastable Mg through interfacial engineering: a phase stability analysis. CALPHAD 45:145–150CrossRef Junkaew A, Ham B, Zhang X, Arróyave R (2014) Tailoring the formation of metastable Mg through interfacial engineering: a phase stability analysis. CALPHAD 45:145–150CrossRef
13.
Zurück zum Zitat Sopousek J, Vrestal J, Pinkas J, Broz P, Bursik J, Styskalik A, Skoda D, Zobac O, Lee J (2014) Cu–Ni nanoalloy phase diagram: prediction and experiment. CALPHAD 45:33–39CrossRef Sopousek J, Vrestal J, Pinkas J, Broz P, Bursik J, Styskalik A, Skoda D, Zobac O, Lee J (2014) Cu–Ni nanoalloy phase diagram: prediction and experiment. CALPHAD 45:33–39CrossRef
14.
Zurück zum Zitat Garzel G, Janczak-Rusch J, Zabdyr L (2012) Reassessment of the Ag–Cu phase diagram for nanosystems including particle size and shape effect. CALPHAD 36:52–56CrossRef Garzel G, Janczak-Rusch J, Zabdyr L (2012) Reassessment of the Ag–Cu phase diagram for nanosystems including particle size and shape effect. CALPHAD 36:52–56CrossRef
16.
Zurück zum Zitat Tang C, Sung YM, Lee J (2012) Nonlinear size-dependent melting of the silica-encapsulated silver nanoparticles. Appl Phys Lett 100:201903CrossRef Tang C, Sung YM, Lee J (2012) Nonlinear size-dependent melting of the silica-encapsulated silver nanoparticles. Appl Phys Lett 100:201903CrossRef
17.
Zurück zum Zitat Koukkari P, Pajarre R, Hack K (2007) Constrained Gibbs energy minimization. Int J Mater Res 98:926–934CrossRef Koukkari P, Pajarre R, Hack K (2007) Constrained Gibbs energy minimization. Int J Mater Res 98:926–934CrossRef
18.
Zurück zum Zitat Touloukian YS, Kirby RK, Taylor RE, Lee TYR (1977) Thermal expansion. IFI/Plenum, New YorkCrossRef Touloukian YS, Kirby RK, Taylor RE, Lee TYR (1977) Thermal expansion. IFI/Plenum, New YorkCrossRef
19.
Zurück zum Zitat Emsley J (1989) The elements. Clarendon Press, Oxford Emsley J (1989) The elements. Clarendon Press, Oxford
20.
Zurück zum Zitat Lide DR (ed) (1993–1994) CRC Handbook of chemistry and physics. CRC Press, Boca Raton Lide DR (ed) (1993–1994) CRC Handbook of chemistry and physics. CRC Press, Boca Raton
21.
Zurück zum Zitat Iida I, Guthrie RIL (1993) The physical properties of liquid metals. Clarendon Press, Oxford Iida I, Guthrie RIL (1993) The physical properties of liquid metals. Clarendon Press, Oxford
22.
Zurück zum Zitat Lu XG, Selleby M, Sundman B (2005) Assessments of molar volume and thermal expansion for selected bcc, fcc and hcp metallic elements. CALPHAD 29:68–89CrossRef Lu XG, Selleby M, Sundman B (2005) Assessments of molar volume and thermal expansion for selected bcc, fcc and hcp metallic elements. CALPHAD 29:68–89CrossRef
23.
Zurück zum Zitat Lu XG, Selleby M, Sundman B (2005) Theoretical modeling of molar volume and thermal expansion. Acta Mater 53:2259–2272CrossRef Lu XG, Selleby M, Sundman B (2005) Theoretical modeling of molar volume and thermal expansion. Acta Mater 53:2259–2272CrossRef
24.
Zurück zum Zitat Arblaster JW (1997) Crystallographic properties of platinum. Plat Met Rev 41:12–21 Arblaster JW (1997) Crystallographic properties of platinum. Plat Met Rev 41:12–21
25.
Zurück zum Zitat Arblaster JW (1997) Crystallographic properties of rhodium. Plat Met Rev 41:184–189 Arblaster JW (1997) Crystallographic properties of rhodium. Plat Met Rev 41:184–189
26.
Zurück zum Zitat Arblaster JW (2006) Crystallographic properties of platinum. New methodology and erratum. Plat Met Rev 50:118–119CrossRef Arblaster JW (2006) Crystallographic properties of platinum. New methodology and erratum. Plat Met Rev 50:118–119CrossRef
27.
Zurück zum Zitat Arblaster JW (2010) Crystallographic properties of iridium. Plat Met Rev 54:93–102CrossRef Arblaster JW (2010) Crystallographic properties of iridium. Plat Met Rev 54:93–102CrossRef
28.
Zurück zum Zitat Arblaster JW (2012) Crystallographic properties of palladium. Plat Met Rev 56:181–189CrossRef Arblaster JW (2012) Crystallographic properties of palladium. Plat Met Rev 56:181–189CrossRef
29.
Zurück zum Zitat Ishikawa T, Paradis PF, Fujii R, Saita Y, Yoda S (2005) Thermophysical property measurements of liquid and supercooled iridium by containerless methods. Int J Thermophys 26:893–904CrossRef Ishikawa T, Paradis PF, Fujii R, Saita Y, Yoda S (2005) Thermophysical property measurements of liquid and supercooled iridium by containerless methods. Int J Thermophys 26:893–904CrossRef
30.
Zurück zum Zitat Paradis PF, Ishikawa T, Saita Y, Yoda S (2004) Containerless property measurements of liquid palladium. Int J Thermophys 25:1905–1921CrossRef Paradis PF, Ishikawa T, Saita Y, Yoda S (2004) Containerless property measurements of liquid palladium. Int J Thermophys 25:1905–1921CrossRef
31.
Zurück zum Zitat Ishikawa T, Paradis PF, Koike N (2006) Non-contact thermophysical property measurements of liquid and supercooled platinum. Jpn J Appl Phys 45:1719–1728CrossRef Ishikawa T, Paradis PF, Koike N (2006) Non-contact thermophysical property measurements of liquid and supercooled platinum. Jpn J Appl Phys 45:1719–1728CrossRef
32.
Zurück zum Zitat Paradis PF, Ishikawa T, Yoda S (2003) Thermophysical property measurements of supercooled and liquid rhodium. Int J Thermophys 24:1121–1136CrossRef Paradis PF, Ishikawa T, Yoda S (2003) Thermophysical property measurements of supercooled and liquid rhodium. Int J Thermophys 24:1121–1136CrossRef
33.
34.
Zurück zum Zitat Paradis PF, Ishikawa T, Koike N (2008) Density of liquid gold measured by a non-contact method. Gold Bull 41:242–245CrossRef Paradis PF, Ishikawa T, Koike N (2008) Density of liquid gold measured by a non-contact method. Gold Bull 41:242–245CrossRef
35.
Zurück zum Zitat Chung SK, Thiessen DB, Rhim WK (1996) A noncontact measurement technique for the density and thermal expansion coefficient of solid and liquid materials. Rev Sci Instrum 67:3175–3181CrossRef Chung SK, Thiessen DB, Rhim WK (1996) A noncontact measurement technique for the density and thermal expansion coefficient of solid and liquid materials. Rev Sci Instrum 67:3175–3181CrossRef
36.
Zurück zum Zitat Ishikawa T, Paradis PF, Saita Y (2004) Thermophysical property measurement of molten nickel using an electrostatic levitation furnace. J Jpn Inst Met 68:781–786CrossRef Ishikawa T, Paradis PF, Saita Y (2004) Thermophysical property measurement of molten nickel using an electrostatic levitation furnace. J Jpn Inst Met 68:781–786CrossRef
37.
Zurück zum Zitat Kaptay G (2008) A unified model for the cohesive enthalpy, critical temperature, surface tension and volume thermal expansion coefficient of liquid metals of bcc, fcc and hcp crystals. Mater Sci Eng A 495:19–26CrossRef Kaptay G (2008) A unified model for the cohesive enthalpy, critical temperature, surface tension and volume thermal expansion coefficient of liquid metals of bcc, fcc and hcp crystals. Mater Sci Eng A 495:19–26CrossRef
Metadaten
Titel
Approximated equations for molar volumes of pure solid fcc metals and their liquids from zero Kelvin to above their melting points at standard pressure
verfasst von
George Kaptay
Publikationsdatum
01.01.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 2/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8627-z

Weitere Artikel der Ausgabe 2/2015

Journal of Materials Science 2/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.