Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2022

06.01.2022 | Technical Article

Assessment of 3D Printings Produced in Fused Deposition Modeling Printer Using Polylactic Acid/TiO2/Hydroxyapatite Composite Filaments

verfasst von: Mikail Olam, Nihat Tosun

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polymer composite filaments, which consist of polylactic acid (PLA), titanium dioxide (TiO2), synthetic hydroxyapatite (HA) and natural hydroxyapatite (NHA), have been produced via an extruder for using in biomedical applications. Then, 3D printings were produced in a fused deposition modeling (FDM) printer by using these composite filaments. A number of experiments and measurements were made on 3D printed PLA/HA/NHA/TiO2 composite samples. According to the stress–strain analysis of 3D printing samples of PLA/HA/NHA/TiO2 composites, the highest ultimate tensile strength, elastic modulus and elongation at break were 62, 1887 MPa, and 1.76 mm, respectively. According to SEM analysis, HA in PLA contributed to the spread of raster lines, and TiO2 contributed to the smoothness of the raster lines. According to the dimensional accuracy analysis of the composites, the least deviation value was obtained in the samples 3D printed with 95%PLA/2.5%HA/2.5%TiO2 filament at 205 °C extruder temperature. The lowest average roughness value of 95%PLA/4%HA/1%TiO2 composite was 3 µm in the Z-axis plane. According to the data obtained, the extruder temperature is 220 °C, the printing speed is 2880 mm/min, the mixing ratio 95% PLA/4% HA/1% TiO2 can be selected for optimal performance characteristics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Gnanasekaran, T. Heijmans, S. van Bennekom, H. Woldhuis, S. Wijnia, G. de With and H. Friedrich, 3D Printing of CNT- and Graphene-Based Conductive Polymer Nanocomposites by Fused Deposition Modeling, Appl. Mater. Today, 2017, 9, p 21–28.CrossRef K. Gnanasekaran, T. Heijmans, S. van Bennekom, H. Woldhuis, S. Wijnia, G. de With and H. Friedrich, 3D Printing of CNT- and Graphene-Based Conductive Polymer Nanocomposites by Fused Deposition Modeling, Appl. Mater. Today, 2017, 9, p 21–28.CrossRef
3.
Zurück zum Zitat P. Parandoush and D. Lin, A Review on Additive Manufacturing of Polymer-Fiber Composites, Composite Structures, 2017, 182, p 36–53.CrossRef P. Parandoush and D. Lin, A Review on Additive Manufacturing of Polymer-Fiber Composites, Composite Structures, 2017, 182, p 36–53.CrossRef
5.
Zurück zum Zitat O.A. Mohamed, S.H. Masood, J.L. Bhowmik and A.E. Somers, Investigation on the Tribological Behavior and Wear Mechanism of Parts Processed by Fused Deposition Additive Manufacturing Process, J. Manuf. Process., 2017, 29, p 149–159.CrossRef O.A. Mohamed, S.H. Masood, J.L. Bhowmik and A.E. Somers, Investigation on the Tribological Behavior and Wear Mechanism of Parts Processed by Fused Deposition Additive Manufacturing Process, J. Manuf. Process., 2017, 29, p 149–159.CrossRef
7.
Zurück zum Zitat J. Torres, M. Cole, A. Owji, Z. DeMastry and A.P. Gordon, An Approach for Mechanical Property Optimization of Fused Deposition Modeling with Polylactic Acid via Design of Experiments, Rapid Prototyp. J., 2016, 22(2), p 387–404.CrossRef J. Torres, M. Cole, A. Owji, Z. DeMastry and A.P. Gordon, An Approach for Mechanical Property Optimization of Fused Deposition Modeling with Polylactic Acid via Design of Experiments, Rapid Prototyp. J., 2016, 22(2), p 387–404.CrossRef
8.
Zurück zum Zitat A.K. Sood, R.K. Ohdar and S.S. Mahapatra, Experimental Investigation and Empirical Modelling of FDM Process for Compressive Strength Improvement, J. Adv. Res., 2012, 3(1), p 81–90.CrossRef A.K. Sood, R.K. Ohdar and S.S. Mahapatra, Experimental Investigation and Empirical Modelling of FDM Process for Compressive Strength Improvement, J. Adv. Res., 2012, 3(1), p 81–90.CrossRef
9.
Zurück zum Zitat A.K. Sood, R.K. Ohdar and S.S. Mahapatra, Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts, Mater. Des., 2010, 31(1), p 287–295.CrossRef A.K. Sood, R.K. Ohdar and S.S. Mahapatra, Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts, Mater. Des., 2010, 31(1), p 287–295.CrossRef
10.
Zurück zum Zitat G. Strnad, R. Cazacu, P. Chetan, A.S. Gaz Florea, and F. Peti, “Effect of Phosphate/Fluoride Electrolytes on Mass and Dimensional Stability of Anodization Bath Manufactured by FDM,” MATEC Web of Conferences, EDP Sciences, 2017. G. Strnad, R. Cazacu, P. Chetan, A.S. Gaz Florea, and F. Peti, “Effect of Phosphate/Fluoride Electrolytes on Mass and Dimensional Stability of Anodization Bath Manufactured by FDM,” MATEC Web of Conferences, EDP Sciences, 2017.
11.
Zurück zum Zitat A.P. Valerga, M. Batista, R. Puyana, A. Sambruno, C. Wendt and M. Marcos, Preliminary Study of PLA Wire Colour Effects on Geometric Characteristics of Parts Manufactured by FDM, Proc. Manuf., 2017, 13, p 924–931. A.P. Valerga, M. Batista, R. Puyana, A. Sambruno, C. Wendt and M. Marcos, Preliminary Study of PLA Wire Colour Effects on Geometric Characteristics of Parts Manufactured by FDM, Proc. Manuf., 2017, 13, p 924–931.
12.
Zurück zum Zitat S. Wang, D.R. D’hooge, L. Daelemans, H. Xia, K. De Clerck and L. Cardon, The Transferability and Design of Commercial Printer Settings in Pla/Pbat Fused Filament Fabrication, Polymers (Basel)., 2020, 12(11), p 1–20. S. Wang, D.R. D’hooge, L. Daelemans, H. Xia, K. De Clerck and L. Cardon, The Transferability and Design of Commercial Printer Settings in Pla/Pbat Fused Filament Fabrication, Polymers (Basel)., 2020, 12(11), p 1–20.
13.
Zurück zum Zitat T.C. Yang and C.H. Yeh, Morphology and Mechanical Properties of 3D Printed Wood Fiber/Polylactic Acid Composite Parts Using Fused Deposition Modeling (FDM): The Effects of Printing Speed, Polymers (Basel)., 2020, 12(6), p 1334.CrossRef T.C. Yang and C.H. Yeh, Morphology and Mechanical Properties of 3D Printed Wood Fiber/Polylactic Acid Composite Parts Using Fused Deposition Modeling (FDM): The Effects of Printing Speed, Polymers (Basel)., 2020, 12(6), p 1334.CrossRef
14.
Zurück zum Zitat A. Selvam, S. Mayilswamy, R. Whenish, R. Velu and B. Subramanian, Preparation and Evaluation of the Tensile Characteristics of Carbon Fiber Rod Reinforced 3D Printed Thermoplastic Composites, J. Compos. Sci., 2020, 5(1), p 8.CrossRef A. Selvam, S. Mayilswamy, R. Whenish, R. Velu and B. Subramanian, Preparation and Evaluation of the Tensile Characteristics of Carbon Fiber Rod Reinforced 3D Printed Thermoplastic Composites, J. Compos. Sci., 2020, 5(1), p 8.CrossRef
18.
Zurück zum Zitat T. Vukasovic, J.F. Vivanco, D. Celentano and C. García-Herrera, Characterization of the Mechanical Response of Thermoplastic Parts Fabricated with 3D Printing, Int. J. Adv. Manuf. Technol, 2019, 104(9–12), p 4207–4218.CrossRef T. Vukasovic, J.F. Vivanco, D. Celentano and C. García-Herrera, Characterization of the Mechanical Response of Thermoplastic Parts Fabricated with 3D Printing, Int. J. Adv. Manuf. Technol, 2019, 104(9–12), p 4207–4218.CrossRef
19.
Zurück zum Zitat T. Yao, Z. Deng, K. Zhang and S. Li, A Method to Predict the Ultimate Tensile Strength of 3D Printing Polylactic Acid (PLA) Materials with Different Printing Orientations, Compos. Part B Eng., 2019, 163, p 393–402.CrossRef T. Yao, Z. Deng, K. Zhang and S. Li, A Method to Predict the Ultimate Tensile Strength of 3D Printing Polylactic Acid (PLA) Materials with Different Printing Orientations, Compos. Part B Eng., 2019, 163, p 393–402.CrossRef
22.
Zurück zum Zitat S. Lin Yang, Z.H. Wu, W. Yang and M.B. Yang, Thermal and Mechanical Properties of Chemical Crosslinked Polylactide (PLA), Polym. Test., 2008, 27(8), p 957–963.CrossRef S. Lin Yang, Z.H. Wu, W. Yang and M.B. Yang, Thermal and Mechanical Properties of Chemical Crosslinked Polylactide (PLA), Polym. Test., 2008, 27(8), p 957–963.CrossRef
23.
Zurück zum Zitat P. Törmälä, S. Vainionpää, J. Kilpikari and P. Rokkanen, The Effects of Fibre Reinforcement and Gold Plating on the Flexural and Tensile Strength of PGA/PLA Copolymer Materials in Vitro, Biomaterials, 1987, 8(1), p 42–45.CrossRef P. Törmälä, S. Vainionpää, J. Kilpikari and P. Rokkanen, The Effects of Fibre Reinforcement and Gold Plating on the Flexural and Tensile Strength of PGA/PLA Copolymer Materials in Vitro, Biomaterials, 1987, 8(1), p 42–45.CrossRef
25.
Zurück zum Zitat B. Bax and J. Müssig, Impact and Tensile Properties of PLA/Cordenka and PLA/Flax Composites, Composites Science and Technology, 2008, 68, p 1601–1607.CrossRef B. Bax and J. Müssig, Impact and Tensile Properties of PLA/Cordenka and PLA/Flax Composites, Composites Science and Technology, 2008, 68, p 1601–1607.CrossRef
29.
Zurück zum Zitat M.H. Helal, H.D. Hendawy, R.A. Gaber, N.R. Helal and M.N. Aboushelib, Osteogenesis Ability of CAD-CAM Biodegradable Polylactic Acid Scaffolds for Reconstruction of Jaw Defects, J. Prosthet. Dent., 2019, 121(1), p 118–123.CrossRef M.H. Helal, H.D. Hendawy, R.A. Gaber, N.R. Helal and M.N. Aboushelib, Osteogenesis Ability of CAD-CAM Biodegradable Polylactic Acid Scaffolds for Reconstruction of Jaw Defects, J. Prosthet. Dent., 2019, 121(1), p 118–123.CrossRef
30.
Zurück zum Zitat E.V. Melnik, S.N. Shkarina, S.I. Ivlev, V. Weinhardt, T. Baumbach, M.V. Chaikina, M.A. Surmeneva and R.A. Surmenev, In Vitro Degradation Behaviour of Hybrid Electrospun Scaffolds of Polycaprolactone and Strontium-Containing Hydroxyapatite Microparticles, Polym. Degrad. Stab., 2019, 167, p 21–32.CrossRef E.V. Melnik, S.N. Shkarina, S.I. Ivlev, V. Weinhardt, T. Baumbach, M.V. Chaikina, M.A. Surmeneva and R.A. Surmenev, In Vitro Degradation Behaviour of Hybrid Electrospun Scaffolds of Polycaprolactone and Strontium-Containing Hydroxyapatite Microparticles, Polym. Degrad. Stab., 2019, 167, p 21–32.CrossRef
31.
Zurück zum Zitat M. Sadat-Shojai, M.T. Khorasani, E. Dinpanah-Khoshdargi and A. Jamshidi, Synthesis Methods for Nanosized Hydroxyapatite with Diverse Structures, Acta Biomaterialia, 2013, 9, p 7591–7621.CrossRef M. Sadat-Shojai, M.T. Khorasani, E. Dinpanah-Khoshdargi and A. Jamshidi, Synthesis Methods for Nanosized Hydroxyapatite with Diverse Structures, Acta Biomaterialia, 2013, 9, p 7591–7621.CrossRef
32.
Zurück zum Zitat G. Montalbano, G. Molino, S. Fiorilli and C. Vitale-Brovarone, Synthesis and Incorporation of Rod-like Nano-Hydroxyapatite into Type I Collagen Matrix: A Hybrid Formulation for 3D Printing of Bone Scaffolds, J. Eur. Ceram. Soc., 2020, 40(11), p 3689–3697.CrossRef G. Montalbano, G. Molino, S. Fiorilli and C. Vitale-Brovarone, Synthesis and Incorporation of Rod-like Nano-Hydroxyapatite into Type I Collagen Matrix: A Hybrid Formulation for 3D Printing of Bone Scaffolds, J. Eur. Ceram. Soc., 2020, 40(11), p 3689–3697.CrossRef
33.
Zurück zum Zitat T.T. Hoai, N.K. Nga, L.T. Giang, T.Q. Huy, P.N.M. Tuan and B.T.T. Binh, Hydrothermal Synthesis of Hydroxyapatite Nanorods for Rapid Formation of Bone-Like Mineralization, J. Electron. Mater., 2017, 46(8), p 5064–5072.CrossRef T.T. Hoai, N.K. Nga, L.T. Giang, T.Q. Huy, P.N.M. Tuan and B.T.T. Binh, Hydrothermal Synthesis of Hydroxyapatite Nanorods for Rapid Formation of Bone-Like Mineralization, J. Electron. Mater., 2017, 46(8), p 5064–5072.CrossRef
34.
Zurück zum Zitat J. Li, X.L. Lu and Y.F. Zheng, Effect of Surface Modified Hydroxyapatite on the Tensile Property Improvement of HA/PLA Composite, Appl. Surf. Sci., 2008, 255(2), p 494–497.CrossRef J. Li, X.L. Lu and Y.F. Zheng, Effect of Surface Modified Hydroxyapatite on the Tensile Property Improvement of HA/PLA Composite, Appl. Surf. Sci., 2008, 255(2), p 494–497.CrossRef
36.
Zurück zum Zitat D. Colangiuli, M. Lettieri, M. Masieri and A. Calia, Field Study in an Urban Environment of Simultaneous Self-Cleaning and Hydrophobic Nanosized TiO2-Based Coatings on Stone for the Protection of Building Surface, Sci. Total Environ., 2019, 650, p 2919–2930.CrossRef D. Colangiuli, M. Lettieri, M. Masieri and A. Calia, Field Study in an Urban Environment of Simultaneous Self-Cleaning and Hydrophobic Nanosized TiO2-Based Coatings on Stone for the Protection of Building Surface, Sci. Total Environ., 2019, 650, p 2919–2930.CrossRef
37.
Zurück zum Zitat M. Murugan, R. Subasri, T.N. Rao, A.S. Gandhi and B.S. Murty, Synthesis, Characterization and Demonstration of Self-Cleaning TiO 2 Coatings on Glass and Glazed Ceramic Tiles, Prog. Org. Coatings, 2013, 76(12), p 1756–1760.CrossRef M. Murugan, R. Subasri, T.N. Rao, A.S. Gandhi and B.S. Murty, Synthesis, Characterization and Demonstration of Self-Cleaning TiO 2 Coatings on Glass and Glazed Ceramic Tiles, Prog. Org. Coatings, 2013, 76(12), p 1756–1760.CrossRef
39.
Zurück zum Zitat P. Evans and D.W. Sheel, Photoactive and Antibacterial TiO2 Thin Films on Stainless Steel, Surf. Coatings Technol., 2007, 201, p 9319–9324.CrossRef P. Evans and D.W. Sheel, Photoactive and Antibacterial TiO2 Thin Films on Stainless Steel, Surf. Coatings Technol., 2007, 201, p 9319–9324.CrossRef
40.
Zurück zum Zitat N. Sykaras, A.M. Iacopino, V.A. Marker, R.G. Triplett, and R.D. Woody, Implant Materials, Designs, and Surface Topographies: Their Effect on Osseointegration. A Literature Review., Int. J. Oral Maxillofac. Implants, n.d., 15(5), p 675–90, http://www.ncbi.nlm.nih.gov/pubmed/11055135. Accessed 9 November 2020. N. Sykaras, A.M. Iacopino, V.A. Marker, R.G. Triplett, and R.D. Woody, Implant Materials, Designs, and Surface Topographies: Their Effect on Osseointegration. A Literature Review., Int. J. Oral Maxillofac. Implants, n.d., 15(5), p 675–90, http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​11055135. Accessed 9 November 2020.
41.
Zurück zum Zitat L.M. Bjursten, L. Rasmusson, S. Oh, G.C. Smith, K.S. Brammer and S. Jin, Titanium Dioxide Nanotubes Enhance Bone Bonding in Vivo, J. Biomed. Mater. Res. - Part A, 2010, 92(3), p 1218–1224. L.M. Bjursten, L. Rasmusson, S. Oh, G.C. Smith, K.S. Brammer and S. Jin, Titanium Dioxide Nanotubes Enhance Bone Bonding in Vivo, J. Biomed. Mater. Res. - Part A, 2010, 92(3), p 1218–1224.
43.
Zurück zum Zitat S. Cheng, K. Tak Lau, T. Liu, Y. Zhao, P.M. Lam and Y. Yin, Mechanical and Thermal Properties of Chicken Feather Fiber/PLA Green Composites, Compos. Part B Eng., 2009, 40(7), p 650–654.CrossRef S. Cheng, K. Tak Lau, T. Liu, Y. Zhao, P.M. Lam and Y. Yin, Mechanical and Thermal Properties of Chicken Feather Fiber/PLA Green Composites, Compos. Part B Eng., 2009, 40(7), p 650–654.CrossRef
45.
Zurück zum Zitat N. Naveed, Investigate the Effects of Process Parameters on Material Properties and Microstructural Changes of 3D-Printed Specimens Using Fused Deposition Modelling (FDM), Mater. Technol., 2020, 36, p 317–330.CrossRef N. Naveed, Investigate the Effects of Process Parameters on Material Properties and Microstructural Changes of 3D-Printed Specimens Using Fused Deposition Modelling (FDM), Mater. Technol., 2020, 36, p 317–330.CrossRef
47.
Zurück zum Zitat D. Hodzic and A. Pandzic, “Influence of Carbon Fibers on Mechanical Properties of Materials in Fdm Technology,” Annals of DAAAM and Proceedings of the International DAAAM Symposium, Danube Adria Association for Automation and Manufacturing, DAAAM, 2019, p 334–342. D. Hodzic and A. Pandzic, “Influence of Carbon Fibers on Mechanical Properties of Materials in Fdm Technology,” Annals of DAAAM and Proceedings of the International DAAAM Symposium, Danube Adria Association for Automation and Manufacturing, DAAAM, 2019, p 334–342.
48.
Zurück zum Zitat E. García Plaza, P. Núñez López, M. Caminero Torija and J. Chacón Muñoz, Analysis of PLA Geometric Properties Processed by FFF Additive Manufacturing: Effects of Process Parameters and Plate-Extruder Precision Motion, Polymers Basel., 2019, 11(10), p 1581. https://doi.org/10.3390/polym11101581CrossRef E. García Plaza, P. Núñez López, M. Caminero Torija and J. Chacón Muñoz, Analysis of PLA Geometric Properties Processed by FFF Additive Manufacturing: Effects of Process Parameters and Plate-Extruder Precision Motion, Polymers Basel., 2019, 11(10), p 1581. https://​doi.​org/​10.​3390/​polym11101581CrossRef
49.
Zurück zum Zitat K. Tiwari and S. Kumar, Analysis of the Factors Affecting the Dimensional Accuracy of 3D Printed Products, Mater. Today: Proc., 2018, 5, p 18674–18680. K. Tiwari and S. Kumar, Analysis of the Factors Affecting the Dimensional Accuracy of 3D Printed Products, Mater. Today: Proc., 2018, 5, p 18674–18680.
Metadaten
Titel
Assessment of 3D Printings Produced in Fused Deposition Modeling Printer Using Polylactic Acid/TiO2/Hydroxyapatite Composite Filaments
verfasst von
Mikail Olam
Nihat Tosun
Publikationsdatum
06.01.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06539-w

Weitere Artikel der Ausgabe 6/2022

Journal of Materials Engineering and Performance 6/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.