Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2022

30.03.2022 | Technical Article

Comparison of Five Different Models Predicting the Hot Deformation Behavior of EA4T Steel

verfasst von: Jie Bai, Yuanming Huo, Tao He, Zhiyuan Bian, Xu Ren, Xiangyang Du

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The modified Zerilli–Armstrong (mZ-A) model, optimized Zerilli–Armstrong (oZ-A) model, modified Johnson–Cook model, double multiple nonlinear regression (DMNR) model, and BP artificial neural network (BPANN) model were all used to compare the hot deformation behavior of EA4T steel in this paper. The Gleeble-3800 simulator was used to conduct thermal compression tests. The deformation temperature range was 1243~1443 K, the strain rate range was 0.01~1/s and the true strain was 0.8. The obtained stress–strain experimental data were used to calculate the material constants for the five constitutive models, and the established constitutive model was then thoroughly evaluated using the correlation coefficient (R), average absolute error (AARE), root-mean-square error (RMSE), and relative error statistical results (RESR). The experimental results showed that the R value of the mZ-A model is 0.9880, the AARE value is 6.6550%, the RMSE value is 5.8777 MPa, the variation range of the RESR value is − 40.3496 ~ 21.7640%, and the average value is 1.3098%. The mZ-A model cannot adequately depict the high temperature flow behavior of EA4T steel when compared to the other four models. With an R value of 0.9996, an AARE value of 1.1630%, an RMSE value of 1.0358 MPa, a variation range of 12.9101 to 10.3263%, and an average value of 0.0070%, the trained BPANN model has the best prediction performance. The other three models' predictions are in good agreement with the experimental results. The oZ-A model, however, can more accurately follow the deformation behavior of EA4T steel at high temperatures than the other two models. Therefore, when the physical situation of a material response needs to be known, the oZ-A model can be used.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W.-J. Chen, Q.-Y. Chen, Y. Mao and S.-C. Tang, Effect of Laser Cladding on Microstructural Transformation and Mechanical Properties of Heat Affected Zone of EA4T Steel[J], Mater. Exp., 2021, 11(10), p 1707–1715.CrossRef W.-J. Chen, Q.-Y. Chen, Y. Mao and S.-C. Tang, Effect of Laser Cladding on Microstructural Transformation and Mechanical Properties of Heat Affected Zone of EA4T Steel[J], Mater. Exp., 2021, 11(10), p 1707–1715.CrossRef
2.
Zurück zum Zitat D. Li, Z. Zhu, S. Xiao, G. Zhang and Y. Lu, Plastic Flow Behavior Based on Thermal Activation and Dynamic Constitutive Equation of 25CrMo4 Steel During Impact Compression[J], Mater. Sci. Eng. A, 2017, 707, p 459–465.CrossRef D. Li, Z. Zhu, S. Xiao, G. Zhang and Y. Lu, Plastic Flow Behavior Based on Thermal Activation and Dynamic Constitutive Equation of 25CrMo4 Steel During Impact Compression[J], Mater. Sci. Eng. A, 2017, 707, p 459–465.CrossRef
5.
Zurück zum Zitat P. Pokorny, L. Nahlik and P. Hutar, Influence of Variable Stress Ratio During Train Operation on Residual Fatigue Lifetime of Railway Axles[J], Proc. Struct. Integr., 2016, 2, p 3585–3592. P. Pokorny, L. Nahlik and P. Hutar, Influence of Variable Stress Ratio During Train Operation on Residual Fatigue Lifetime of Railway Axles[J], Proc. Struct. Integr., 2016, 2, p 3585–3592.
7.
Zurück zum Zitat Y.-C. Lin and X.-M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working[J], Mater. Des., 2011, 32(4), p 1733–1759.CrossRef Y.-C. Lin and X.-M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working[J], Mater. Des., 2011, 32(4), p 1733–1759.CrossRef
8.
Zurück zum Zitat T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura and J.-J. Jonas, Dynamic and Post-Dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions[J], Prog. Mater Sci., 2014, 60(1), p 130–207.CrossRef T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura and J.-J. Jonas, Dynamic and Post-Dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions[J], Prog. Mater Sci., 2014, 60(1), p 130–207.CrossRef
9.
Zurück zum Zitat Y. Xu, Y. Zhang, X. Zhuang, Z. Cao, Y. Lu and Z. Zhao, Numerical Modeling and Anvil Design of High-Speed Forging Process for Railway Axles[J], Int.J. Mater. Form., 2021, 14, p 813–832.CrossRef Y. Xu, Y. Zhang, X. Zhuang, Z. Cao, Y. Lu and Z. Zhao, Numerical Modeling and Anvil Design of High-Speed Forging Process for Railway Axles[J], Int.J. Mater. Form., 2021, 14, p 813–832.CrossRef
11.
13.
Zurück zum Zitat I.-J. Beyerlein and C. Tomé, A Dislocation-Based Constitutive Law for Pure Zr Including Temperature Effects[J], Int. J. Plast, 2008, 24(5), p 867–895.CrossRef I.-J. Beyerlein and C. Tomé, A Dislocation-Based Constitutive Law for Pure Zr Including Temperature Effects[J], Int. J. Plast, 2008, 24(5), p 867–895.CrossRef
14.
Zurück zum Zitat H.-Y. Li, J.-D. Hu, D.-D. Wei, X.-F. Wang and Y.-H. Li, Artificial Neural Network and Constitutive Equations to Predict the Hot Deformation Behavior of Modified 2.25Cr–1Mo Steel[J], Mater. Des., 2012, 42, p 192–197.CrossRef H.-Y. Li, J.-D. Hu, D.-D. Wei, X.-F. Wang and Y.-H. Li, Artificial Neural Network and Constitutive Equations to Predict the Hot Deformation Behavior of Modified 2.25Cr–1Mo Steel[J], Mater. Des., 2012, 42, p 192–197.CrossRef
16.
Zurück zum Zitat J. Cai, K. Wang and Y. Han, A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-Type Constitutive Models to Predict High-Temperature Flow Behavior of Ti–6Al–4V Alloy in α + β Phase[J], High Temp. Mater. Processes (London), 2016, 35(3), p 297–307.CrossRef J. Cai, K. Wang and Y. Han, A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-Type Constitutive Models to Predict High-Temperature Flow Behavior of Ti–6Al–4V Alloy in α + β Phase[J], High Temp. Mater. Processes (London), 2016, 35(3), p 297–307.CrossRef
17.
Zurück zum Zitat Y. Liu, L.-I. Ming, X.-W. Ren, Z.-B. Xiao and Y.-C. Huang, Flow Stress Prediction of Hastelloy C-276 Alloy Using Modified ZerilliArmstrong, JohnsonCook and Arrhenius-Type Constitutive Models[J], Trans. Nonferrous Metals Soc. China, 2020, 30(11), p 3031–3042.CrossRef Y. Liu, L.-I. Ming, X.-W. Ren, Z.-B. Xiao and Y.-C. Huang, Flow Stress Prediction of Hastelloy C-276 Alloy Using Modified ZerilliArmstrong, JohnsonCook and Arrhenius-Type Constitutive Models[J], Trans. Nonferrous Metals Soc. China, 2020, 30(11), p 3031–3042.CrossRef
18.
Zurück zum Zitat G. Xu, L. Wang, S. Li and L. Wang, Hot Deformation Behavior of EA4T Steel[J], Acta Metall. Sinica, 2012, 25(5), p 374–382. G. Xu, L. Wang, S. Li and L. Wang, Hot Deformation Behavior of EA4T Steel[J], Acta Metall. Sinica, 2012, 25(5), p 374–382.
19.
Zurück zum Zitat P. Zhou and Q.-X. Ma, Dynamic Recrystallization Behavior and Processing Map Development of 25CrMo4 Mirror Plate Steel During Hot Deformation[J], Acta Metall. Sinica, 2017, 30, p 907–920.CrossRef P. Zhou and Q.-X. Ma, Dynamic Recrystallization Behavior and Processing Map Development of 25CrMo4 Mirror Plate Steel During Hot Deformation[J], Acta Metall. Sinica, 2017, 30, p 907–920.CrossRef
20.
Zurück zum Zitat Y.-M. Huo, Q. Bai, B. Wang, J. Lin and J. Zhou, A New Application of Unified Constitutive Equations for Cross Wedge Rolling of a High-Speed Railway Axle Steel[J], J. Mater. Process. Technol., 2015, 223, p 274–283.CrossRef Y.-M. Huo, Q. Bai, B. Wang, J. Lin and J. Zhou, A New Application of Unified Constitutive Equations for Cross Wedge Rolling of a High-Speed Railway Axle Steel[J], J. Mater. Process. Technol., 2015, 223, p 274–283.CrossRef
21.
Zurück zum Zitat Z. Zhu, Y. Lu, Q. Xie, D. Li and N. Gao, Mechanical Properties and Dynamic Constitutive Model of 42CrMo Steel[J], Mater. Des., 2017, 119, p 171–179.CrossRef Z. Zhu, Y. Lu, Q. Xie, D. Li and N. Gao, Mechanical Properties and Dynamic Constitutive Model of 42CrMo Steel[J], Mater. Des., 2017, 119, p 171–179.CrossRef
23.
Zurück zum Zitat Y.-M. Huo, B.-Y. Wang and J.-G. Lin, Development of Constitutive Model of EA4T High-Speed Train Shaft Steel Based on Internal-State-Variable Method[J], Appl. Mech. Mater., 2012, 189, p 31–35.CrossRef Y.-M. Huo, B.-Y. Wang and J.-G. Lin, Development of Constitutive Model of EA4T High-Speed Train Shaft Steel Based on Internal-State-Variable Method[J], Appl. Mech. Mater., 2012, 189, p 31–35.CrossRef
25.
Zurück zum Zitat G. Ji, F. Li, Q. Li, H. Li and Z. Li, Prediction of the Hot Deformation Behavior for Aermet100 Steel Using an Artificial Neural network[J], Comput. Mater. Sci., 2010, 48(3), p 626–632.CrossRef G. Ji, F. Li, Q. Li, H. Li and Z. Li, Prediction of the Hot Deformation Behavior for Aermet100 Steel Using an Artificial Neural network[J], Comput. Mater. Sci., 2010, 48(3), p 626–632.CrossRef
26.
Zurück zum Zitat X. Xiao, G.-Q. Liu, B.-F. Hu, X. Zheng, L.-N. Wang, S.-J. Chen and A. Ullah, A Comparative Study on Arrhenius-Type Constitutive Equations and Artificial Neural Network Model to Predict High-Temperature Deformation Behaviour in 12Cr3WV Steel[J], Comput. Mater. Sci., 2012, 62, p 227–234.CrossRef X. Xiao, G.-Q. Liu, B.-F. Hu, X. Zheng, L.-N. Wang, S.-J. Chen and A. Ullah, A Comparative Study on Arrhenius-Type Constitutive Equations and Artificial Neural Network Model to Predict High-Temperature Deformation Behaviour in 12Cr3WV Steel[J], Comput. Mater. Sci., 2012, 62, p 227–234.CrossRef
28.
Zurück zum Zitat D. Samantaray, S. Mandal, U. Borah, A.-K. Bhaduri and P.-V. Sivaprasad, A Thermo-Viscoplastic Constitutive Model to Predict Elevated-Temperature Flow Behaviour in a Titanium-Modified Austenitic Stainless Steel[J], Mater. Sci. Eng. A, 2009, 526, p 1–6.CrossRef D. Samantaray, S. Mandal, U. Borah, A.-K. Bhaduri and P.-V. Sivaprasad, A Thermo-Viscoplastic Constitutive Model to Predict Elevated-Temperature Flow Behaviour in a Titanium-Modified Austenitic Stainless Steel[J], Mater. Sci. Eng. A, 2009, 526, p 1–6.CrossRef
29.
Zurück zum Zitat L. Quan and J.-Z. Yang, Prediction of High Temperature Flow Stress of AZ80 Magnesium Alloy by Using Modified and Optimized Zerilli-Armstrong Constitutive Models [J], Chin. J. Nonferrous Metals, 2021, 31(8), p 2091–2100. L. Quan and J.-Z. Yang, Prediction of High Temperature Flow Stress of AZ80 Magnesium Alloy by Using Modified and Optimized Zerilli-Armstrong Constitutive Models [J], Chin. J. Nonferrous Metals, 2021, 31(8), p 2091–2100.
31.
Zurück zum Zitat Y.-C. Lin, X.-M. Chen and G. Liu, A Modified Johnson-Cook Model for Tensile Behaviors of Typical High-Strength Alloy Steel[J], Mater. Sci. Eng. A, 2010, 527(26), p 6980–6986.CrossRef Y.-C. Lin, X.-M. Chen and G. Liu, A Modified Johnson-Cook Model for Tensile Behaviors of Typical High-Strength Alloy Steel[J], Mater. Sci. Eng. A, 2010, 527(26), p 6980–6986.CrossRef
32.
Zurück zum Zitat Z. Yuan, F. Li, H. Qiao, M. Xiao, J. Cai and J. Li, A modified constitutive equation for elevated temperature flow behavior of Ti–6Al–4V alloy based on double multiple nonlinear regression[J], Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2013, 578, p 260–270.CrossRef Z. Yuan, F. Li, H. Qiao, M. Xiao, J. Cai and J. Li, A modified constitutive equation for elevated temperature flow behavior of Ti–6Al–4V alloy based on double multiple nonlinear regression[J], Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2013, 578, p 260–270.CrossRef
34.
Zurück zum Zitat M. Ahmed, M. Anastasia, K. Anton, P. Theo, A. Sergey, K. James and P. Vladimir, Modelling of the Superplastic Deformation of the Near-α Titanium Alloy (Ti-2.5Al-1.8Mn) Using Arrhenius-Type Constitutive Model and Artificial Neural Network[J], Metals, 2017, 7, p 568–568.CrossRef M. Ahmed, M. Anastasia, K. Anton, P. Theo, A. Sergey, K. James and P. Vladimir, Modelling of the Superplastic Deformation of the Near-α Titanium Alloy (Ti-2.5Al-1.8Mn) Using Arrhenius-Type Constitutive Model and Artificial Neural Network[J], Metals, 2017, 7, p 568–568.CrossRef
36.
Zurück zum Zitat A. Saxena, A. Kumaraswamy, N. Kotkunde and K. Suresh, Constitutive Modeling of High-Temperature Flow Stress of Armor Steel in Ballistic Applications: A Comparative Study[J], J. Mater. Eng. Perform., 2019, 28(10), p 6505–6513.CrossRef A. Saxena, A. Kumaraswamy, N. Kotkunde and K. Suresh, Constitutive Modeling of High-Temperature Flow Stress of Armor Steel in Ballistic Applications: A Comparative Study[J], J. Mater. Eng. Perform., 2019, 28(10), p 6505–6513.CrossRef
38.
Zurück zum Zitat M.L. Shen, Y.M. Huo, T. He, X. Yong and J.X. Xing, Comparison of Two Constitutive Modelling Methods in Application of TC16 Alloy at the Elevated Deformation Temperature[J], Mater. Today Commun., 2020, 24, p 101053.CrossRef M.L. Shen, Y.M. Huo, T. He, X. Yong and J.X. Xing, Comparison of Two Constitutive Modelling Methods in Application of TC16 Alloy at the Elevated Deformation Temperature[J], Mater. Today Commun., 2020, 24, p 101053.CrossRef
40.
Zurück zum Zitat G.Z. Quan, Z.H. Zhang, Y.T. Zhou, T. Wang and Y.F. Xia, Numerical Description of Hot Flow Behaviors at Ti-6Al-2Zr-1Mo-1V Alloy By GA-SVR and Relative Applications[J], Mater. Res., 2016, 19(6), p 1253–1269.CrossRef G.Z. Quan, Z.H. Zhang, Y.T. Zhou, T. Wang and Y.F. Xia, Numerical Description of Hot Flow Behaviors at Ti-6Al-2Zr-1Mo-1V Alloy By GA-SVR and Relative Applications[J], Mater. Res., 2016, 19(6), p 1253–1269.CrossRef
41.
Zurück zum Zitat H. Ahmadi, H. Ashtiani and M. Heidari, A Comparative Study of Phenomenological, Physically-Based and Artificial Neural Network Models to Predict the Hot Flow Behavior of API 5CT-L80 Steel[J], Mater. Today Commun., 2020, 25, p 101528.CrossRef H. Ahmadi, H. Ashtiani and M. Heidari, A Comparative Study of Phenomenological, Physically-Based and Artificial Neural Network Models to Predict the Hot Flow Behavior of API 5CT-L80 Steel[J], Mater. Today Commun., 2020, 25, p 101528.CrossRef
42.
Zurück zum Zitat Z. Yuan, F. Li, H. Qiao, M. Xiao, J. Cai and L. Jiang, A Modified Constitutive Equation for Elevated Temperature Flow Behavior of Ti–6Al–4V Alloy Based on Double Multiple Nonlinear Regression[J], Mater. Sci. Eng. Struct. Mater. Prop. Microst. Process., 2013, 578(20), p 260–270.CrossRef Z. Yuan, F. Li, H. Qiao, M. Xiao, J. Cai and L. Jiang, A Modified Constitutive Equation for Elevated Temperature Flow Behavior of Ti–6Al–4V Alloy Based on Double Multiple Nonlinear Regression[J], Mater. Sci. Eng. Struct. Mater. Prop. Microst. Process., 2013, 578(20), p 260–270.CrossRef
43.
Zurück zum Zitat Z. Yuan, F. Li, G. Ji, H. Qiao and J. Li, Flow Stress Prediction of SiCp/Al Composites at Varying Strain Rates and Elevated Temperatures[J], J. Mater. Eng. Perform., 2014, 23(3), p 1016–1027.CrossRef Z. Yuan, F. Li, G. Ji, H. Qiao and J. Li, Flow Stress Prediction of SiCp/Al Composites at Varying Strain Rates and Elevated Temperatures[J], J. Mater. Eng. Perform., 2014, 23(3), p 1016–1027.CrossRef
44.
Zurück zum Zitat N. Neethu, N.A. Hassan, R.R. Kumar, P. Chakravarthy, A. Srinivasan and A.M. Rijas, Comparison of Prediction Models for the Hot Deformation Behavior of Cast Mg–Zn–Y Alloy[J], Trans. Indian Inst. Met., 2020, 73(6), p 1619–1628.CrossRef N. Neethu, N.A. Hassan, R.R. Kumar, P. Chakravarthy, A. Srinivasan and A.M. Rijas, Comparison of Prediction Models for the Hot Deformation Behavior of Cast Mg–Zn–Y Alloy[J], Trans. Indian Inst. Met., 2020, 73(6), p 1619–1628.CrossRef
Metadaten
Titel
Comparison of Five Different Models Predicting the Hot Deformation Behavior of EA4T Steel
verfasst von
Jie Bai
Yuanming Huo
Tao He
Zhiyuan Bian
Xu Ren
Xiangyang Du
Publikationsdatum
30.03.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06828-y

Weitere Artikel der Ausgabe 10/2022

Journal of Materials Engineering and Performance 10/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.