Skip to main content
Erschienen in: Microsystem Technologies 1/2014

01.01.2014 | Technical Paper

Design and fabrication of 3-dimensional helical structures in polydimethylsiloxane for flow control applications

verfasst von: Rajeev Kumar Singh, Avinash Kumar, Rishi Kant, Ankur Gupta, E. Suresh, Shantanu Bhattacharya

Erschienen in: Microsystem Technologies | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Soft lithography in 2-dimensional (2-D) was developed for polymer MEMS applications about two decades back. The technique was highly useful for replication of microstructure molds using a soft polymeric material called PDMS (polydimethylsiloxane). From its inception the process has been widely applied to microfluidics, biochips, hybrid biomedical microdevices etc. However, it was limited to only surface microstructures and 3-Dimensional (3-D) soft lithography although performed by some research groups involved some very precise and expensive techniques like stereolithography etc. The exploration of soft lithography in three dimensions by using a replication technique with copper wires with micron size diameters was performed by our group relatively recently (Singh et al. in International conference on MEMS, IIT Madras, Chennai, 2009). In this work we have used the 3-D replication and molding technique to develop concentric solenoid patterns around micro-channels in the bulk of PDMS. The solenoidal paths of various pitches ranging from 0.4 to 1.2 mm have been replicated in PDMS using an innovatively designed fixture. The solenoids have been structurally characterized using an inverted fluorescence microscope (Nikon 80i) for dimensional parameters like pitch, length etc. Further, the solenoidal path designs have been simulated, optimized and fabricated around a central channel of 80 μ diameter and we have observed the repeatability of this fabrication process multiple times. The purpose of this architecture is to initiate valving action wherein fluid movement in the central channel can be restricted by filling the surrounding solenoidal track with compressed air at high pressure so that it can squeeze the centrally located micro-channel carrying the liquid. This valving structure may find a lot of applications in lab on chip devices, PCR biochips, biomedical micro-devices etc.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bhattacharya S, Dutta A, Berg JM, Gangopadhyay S (2005) Studies on surface wettability of polydimethylsiloxane and glass under oxygen plasma treatment and correlation with bond strength. J Microelectromech Syst 14(3):590–597CrossRef Bhattacharya S, Dutta A, Berg JM, Gangopadhyay S (2005) Studies on surface wettability of polydimethylsiloxane and glass under oxygen plasma treatment and correlation with bond strength. J Microelectromech Syst 14(3):590–597CrossRef
Zurück zum Zitat Choudhary R, Bhakat T, Singh RK, Ghubade A, Mandal S, Ghosh A, Rammohan A, Sharma A, Bhattacharya S (2011) Bilayer staggered herringbone micromixers with symmetric and asymmetric geometries. Microfluid Nanofluid 10:271–286CrossRef Choudhary R, Bhakat T, Singh RK, Ghubade A, Mandal S, Ghosh A, Rammohan A, Sharma A, Bhattacharya S (2011) Bilayer staggered herringbone micromixers with symmetric and asymmetric geometries. Microfluid Nanofluid 10:271–286CrossRef
Zurück zum Zitat Coenjarts CA, Ober CK (2004) Two photon three dimensional micro fabrication of polydimethylsiloxane elastomers. Chem Mater 16:5556–5558CrossRef Coenjarts CA, Ober CK (2004) Two photon three dimensional micro fabrication of polydimethylsiloxane elastomers. Chem Mater 16:5556–5558CrossRef
Zurück zum Zitat Geschke O, Klank H, Telleman P (2004) Microsystem engineering of lab-on-chip devices. Wiley, Germany Geschke O, Klank H, Telleman P (2004) Microsystem engineering of lab-on-chip devices. Wiley, Germany
Zurück zum Zitat Kant R, Singh H, Nayak M, Bhattacharya S (2012) Optimization of design and characterization of a novel micro-pumping system with peristaltic motion. Microsyst Technol. doi:10.1007/s00542-012-1658-y Kant R, Singh H, Nayak M, Bhattacharya S (2012) Optimization of design and characterization of a novel micro-pumping system with peristaltic motion. Microsyst Technol. doi:10.​1007/​s00542-012-1658-y
Zurück zum Zitat Katoh T, Nishi N, Fukagawa M, Ueno H, Sugiyama S (2001) Direct writing for three dimensional microfabrication using synchrotron radiation etching. Sensor Actuator A 89:10–15CrossRef Katoh T, Nishi N, Fukagawa M, Ueno H, Sugiyama S (2001) Direct writing for three dimensional microfabrication using synchrotron radiation etching. Sensor Actuator A 89:10–15CrossRef
Zurück zum Zitat Lee S-W, Kim D-J, Ahn Y, Chai Y G (2006) Simple structured polydimethylsiloxane microvalve actuated by external air pressure. Proc IMechE J Mech Eng Sci 220(C):1283–1288 Lee S-W, Kim D-J, Ahn Y, Chai Y G (2006) Simple structured polydimethylsiloxane microvalve actuated by external air pressure. Proc IMechE J Mech Eng Sci 220(C):1283–1288
Zurück zum Zitat Lee D, Mekaru H, Hiroshima H, Matsumoto S, Itoh T, Takahashi M, Maeda R (2009) 3D replication using PDMS mold for microcoil. Microelectron Eng 86:920–924CrossRef Lee D, Mekaru H, Hiroshima H, Matsumoto S, Itoh T, Takahashi M, Maeda R (2009) 3D replication using PDMS mold for microcoil. Microelectron Eng 86:920–924CrossRef
Zurück zum Zitat Madden JD, Hunter IW (1996) Three dimensional microfabrication by localized electrochemical deposition. J Microelectromech Syst 5(1):24–32CrossRef Madden JD, Hunter IW (1996) Three dimensional microfabrication by localized electrochemical deposition. J Microelectromech Syst 5(1):24–32CrossRef
Zurück zum Zitat Marcinkevicius A, Juodkazis S, Watanabe M, Miwa M, Matsuo S, Misawa H, Nishii J (2001) Femtosecond laser assisted three dimensional micro-fabrication in silica. Opt Lett 26(5):277–279CrossRef Marcinkevicius A, Juodkazis S, Watanabe M, Miwa M, Matsuo S, Misawa H, Nishii J (2001) Femtosecond laser assisted three dimensional micro-fabrication in silica. Opt Lett 26(5):277–279CrossRef
Zurück zum Zitat Maruo S, Nakamura O, Kawata S (1997) Three dimensional microfabrication with two photon absorbed photopolymerization. Opt Lett 22(2):132–134CrossRef Maruo S, Nakamura O, Kawata S (1997) Three dimensional microfabrication with two photon absorbed photopolymerization. Opt Lett 22(2):132–134CrossRef
Zurück zum Zitat Rajaraman S, Choi S-O, Shafer RH, Ross JD, Vukasinovic J, Choi Y, DeWeerth SP, Glezer A, Allen MG (2007) Microfabrication technologies for a coupled three-dimensional microelectrode, microfluidic array. J Micromech Microeng 17:163–171CrossRef Rajaraman S, Choi S-O, Shafer RH, Ross JD, Vukasinovic J, Choi Y, DeWeerth SP, Glezer A, Allen MG (2007) Microfabrication technologies for a coupled three-dimensional microelectrode, microfluidic array. J Micromech Microeng 17:163–171CrossRef
Zurück zum Zitat Rao MP, Aimi MF, MacDonald NC (2004) Single mask three dimensional microfabrication of high aspect ratio structures in bulk silicon using reactive ion etching lag and sacrificial oxidation. Appl Phys Lett 85(25):6281–6283CrossRef Rao MP, Aimi MF, MacDonald NC (2004) Single mask three dimensional microfabrication of high aspect ratio structures in bulk silicon using reactive ion etching lag and sacrificial oxidation. Appl Phys Lett 85(25):6281–6283CrossRef
Zurück zum Zitat Seth AW (2012) Optimization of laser machining process for preparation of photo mask and its application to microsystems fabrication. Dissertation, Indian Institute of Technology Seth AW (2012) Optimization of laser machining process for preparation of photo mask and its application to microsystems fabrication. Dissertation, Indian Institute of Technology
Zurück zum Zitat Singh RK, Ghubade AB, Basu B, Bhattacharya S (2009) A novel replica molding process for realizing three dimensional microchannels within soft materials. In: International Conference on MEMS, IIT Madras, Chennai Jan 3–5, 2009 Singh RK, Ghubade AB, Basu B, Bhattacharya S (2009) A novel replica molding process for realizing three dimensional microchannels within soft materials. In: International Conference on MEMS, IIT Madras, Chennai Jan 3–5, 2009
Zurück zum Zitat Verma MKS, Majumder A, Ghatak A (2006) Embedded template assisted fabrication of complex microchannels in PDMS and design of a microfluidic adhesive. Langmuir 22:10291–10295CrossRef Verma MKS, Majumder A, Ghatak A (2006) Embedded template assisted fabrication of complex microchannels in PDMS and design of a microfluidic adhesive. Langmuir 22:10291–10295CrossRef
Zurück zum Zitat Wang I, Bouriau M, Baldeck PL, Martineau C, Andraud C (2002) Three dimensional microfabrication by two photon initiated polymerization with a low cost microlaser. Opt Lett 27(15):1348–1350CrossRef Wang I, Bouriau M, Baldeck PL, Martineau C, Andraud C (2002) Three dimensional microfabrication by two photon initiated polymerization with a low cost microlaser. Opt Lett 27(15):1348–1350CrossRef
Zurück zum Zitat Yamakawa S, Amaya K, Gelbart D, Urano T, Lemire-el-more J (2004) Development of three dimensional microfabrication method using thermo-sensitive resin. Appl Phys B Laser Optic 79:507–511CrossRef Yamakawa S, Amaya K, Gelbart D, Urano T, Lemire-el-more J (2004) Development of three dimensional microfabrication method using thermo-sensitive resin. Appl Phys B Laser Optic 79:507–511CrossRef
Metadaten
Titel
Design and fabrication of 3-dimensional helical structures in polydimethylsiloxane for flow control applications
verfasst von
Rajeev Kumar Singh
Avinash Kumar
Rishi Kant
Ankur Gupta
E. Suresh
Shantanu Bhattacharya
Publikationsdatum
01.01.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 1/2014
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-013-1738-7

Weitere Artikel der Ausgabe 1/2014

Microsystem Technologies 1/2014 Zur Ausgabe

Neuer Inhalt