Skip to main content
Erschienen in: Artificial Life and Robotics 4/2021

27.08.2021 | Original Article

Development of a compact sewerage robot with multi-DOF cutting tool

verfasst von: Thaelasutt Tugeumwolachot, Hiroaki Seki, Tokuo Tsuji, Tatsuhiro Hiramitsu

Erschienen in: Artificial Life and Robotics | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This research is about development of the in-pipe robot for heavy duties, such as repairing and maintenance tasks, by focusing on the sewers between households or businesses to the main sewers. The robot is expected to work instead of workers to help them work easier and safer, such as in small pipe that the workers cannot access or dirty and dangerous environment that can affect to the health and life of the workers. The most conventional robots in the past were mainly designed for survey and inspection. While some robots focus on maintenance task, but their robots are not available for small pipe and their manipulator have a few DOF. Then, we propose a compact in-pipe robot with multi-DOF cutting tool (CIPbot-1) for the target pipes between 150 and 300 mm in diameter to enhance the ability of these kind of robot. The difficulties of development this robot is the space limitation caused by the smallest target pipe which affects to the mechanism design, and the rigidity of robot’s structure. The expandable mechanisms must be able to adjust the diameter of the robot about 2 times to fit with the smallest and the biggest target pipes. The proposed robot mainly consists of a locomotion section (adjustable folding mechanism and six-crawlers, each of them is driven by only one motor) and a manipulator Sect. (3-DOF manipulator with a cutting tool and a camera system for inspection). The prototype of CIPbot-1 was made and confirmed the mobility, the ability, and the usefulness by the experimentations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Li Z, Zhu J, He C, et al. (2009) A new pipe cleaning and inspection robot with active pipe-diameter adaptability based on ATmega64. The 9 Int. Conf. on Electronic Measurement and Instruments, pp.616–619. Li Z, Zhu J, He C, et al. (2009) A new pipe cleaning and inspection robot with active pipe-diameter adaptability based on ATmega64. The 9 Int. Conf. on Electronic Measurement and Instruments, pp.616–619.
2.
Zurück zum Zitat Waleed D, Mustafa SH, Mukhopadhyay S et al (2019) An in-pipe leak detection robot with a neural-network-based leak verification system. IEEE Sens J 19(3):1153–1165CrossRef Waleed D, Mustafa SH, Mukhopadhyay S et al (2019) An in-pipe leak detection robot with a neural-network-based leak verification system. IEEE Sens J 19(3):1153–1165CrossRef
3.
Zurück zum Zitat Carrigan TD, Forrest BE, Andem HN et al (2019) Nondestructive testing of nonmetallic pipelines using microwave reflectometry on an in-line inspection robot. IEEE Trans Instrument Measure 68(2):586–594CrossRef Carrigan TD, Forrest BE, Andem HN et al (2019) Nondestructive testing of nonmetallic pipelines using microwave reflectometry on an in-line inspection robot. IEEE Trans Instrument Measure 68(2):586–594CrossRef
4.
Zurück zum Zitat Song Z, Ren H, Zhang J et al (2016) Kinematic analysis and motion control of wheeled mobile robots in cylindrical workspaces. IEEE Trans Sci Eng 13(2):1207–1214CrossRef Song Z, Ren H, Zhang J et al (2016) Kinematic analysis and motion control of wheeled mobile robots in cylindrical workspaces. IEEE Trans Sci Eng 13(2):1207–1214CrossRef
5.
Zurück zum Zitat Nagaya K, Yoshino T, Katayama M et al (2012) Wireless piping inspection vehicle using magnetic adsorption force. IEEE ASME Trans Mech 17(03):472–479CrossRef Nagaya K, Yoshino T, Katayama M et al (2012) Wireless piping inspection vehicle using magnetic adsorption force. IEEE ASME Trans Mech 17(03):472–479CrossRef
6.
Zurück zum Zitat Kim S, Kim CH, Bae YG, et al (2013) NDT inspection mobile robot with spiral driven mechanism in pipes. IEEE ISR Conf. Kim S, Kim CH, Bae YG, et al (2013) NDT inspection mobile robot with spiral driven mechanism in pipes. IEEE ISR Conf.
7.
Zurück zum Zitat Nakagawa K, Dohta S, Akagi T, et al (2017), Improvement of pipe holding mechanism for pipe inspection robot using flexible pneumatic cylinder. Int. Conf. on Robotics and Automation Sciences, pp.6–10. Nakagawa K, Dohta S, Akagi T, et al (2017), Improvement of pipe holding mechanism for pipe inspection robot using flexible pneumatic cylinder. Int. Conf. on Robotics and Automation Sciences, pp.6–10.
8.
Zurück zum Zitat Takayama T, Takeshima H, Hori T et al (2015) A twisted bundled tube locomotive device proposed for in-pipe mobile robot. IEEE ASME Trans Mech 20(6):2915–2923CrossRef Takayama T, Takeshima H, Hori T et al (2015) A twisted bundled tube locomotive device proposed for in-pipe mobile robot. IEEE ASME Trans Mech 20(6):2915–2923CrossRef
9.
Zurück zum Zitat Savin S, Vorochaeva L (2017), Footstep Planning for a Six-Legged in-Pipe Robot Moving in Spatially Curved Pipes. Int. Siberian Conf. on Control and Communications. Savin S, Vorochaeva L (2017), Footstep Planning for a Six-Legged in-Pipe Robot Moving in Spatially Curved Pipes. Int. Siberian Conf. on Control and Communications.
10.
Zurück zum Zitat Lim HO, Ohki T (2009) Development of Pipe Inspection Robot. Int. Joint Conf. ICROS-SICE. pp. 5717-5721. Lim HO, Ohki T (2009) Development of Pipe Inspection Robot. Int. Joint Conf. ICROS-SICE. pp. 5717-5721.
11.
Zurück zum Zitat Kakogawa A, Oka Y, Ma S (2018) Multi-link articulated wheeled in-pipe robot with underactuated twisting joints. Proc. of IEEE Int. Conf. on Mechatronics and Automation, pp.942–947. Kakogawa A, Oka Y, Ma S (2018) Multi-link articulated wheeled in-pipe robot with underactuated twisting joints. Proc. of IEEE Int. Conf. on Mechatronics and Automation, pp.942–947.
12.
Zurück zum Zitat Kakogawa A, Nishimura T, Ma S (2013) Development of a screw drive in-pipe robot for passing through bent and branch pipes. IEEE ISR Conf. Kakogawa A, Nishimura T, Ma S (2013) Development of a screw drive in-pipe robot for passing through bent and branch pipes. IEEE ISR Conf.
13.
Zurück zum Zitat Kim HM, Choi YS, Lee YG et al (2017) Novel mechanism for in-pipe robot based on a multiaxial differential gear mechanism. IEEE ASME Trans Mech 22(1):227–236CrossRef Kim HM, Choi YS, Lee YG et al (2017) Novel mechanism for in-pipe robot based on a multiaxial differential gear mechanism. IEEE ASME Trans Mech 22(1):227–236CrossRef
14.
Zurück zum Zitat Roh SG, Choi HR (2005) Differential-drive in-pipe robot for moving inside urban gas pipelines. IEEE Trans Robotics 21:1CrossRef Roh SG, Choi HR (2005) Differential-drive in-pipe robot for moving inside urban gas pipelines. IEEE Trans Robotics 21:1CrossRef
15.
Zurück zum Zitat Kim SH, Lee SJ, Kim SW (2018) Weaving laser vision system for navigation of mobile robots in pipeline structures. IEEE Sens J 18(6):2585–2591CrossRef Kim SH, Lee SJ, Kim SW (2018) Weaving laser vision system for navigation of mobile robots in pipeline structures. IEEE Sens J 18(6):2585–2591CrossRef
16.
Zurück zum Zitat Park J, Hyun D, Cho WH et al (2011) Normal-force control for an in-pipe robot according to the inclination of pipelines. IEEE Trans Ind Electron 58(12):5304–5310CrossRef Park J, Hyun D, Cho WH et al (2011) Normal-force control for an in-pipe robot according to the inclination of pipelines. IEEE Trans Ind Electron 58(12):5304–5310CrossRef
17.
Zurück zum Zitat Sato K, Ohki T, Lim HO (2011) Development of in-pipe robot capable of coping with various diameters. 11th Int. Conf. on control, automation and systems, pp. 1076–1081. Sato K, Ohki T, Lim HO (2011) Development of in-pipe robot capable of coping with various diameters. 11th Int. Conf. on control, automation and systems, pp. 1076–1081.
18.
Zurück zum Zitat Kim YG, Shin DH, Moon JI, et al (2011) Design and implementation of an optimal in-pipe navigation mechanism for a steel pipe cleaning robot. 8th Int. Conf. on Ubiquitous Robots and Ambient Intelligence, pp.772–773. Kim YG, Shin DH, Moon JI, et al (2011) Design and implementation of an optimal in-pipe navigation mechanism for a steel pipe cleaning robot. 8th Int. Conf. on Ubiquitous Robots and Ambient Intelligence, pp.772–773.
19.
Zurück zum Zitat Kwon YS, Yi BJ (2012) Design and motion planning of a two-module collaborative indoor pipeline inspection robot. IEEE Trans Robotics 28(3):681–696CrossRef Kwon YS, Yi BJ (2012) Design and motion planning of a two-module collaborative indoor pipeline inspection robot. IEEE Trans Robotics 28(3):681–696CrossRef
20.
Zurück zum Zitat Kakogawa A, Ma S, Hirose S (2014) An in-pipe robot with underactuated parallelogram crawler modules. IEEE Int. Conf. on robotics and automation, pp. 1687–1692. Kakogawa A, Ma S, Hirose S (2014) An in-pipe robot with underactuated parallelogram crawler modules. IEEE Int. Conf. on robotics and automation, pp. 1687–1692.
Metadaten
Titel
Development of a compact sewerage robot with multi-DOF cutting tool
verfasst von
Thaelasutt Tugeumwolachot
Hiroaki Seki
Tokuo Tsuji
Tatsuhiro Hiramitsu
Publikationsdatum
27.08.2021
Verlag
Springer Japan
Erschienen in
Artificial Life and Robotics / Ausgabe 4/2021
Print ISSN: 1433-5298
Elektronische ISSN: 1614-7456
DOI
https://doi.org/10.1007/s10015-021-00694-y

Weitere Artikel der Ausgabe 4/2021

Artificial Life and Robotics 4/2021 Zur Ausgabe

Neuer Inhalt