Skip to main content
Erschienen in: Journal of Computational Electronics 1/2017

29.11.2016

Heterogate junctionless tunnel field-effect transistor: future of low-power devices

verfasst von: Shiromani Balmukund Rahi, Pranav Asthana, Shoubhik Gupta

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Gate dielectric materials play a key role in device development and study for various applications. We illustrate herein the impact of hetero (high-k/low-k) gate dielectric materials on the ON-current (\(I_{\mathrm{ON}}\)) and OFF-current (\(I_{\mathrm{OFF}}\)) of the heterogate junctionless tunnel field-effect transistor (FET). The heterogate concept enables a wide range of gate materials for device study. This concept is derived from the well-known continuity of the displacement vector at the interface between low- and high-k gate dielectric materials. Application of high-k gate dielectric material improves the internal electric field in the device, resulting in lower tunneling width with high \(I_{\mathrm{ON}}\) and low \(I_{\mathrm{OFF}}\) current. The impact of work function variations and doping on device performance is also comprehensively investigated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Khatami, Y., Banerjee, K.: Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Trans. Electron Devices 56(11), 2752–2761 (2009)CrossRef Khatami, Y., Banerjee, K.: Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Trans. Electron Devices 56(11), 2752–2761 (2009)CrossRef
2.
Zurück zum Zitat Kim, J.J., Roy, K.: Double gate-MOSFET subthreshold circuit for ultralow power applications. IEEE Trans. Electron Devices 51(9), 1468–1474 (2004)CrossRef Kim, J.J., Roy, K.: Double gate-MOSFET subthreshold circuit for ultralow power applications. IEEE Trans. Electron Devices 51(9), 1468–1474 (2004)CrossRef
3.
Zurück zum Zitat Lu, H., Seabaugh, A.: Tunnel field-effect transistors: state-of-the-art. IEEE J. Electron Devices Soc. 2(4), 44–49 (2014)CrossRef Lu, H., Seabaugh, A.: Tunnel field-effect transistors: state-of-the-art. IEEE J. Electron Devices Soc. 2(4), 44–49 (2014)CrossRef
4.
Zurück zum Zitat Huang, Q., Huang, R., Chen, S., Wu, J., Zhan, Z., Qiu, Y., Wang, Y.: Device physics and design of T-gate Schottky barrier tunnel FET with adaptive operation mechanism. Semicond. Sci. Technol. 29(9), 095013 (2014)CrossRef Huang, Q., Huang, R., Chen, S., Wu, J., Zhan, Z., Qiu, Y., Wang, Y.: Device physics and design of T-gate Schottky barrier tunnel FET with adaptive operation mechanism. Semicond. Sci. Technol. 29(9), 095013 (2014)CrossRef
5.
Zurück zum Zitat Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy-efficient. Nature 479, 329–337 (2011)CrossRef Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy-efficient. Nature 479, 329–337 (2011)CrossRef
6.
Zurück zum Zitat Knoch, J., Mantl, S., Appenzeller, J.: Impact of the dimensionality on the performance of tunneling FETs: bulk versus one-dimensional devices. Solid-State Electron. 51(4), 572–578 (2007)CrossRef Knoch, J., Mantl, S., Appenzeller, J.: Impact of the dimensionality on the performance of tunneling FETs: bulk versus one-dimensional devices. Solid-State Electron. 51(4), 572–578 (2007)CrossRef
7.
Zurück zum Zitat Ilatikhameneh, H., Ameen, T.A., Klimeck, G., Appenzeller, J., Rahman, R.: Dielectric engineered tunnel field-effect transistor. IEEE Electron Device Lett. 36(10), 1097–1100 (2015)CrossRef Ilatikhameneh, H., Ameen, T.A., Klimeck, G., Appenzeller, J., Rahman, R.: Dielectric engineered tunnel field-effect transistor. IEEE Electron Device Lett. 36(10), 1097–1100 (2015)CrossRef
8.
Zurück zum Zitat Boucart, K., Ionescu, A.M.: A new definition of threshold voltage in tunnel FETs. Solid-State Electron. 52(9), 1318–1323 (2008)CrossRef Boucart, K., Ionescu, A.M.: A new definition of threshold voltage in tunnel FETs. Solid-State Electron. 52(9), 1318–1323 (2008)CrossRef
9.
Zurück zum Zitat Boucart, K., Ionescu, A.M.: Double gate tunnel FET with ultrathin silicon body and high-k gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRef Boucart, K., Ionescu, A.M.: Double gate tunnel FET with ultrathin silicon body and high-k gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRef
10.
Zurück zum Zitat Choi, W.Y., Park, B.G., Lee, J.D., Liu, T.J.K.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)CrossRef Choi, W.Y., Park, B.G., Lee, J.D., Liu, T.J.K.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)CrossRef
11.
Zurück zum Zitat Jhaveri, R., Nagavarapu, V., Woo, J.C.: Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor. IEEE Trans. Electron Devices 58(1), 80–86 (2011)CrossRef Jhaveri, R., Nagavarapu, V., Woo, J.C.: Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor. IEEE Trans. Electron Devices 58(1), 80–86 (2011)CrossRef
12.
Zurück zum Zitat Venkatagirish, N., Tura, A., Jhaveri, R., Chang, H. Y., Woo, J.: The tunnel source MOSFET: a novel asymmetric device solution for ultra-low power applications. In: 2009 IEEE International Conference on IC Design and Technology (pp. 155–159). IEEE, Piscataway (2009) Venkatagirish, N., Tura, A., Jhaveri, R., Chang, H. Y., Woo, J.: The tunnel source MOSFET: a novel asymmetric device solution for ultra-low power applications. In: 2009 IEEE International Conference on IC Design and Technology (pp. 155–159). IEEE, Piscataway (2009)
13.
Zurück zum Zitat Zhang, Q., Zhao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 27(4), 297–300 (2006)CrossRef Zhang, Q., Zhao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 27(4), 297–300 (2006)CrossRef
14.
Zurück zum Zitat Kanungo, S., Rahaman, H., Gupta, P.S., Dasgupta, P.S.: A detail simulation study on extended source ultra-thin body double-gated tunnel FET. In: 2012 5th International Conference on Computers and Devices for Communication (CODEC, December) (pp. 1–4). IEEE, Piscataway (2012) Kanungo, S., Rahaman, H., Gupta, P.S., Dasgupta, P.S.: A detail simulation study on extended source ultra-thin body double-gated tunnel FET. In: 2012 5th International Conference on Computers and Devices for Communication (CODEC, December) (pp. 1–4). IEEE, Piscataway (2012)
15.
Zurück zum Zitat Wang, X.D., Xiong, Y., Tang, M.H., Peng, L., Xiao, Y.G., Xu, X.Y., He, J.H.: A Si tunnel field-effect transistor model with a high switching current ratio and steep sub-threshold swing. Semicond. Sci. Technol. 29(9), 095016 (2014)CrossRef Wang, X.D., Xiong, Y., Tang, M.H., Peng, L., Xiao, Y.G., Xu, X.Y., He, J.H.: A Si tunnel field-effect transistor model with a high switching current ratio and steep sub-threshold swing. Semicond. Sci. Technol. 29(9), 095016 (2014)CrossRef
16.
Zurück zum Zitat Qiu, Y., Wang, R., Huang, Q., Huang, R.: A comparative study on the impacts of interface traps on tunneling FET and MOSFET. IEEE Trans. Electron Devices 61(5), 1284–1291 (2014)CrossRef Qiu, Y., Wang, R., Huang, Q., Huang, R.: A comparative study on the impacts of interface traps on tunneling FET and MOSFET. IEEE Trans. Electron Devices 61(5), 1284–1291 (2014)CrossRef
17.
Zurück zum Zitat Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Colinge, J.P.: Junctionless multigate field-effect transistor. Appl. Phys. Lett. 94(5), 053511 (2009)CrossRef Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Colinge, J.P.: Junctionless multigate field-effect transistor. Appl. Phys. Lett. 94(5), 053511 (2009)CrossRef
18.
Zurück zum Zitat Lee, C.W., Ferain, I., Afzalian, A., Yan, R., Akhavan, N.D., Razavi, P., Colinge, J.P.: Performance estimation of junctionless multigate transistors. Solid-State Electron. 54(2), 97–103 (2010)CrossRef Lee, C.W., Ferain, I., Afzalian, A., Yan, R., Akhavan, N.D., Razavi, P., Colinge, J.P.: Performance estimation of junctionless multigate transistors. Solid-State Electron. 54(2), 97–103 (2010)CrossRef
19.
Zurück zum Zitat Colinge, J.P., Kranti, A., Yan, R., Lee, C.W., Ferain, I., Yu, R., Razavi, P.: Junctionless nanowire transistor (JNT): properties and design guidelines. Solid-State Electron. 65, 33–37 (2011)CrossRef Colinge, J.P., Kranti, A., Yan, R., Lee, C.W., Ferain, I., Yu, R., Razavi, P.: Junctionless nanowire transistor (JNT): properties and design guidelines. Solid-State Electron. 65, 33–37 (2011)CrossRef
20.
Zurück zum Zitat Asthana, P.K., Ghosh, B., Rahi, S.B.M., Goswami, Y.: Optimal design for a high performance H-JLTFET using HfO\(_2\) as a gate dielectric for ultra low power applications. RSC Adv. 4(43), 22803–22807 (2014)CrossRef Asthana, P.K., Ghosh, B., Rahi, S.B.M., Goswami, Y.: Optimal design for a high performance H-JLTFET using HfO\(_2\) as a gate dielectric for ultra low power applications. RSC Adv. 4(43), 22803–22807 (2014)CrossRef
21.
Zurück zum Zitat Rahi, S.B., Ghosh, B., Asthana, P.: A simulation-based proposed high-k heterostructure AlGaAs/Si junctionless n-type tunnel FET. J. Semicond. 35(11), 114005 (2014)CrossRef Rahi, S.B., Ghosh, B., Asthana, P.: A simulation-based proposed high-k heterostructure AlGaAs/Si junctionless n-type tunnel FET. J. Semicond. 35(11), 114005 (2014)CrossRef
22.
Zurück zum Zitat Rahi, S.B., Ghosh, B., Bishnoi, B.: Temperature effect on hetero structure junctionless tunnel FET. J. Semicond. 36(3), 034002 (2015)CrossRef Rahi, S.B., Ghosh, B., Bishnoi, B.: Temperature effect on hetero structure junctionless tunnel FET. J. Semicond. 36(3), 034002 (2015)CrossRef
23.
Zurück zum Zitat Rahi, S.B., Ghosh, B.: High-k double gate junctionless tunnel FET with a tunable bandgap. RSC Adv. 5(67), 54544–54550 (2015)CrossRef Rahi, S.B., Ghosh, B.: High-k double gate junctionless tunnel FET with a tunable bandgap. RSC Adv. 5(67), 54544–54550 (2015)CrossRef
24.
Zurück zum Zitat Villani, F., Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: A quasi 2D semianalytical model for the potential profile in hetero and homojunction tunnel FETs. Solid-State Electron. 113, 86–91 (2015)CrossRef Villani, F., Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: A quasi 2D semianalytical model for the potential profile in hetero and homojunction tunnel FETs. Solid-State Electron. 113, 86–91 (2015)CrossRef
26.
Zurück zum Zitat Robertson, J.: High dielectric constant oxides. Eur. Phys. J. Appl. Phys. 28(3), 265–291 (2004)CrossRef Robertson, J.: High dielectric constant oxides. Eur. Phys. J. Appl. Phys. 28(3), 265–291 (2004)CrossRef
27.
Zurück zum Zitat Holtij, T., Graef, M., Kloes, A., Iñíguez, B.: Modeling and performance study of nanoscale double gate junctionless and inversion mode MOSFETs including carrier quantization effects. Microelectron. J. 45(9), 1220–1225 (2014)CrossRef Holtij, T., Graef, M., Kloes, A., Iñíguez, B.: Modeling and performance study of nanoscale double gate junctionless and inversion mode MOSFETs including carrier quantization effects. Microelectron. J. 45(9), 1220–1225 (2014)CrossRef
28.
Zurück zum Zitat Graef, M., Holtij, T., Hain, F., Kloes, A., Iñíguez, B.: A 2D closed form model for the electrostatics in hetero-junction double-gate tunnel-FETs for calculation of band-to-band tunneling current. Microelectron. J. 45(9), 1144–1153 (2014)CrossRef Graef, M., Holtij, T., Hain, F., Kloes, A., Iñíguez, B.: A 2D closed form model for the electrostatics in hetero-junction double-gate tunnel-FETs for calculation of band-to-band tunneling current. Microelectron. J. 45(9), 1144–1153 (2014)CrossRef
29.
Zurück zum Zitat Dutta, T., Kumar, S., Rastogi, P., Agarwal, A., Chauhan, Y.S.: Impact of channel thickness variation on bandstructure and source-to-drain tunneling in ultra-thin body III-V MOSFETs. IEEE J. Electron Devices Soc. 4(2), 66–71 (2016) Dutta, T., Kumar, S., Rastogi, P., Agarwal, A., Chauhan, Y.S.: Impact of channel thickness variation on bandstructure and source-to-drain tunneling in ultra-thin body III-V MOSFETs. IEEE J. Electron Devices Soc. 4(2), 66–71 (2016)
30.
Zurück zum Zitat Yadav, C., Duarte, J.P., Khandelwal, S., Agarwal, A., Hu, C., Chauhan, Y.S.: Capacitance modeling in III-V FinFETs. IEEE Trans. Electron Devices 62(11), 3892–3897 (2015)CrossRef Yadav, C., Duarte, J.P., Khandelwal, S., Agarwal, A., Hu, C., Chauhan, Y.S.: Capacitance modeling in III-V FinFETs. IEEE Trans. Electron Devices 62(11), 3892–3897 (2015)CrossRef
31.
Zurück zum Zitat Patel, N., Ramesha, A., Mahapatra, S.: Drive current boosting of n-type tunnel FET with strained SiGe layer at source. Microelectron. J. 39(12), 1671–1677 (2008)CrossRef Patel, N., Ramesha, A., Mahapatra, S.: Drive current boosting of n-type tunnel FET with strained SiGe layer at source. Microelectron. J. 39(12), 1671–1677 (2008)CrossRef
Metadaten
Titel
Heterogate junctionless tunnel field-effect transistor: future of low-power devices
verfasst von
Shiromani Balmukund Rahi
Pranav Asthana
Shoubhik Gupta
Publikationsdatum
29.11.2016
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2017
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0936-9

Weitere Artikel der Ausgabe 1/2017

Journal of Computational Electronics 1/2017 Zur Ausgabe

Neuer Inhalt