Skip to main content
Erschienen in: International Journal of Intelligent Transportation Systems Research 2/2022

02.06.2022

Highway Lane-Changing Prediction Using a Hierarchical Software Architecture based on Support Vector Machine and Continuous Hidden Markov Model

verfasst von: Omveer Sharma, N. C. Sahoo, N. B. Puhan

Erschienen in: International Journal of Intelligent Transportation Systems Research | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lane changing behavior is one of the most essential and complex driving attributes. The lack of proper lane changing behavior can lead to collisions and traffic congestion. In this work, a novel hierarchical software architecture for the prediction of lane changing behavior on highways has been developed and evaluated. The two-layer hierarchical structure of the proposed model is based on a support vector machine (SVM) in the first layer followed by another model based on continuous Hidden Markov Model (HMM) incorporated with a Gaussian Mixture Model (GMM) in the second layer. The trajectory classification predicted in the first layer by the SVM is binary, i.e., Lane Change (LC) and Lane Keep (LK) behaviors. The second layer of the software architecture further classifies the LC behavior output of the first layer to left-lane change (LLC) and right-lane change (RLC) behaviors using the model of continuous HMM (CHMM) incorporated with GMM. The developed model has been evaluated using the real-world dataset of U.S. Highway 101 and Interstate 80 from Federal Highway Administration’s Next Generation Simulation (NGSIM). The first layer prediction is performed within an approximately 10 seconds time window. The positions, velocity and Time to Collision (TTC) of the target and surrounding vehicles are taken as input parameters in the model execution of the second layer. The test results show that the proposed hierarchical model exhibits 91% accuracy for LLC, 87% accuracy for RLC and 99% accuracy for LK behaviors. This model can be effectively used as a lane changing suggestion system in the advanced driver assistance systems (ADAS).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Horiguchi, R., Oguchi, T.: A study on car following models simulating various adaptive cruise control behaviors. Int. J. Intell. Transp. Syst. Res. 12(3), 127–134 (2014) Horiguchi, R., Oguchi, T.: A study on car following models simulating various adaptive cruise control behaviors. Int. J. Intell. Transp. Syst. Res. 12(3), 127–134 (2014)
2.
Zurück zum Zitat Nakamura, H., Yamabe, S., Nakano, K., Yamaguchi, D., Suda, Y.: Driver risk perception and physiological state during car-following experiments using a driving simulator. Int. J. Intell. Transp. Syst. Res. 8(3), 140–150 (2010) Nakamura, H., Yamabe, S., Nakano, K., Yamaguchi, D., Suda, Y.: Driver risk perception and physiological state during car-following experiments using a driving simulator. Int. J. Intell. Transp. Syst. Res. 8(3), 140–150 (2010)
3.
Zurück zum Zitat Kasai, M., Xing, J.: Use of particle filtering to establish a time-varying car-following model. Int. J. Intell. Transp. Syst. Res. 17(1), 49–60 (2019) Kasai, M., Xing, J.: Use of particle filtering to establish a time-varying car-following model. Int. J. Intell. Transp. Syst. Res. 17(1), 49–60 (2019)
4.
Zurück zum Zitat Osafune, T., Takahashi, T., Kiyama, N., Sobue, T., Yamaguchi, H., Higashino, T.: Analysis of accident risks from driving behaviors. Int. J. Intell. Transp. Syst. Res. 15(3), 192–202 (2017) Osafune, T., Takahashi, T., Kiyama, N., Sobue, T., Yamaguchi, H., Higashino, T.: Analysis of accident risks from driving behaviors. Int. J. Intell. Transp. Syst. Res. 15(3), 192–202 (2017)
5.
Zurück zum Zitat Zheng, Z.: Recent developments and research needs in modeling lane changing. Transp. Res. Part B: Methodol. 60, 16–32 (2014)CrossRef Zheng, Z.: Recent developments and research needs in modeling lane changing. Transp. Res. Part B: Methodol. 60, 16–32 (2014)CrossRef
6.
Zurück zum Zitat Yoshizawa, R., Shiomi, Y., Uno, N., Iida, K., Yamaguchi, M.: Analysis of car-following behavior on sag and curve sections at intercity expressways with driving simulator. Int. J. Intell. Transp. Syst. Res. 10(2), 56–65 (2012) Yoshizawa, R., Shiomi, Y., Uno, N., Iida, K., Yamaguchi, M.: Analysis of car-following behavior on sag and curve sections at intercity expressways with driving simulator. Int. J. Intell. Transp. Syst. Res. 10(2), 56–65 (2012)
7.
Zurück zum Zitat Jin, H., Duan, C., Liu, Y., Lu, P.: Gauss mixture hidden markov model to characterise and model discretionary lane-change behaviours for autonomous vehicles. IET Intell. Transp. Syst. 14(5), 401–411 (2020)CrossRef Jin, H., Duan, C., Liu, Y., Lu, P.: Gauss mixture hidden markov model to characterise and model discretionary lane-change behaviours for autonomous vehicles. IET Intell. Transp. Syst. 14(5), 401–411 (2020)CrossRef
8.
Zurück zum Zitat Sathyanarayana, A., Boyraz, P., Hansen, J.H.: Driver behavior analysis and route recognition by hidden markov models. Proc. of IEEE International Conference on Vehicular Electronics and Safety, pp. 276–281 (2008) Sathyanarayana, A., Boyraz, P., Hansen, J.H.: Driver behavior analysis and route recognition by hidden markov models. Proc. of IEEE International Conference on Vehicular Electronics and Safety, pp. 276–281 (2008)
9.
Zurück zum Zitat Zhao, Z., Wang, Y., Hu, X., Tao, Y., Wang, J.: Research on identification method of heavy vehicle rollover based on hidden markov model. Open Phys. 15(1), 479–485 (2017)CrossRef Zhao, Z., Wang, Y., Hu, X., Tao, Y., Wang, J.: Research on identification method of heavy vehicle rollover based on hidden markov model. Open Phys. 15(1), 479–485 (2017)CrossRef
10.
Zurück zum Zitat Xia, Y., Qu, Z., Sun, Z., Li, Z.: A human-like model to understand surrounding vehicles lane changing intentions for autonomous driving. IEEE Transactions on Vehicular Technology (2021) Xia, Y., Qu, Z., Sun, Z., Li, Z.: A human-like model to understand surrounding vehicles lane changing intentions for autonomous driving. IEEE Transactions on Vehicular Technology (2021)
11.
Zurück zum Zitat Li, X., Wang, W., Roetting, M.: Estimating driver’s lane-change intent considering driving style and contextual traffic. IEEE Trans. Intell. Transp. Syst. 20(9), 3258–3271 (2018)CrossRef Li, X., Wang, W., Roetting, M.: Estimating driver’s lane-change intent considering driving style and contextual traffic. IEEE Trans. Intell. Transp. Syst. 20(9), 3258–3271 (2018)CrossRef
12.
Zurück zum Zitat Zheng, Y., Ding, W., Ran, B., Qu, X., Zhang, Y.: Coordinated decisions of discretionary lane change between connected and automated vehicles on freeways: a game theory-based lane change strategy. IET Intell. Transp. Syst. 14(13), 1864–1870 (2020)CrossRef Zheng, Y., Ding, W., Ran, B., Qu, X., Zhang, Y.: Coordinated decisions of discretionary lane change between connected and automated vehicles on freeways: a game theory-based lane change strategy. IET Intell. Transp. Syst. 14(13), 1864–1870 (2020)CrossRef
13.
Zurück zum Zitat Ali, Y., Zheng, Z., Haque, M.M., Wang, M.: A game theory-based approach for modelling mandatory lane-changing behaviour in a connected environment. Transp. Res. Part C: Emerging Technol. 106, 220–242 (2019)CrossRef Ali, Y., Zheng, Z., Haque, M.M., Wang, M.: A game theory-based approach for modelling mandatory lane-changing behaviour in a connected environment. Transp. Res. Part C: Emerging Technol. 106, 220–242 (2019)CrossRef
14.
Zurück zum Zitat Talebpour, A., Mahmassani, H.S., Hamdar, S.H.: Modeling lane-changing behavior in a connected environment: A game theory approach. Transp. Res. Procedia 7, 420–440 (2015)CrossRef Talebpour, A., Mahmassani, H.S., Hamdar, S.H.: Modeling lane-changing behavior in a connected environment: A game theory approach. Transp. Res. Procedia 7, 420–440 (2015)CrossRef
15.
Zurück zum Zitat Ren, G., Zhang, Y., Liu, H., Zhang, K., Hu, Y.: A new lane-changing model with consideration of driving style. Int. J. Intell. Transp. Syst. Res. 17(3), 181–189 (2019) Ren, G., Zhang, Y., Liu, H., Zhang, K., Hu, Y.: A new lane-changing model with consideration of driving style. Int. J. Intell. Transp. Syst. Res. 17(3), 181–189 (2019)
16.
Zurück zum Zitat Tomar, R.S., Verma, S., Tomar, G.S.: Prediction of lane change trajectories through neural network. Proc. of IEEE International Conference on Computational Intelligence and Communication Networks, pp. 249–253 (2010) Tomar, R.S., Verma, S., Tomar, G.S.: Prediction of lane change trajectories through neural network. Proc. of IEEE International Conference on Computational Intelligence and Communication Networks, pp. 249–253 (2010)
17.
Zurück zum Zitat Ding, C., Wang, W., Wang, X., Baumann, M.: A neural network model for driver’s lane-changing trajectory prediction in urban traffic flow. Math. Probl. Eng. 2013 (2013) Ding, C., Wang, W., Wang, X., Baumann, M.: A neural network model for driver’s lane-changing trajectory prediction in urban traffic flow. Math. Probl. Eng. 2013 (2013)
18.
Zurück zum Zitat Díaz-Álvarez, A., Clavijo, M., Jiménez, F., Talavera, E., Serradilla, F.: Modelling the human lane-change execution behaviour through multilayer perceptrons and convolutional neural networks. Transp. Res. Part F Traffic Psychol. Behav. 56, 134–148 (2018)CrossRef Díaz-Álvarez, A., Clavijo, M., Jiménez, F., Talavera, E., Serradilla, F.: Modelling the human lane-change execution behaviour through multilayer perceptrons and convolutional neural networks. Transp. Res. Part F Traffic Psychol. Behav. 56, 134–148 (2018)CrossRef
19.
Zurück zum Zitat Zheng, J., Suzuki, K., Fujita, M.: Predicting driver’s lane-changing decisions using a neural network model. Simul. Model. Pract. Theory 42, 73–83 (2014)CrossRef Zheng, J., Suzuki, K., Fujita, M.: Predicting driver’s lane-changing decisions using a neural network model. Simul. Model. Pract. Theory 42, 73–83 (2014)CrossRef
20.
Zurück zum Zitat Peng, J., Guo, Y., Fu, R., Yuan, W., Wang, C.: Multi-parameter prediction of drivers’ lane-changing behaviour with neural network model. Appl. Ergon. 50, 207–217 (2015)CrossRef Peng, J., Guo, Y., Fu, R., Yuan, W., Wang, C.: Multi-parameter prediction of drivers’ lane-changing behaviour with neural network model. Appl. Ergon. 50, 207–217 (2015)CrossRef
21.
Zurück zum Zitat Xu, T., Zhang, Z., Wu, X., Qi, L., Han, Y.: Recognition of lane-changing behaviour with machine learning methods at freeway off-ramps. Phys. A: Stat. Mech. Appl. 567, 125691 (2021)CrossRef Xu, T., Zhang, Z., Wu, X., Qi, L., Han, Y.: Recognition of lane-changing behaviour with machine learning methods at freeway off-ramps. Phys. A: Stat. Mech. Appl. 567, 125691 (2021)CrossRef
22.
Zurück zum Zitat Zhang, Y., Xu, Q., Wang, J., Wu, K., Zheng, Z., Lu, K.: A learning-based discretionary lane-change decision-making model with driving style awareness.arXiv:2010.09533 (2020) Zhang, Y., Xu, Q., Wang, J., Wu, K., Zheng, Z., Lu, K.: A learning-based discretionary lane-change decision-making model with driving style awareness.arXiv:2010.09533 (2020)
23.
Zurück zum Zitat Dou, Y., Fang, Y., Hu, C., Zheng, R., Yan, F.: Gated branch neural network for mandatory lane changing suggestion at the on-ramps of highway. IET Intell. Transp. Syst. 13(1), 48–54 (2018)CrossRef Dou, Y., Fang, Y., Hu, C., Zheng, R., Yan, F.: Gated branch neural network for mandatory lane changing suggestion at the on-ramps of highway. IET Intell. Transp. Syst. 13(1), 48–54 (2018)CrossRef
24.
Zurück zum Zitat Dou, Y., Yan, F., Feng, D.: Lane changing prediction at highway lane drops using support vector machine and artificial neural network classifiers. Proc. of IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 901–906 (2016) Dou, Y., Yan, F., Feng, D.: Lane changing prediction at highway lane drops using support vector machine and artificial neural network classifiers. Proc. of IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 901–906 (2016)
25.
Zurück zum Zitat Huang, L., Guo, H., Zhang, R., Wang, H., Wu, J.: Capturing drivers’ lane changing behaviors on operational level by data driven methods. IEEE Access 6, 57497–57506 (2018)CrossRef Huang, L., Guo, H., Zhang, R., Wang, H., Wu, J.: Capturing drivers’ lane changing behaviors on operational level by data driven methods. IEEE Access 6, 57497–57506 (2018)CrossRef
26.
Zurück zum Zitat Xing, Y., Lv, C., Cao, D., Velenis, E.: Multi-scale driver behavior modeling based on deep spatialtemporal representation for intelligent vehicles. Transp. Res. Part C: Emerg. Technol. 130, 103288 (2021)CrossRef Xing, Y., Lv, C., Cao, D., Velenis, E.: Multi-scale driver behavior modeling based on deep spatialtemporal representation for intelligent vehicles. Transp. Res. Part C: Emerg. Technol. 130, 103288 (2021)CrossRef
27.
Zurück zum Zitat Wei, C., Hui, F., Khattak, A.J.: Driver lane-changing behavior prediction based on deep learning. J. Adv. Transp. 2021 (2021) Wei, C., Hui, F., Khattak, A.J.: Driver lane-changing behavior prediction based on deep learning. J. Adv. Transp. 2021 (2021)
28.
Zurück zum Zitat Mahajan, V., Katrakazas, C., Antoniou, C.: Prediction of lane-changing maneuvers with automatic labeling and deep learning. Transp. Res. Record 2674(7), 336–347 (2020)CrossRef Mahajan, V., Katrakazas, C., Antoniou, C.: Prediction of lane-changing maneuvers with automatic labeling and deep learning. Transp. Res. Record 2674(7), 336–347 (2020)CrossRef
29.
Zurück zum Zitat Xing, Y., Lv, C., Liu, Y.H., Zhao, Y., Cao, D., Kawahara, S.: Hybrid-learning-based driver steering intention prediction using neuromuscular dynamics. IEEE Trans. Ind. Electro. (2021) Xing, Y., Lv, C., Liu, Y.H., Zhao, Y., Cao, D., Kawahara, S.: Hybrid-learning-based driver steering intention prediction using neuromuscular dynamics. IEEE Trans. Ind. Electro. (2021)
30.
Zurück zum Zitat Wang, H., Yuan, S., Guo, M., Li, X., Lan, W.: A deep reinforcement learning-based approach for autonomous driving in highway on-ramp merge. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering p 0954407021999480 (2021) Wang, H., Yuan, S., Guo, M., Li, X., Lan, W.: A deep reinforcement learning-based approach for autonomous driving in highway on-ramp merge. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering p 0954407021999480 (2021)
31.
Zurück zum Zitat Das, S., Bowles, B.: Simulations of highway chaos using fuzzy logic. Proc. of 18th IEEE International Conference of the North American Fuzzy Information Processing Society-NAFIPS (Cat. No. 99TH8397), pp. 130–133 (1999) Das, S., Bowles, B.: Simulations of highway chaos using fuzzy logic. Proc. of 18th IEEE International Conference of the North American Fuzzy Information Processing Society-NAFIPS (Cat. No. 99TH8397), pp. 130–133 (1999)
32.
Zurück zum Zitat Hou, Y., Edara, P., Sun, C.: A genetic fuzzy system for modeling mandatory lane changing. Proc. of 15th IEEE International Conference on Intelligent Transportation Systems, pp. 1044–1048 (2012) Hou, Y., Edara, P., Sun, C.: A genetic fuzzy system for modeling mandatory lane changing. Proc. of 15th IEEE International Conference on Intelligent Transportation Systems, pp. 1044–1048 (2012)
33.
Zurück zum Zitat Balal, E., Cheu, R. L., Sarkodie-Gyan, T.: A binary decision model for discretionary lane changing move based on fuzzy inference system. Transp. Res. Part C Emerg. Technol. 67, 47–61 (2016)CrossRef Balal, E., Cheu, R. L., Sarkodie-Gyan, T.: A binary decision model for discretionary lane changing move based on fuzzy inference system. Transp. Res. Part C Emerg. Technol. 67, 47–61 (2016)CrossRef
34.
Zurück zum Zitat Tang, J., Liu, F., Zhang, W., Ke, R., Zou, Y.: Lane-changes prediction based on adaptive fuzzy neural network. Expert Syst. Appl. 91, 452–463 (2018)CrossRef Tang, J., Liu, F., Zhang, W., Ke, R., Zou, Y.: Lane-changes prediction based on adaptive fuzzy neural network. Expert Syst. Appl. 91, 452–463 (2018)CrossRef
35.
Zurück zum Zitat Wang, W., Qie, T., Yang, C., Liu, W., Xiang, C., Huang, K.: An intelligent lane-changing behavior prediction and decision-making strategy for an autonomous vehicle. IEEE Trans. Ind. Electron. (2021) Wang, W., Qie, T., Yang, C., Liu, W., Xiang, C., Huang, K.: An intelligent lane-changing behavior prediction and decision-making strategy for an autonomous vehicle. IEEE Trans. Ind. Electron. (2021)
36.
Zurück zum Zitat Shi, W., Zhang, Y.P.: Decision analysis of lane change based on fuzzy logic. In: Applied Mechanics and Materials, vol. 419, pp 790–794. Trans Tech Publ (2013) Shi, W., Zhang, Y.P.: Decision analysis of lane change based on fuzzy logic. In: Applied Mechanics and Materials, vol. 419, pp 790–794. Trans Tech Publ (2013)
37.
Zurück zum Zitat Olsen, E. C. B.: Modeling slow lead vehicle lane changing. Ph.D. thesis, Virginia Tech (2003) Olsen, E. C. B.: Modeling slow lead vehicle lane changing. Ph.D. thesis, Virginia Tech (2003)
38.
Zurück zum Zitat Jin, W. L.: A kinematic wave theory of lane-changing traffic flow. Transp. Res. Part B Methodol 44(8-9), 1001–1021 (2010)CrossRef Jin, W. L.: A kinematic wave theory of lane-changing traffic flow. Transp. Res. Part B Methodol 44(8-9), 1001–1021 (2010)CrossRef
39.
Zurück zum Zitat Henning, M.J., Georgeon, O., Krems, J.F.: The quality of behavioral and environmental indicators used to infer the intention to change lanes (2007) Henning, M.J., Georgeon, O., Krems, J.F.: The quality of behavioral and environmental indicators used to infer the intention to change lanes (2007)
40.
Zurück zum Zitat Laval, J.A., Leclercq, L.: Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model. Transp. Res. B Methodol. 42(6), 511–522 (2008)CrossRef Laval, J.A., Leclercq, L.: Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model. Transp. Res. B Methodol. 42(6), 511–522 (2008)CrossRef
41.
Zurück zum Zitat Salvucci, D. D.: Modeling driver behavior in a cognitive architecture. Hum. Factors 48(2), 362–380 (2006)CrossRef Salvucci, D. D.: Modeling driver behavior in a cognitive architecture. Hum. Factors 48(2), 362–380 (2006)CrossRef
42.
Zurück zum Zitat Baumann, M., Krems, J. F.: Situation awareness and driving: A cognitive model. In: Modelling driver behaviour in automotive environments, pp 253–265. Springer (2007) Baumann, M., Krems, J. F.: Situation awareness and driving: A cognitive model. In: Modelling driver behaviour in automotive environments, pp 253–265. Springer (2007)
43.
Zurück zum Zitat Li, Z., Wu, C., Tao, P., Tian, J., Ma, L.: Dp and ds-lcd: A new lane change decision model coupling driver’s psychology and driving style. IEEE Access 8, 132614–132624 (2020)CrossRef Li, Z., Wu, C., Tao, P., Tian, J., Ma, L.: Dp and ds-lcd: A new lane change decision model coupling driver’s psychology and driving style. IEEE Access 8, 132614–132624 (2020)CrossRef
44.
Zurück zum Zitat Hou, Y., Edara, P., Sun, C.: Situation assessment and decision making for lane change assistance using ensemble learning methods. Expert Syst. Appl. 42(8), 3875–3882 (2015)CrossRef Hou, Y., Edara, P., Sun, C.: Situation assessment and decision making for lane change assistance using ensemble learning methods. Expert Syst. Appl. 42(8), 3875–3882 (2015)CrossRef
45.
Zurück zum Zitat Nilsson, J., Fredriksson, J., Coelingh, E.: Rule-based highway maneuver intention recognition. Proc. of 18th IEEE International Conference on Intelligent Transportation Systems, pp. 950–955 (2015) Nilsson, J., Fredriksson, J., Coelingh, E.: Rule-based highway maneuver intention recognition. Proc. of 18th IEEE International Conference on Intelligent Transportation Systems, pp. 950–955 (2015)
46.
Zurück zum Zitat Choudhury, C. F., Ramanujam, V., Ben-Akiva, M. E.: Modeling acceleration decisions for freeway merges. Transp. Res. Record 2124(1), 45–57 (2009)CrossRef Choudhury, C. F., Ramanujam, V., Ben-Akiva, M. E.: Modeling acceleration decisions for freeway merges. Transp. Res. Record 2124(1), 45–57 (2009)CrossRef
47.
Zurück zum Zitat Yeo, H., Skabardonis, A., Halkias, J., Colyar, J., Alexiadis, V.: Oversaturated freeway flow algorithm for use in next generation simulation. Transp. Res. Rec. 2088(1), 68–79 (2008)CrossRef Yeo, H., Skabardonis, A., Halkias, J., Colyar, J., Alexiadis, V.: Oversaturated freeway flow algorithm for use in next generation simulation. Transp. Res. Rec. 2088(1), 68–79 (2008)CrossRef
48.
Zurück zum Zitat Coifman, B., Li, L.: A critical evaluation of the next generation simulation (ngsim) vehicle trajectory dataset. Transp. Res. B Methodol. 105, 362–377 (2017)CrossRef Coifman, B., Li, L.: A critical evaluation of the next generation simulation (ngsim) vehicle trajectory dataset. Transp. Res. B Methodol. 105, 362–377 (2017)CrossRef
49.
Zurück zum Zitat Vassili Alexiadis, J. C., Halkias, J.: Next generation simulation fact sheet, washington, dc, usa. [online] available: ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm (2007) Vassili Alexiadis, J. C., Halkias, J.: Next generation simulation fact sheet, washington, dc, usa. [online] available: ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm (2007)
50.
Zurück zum Zitat Wang, Q., Li, Z., Li, L.: Investigation of discretionary lane-change characteristics using next-generation simulation data sets. J. Intell. Transp. Syst. 18(3), 246–253 (2014)CrossRef Wang, Q., Li, Z., Li, L.: Investigation of discretionary lane-change characteristics using next-generation simulation data sets. J. Intell. Transp. Syst. 18(3), 246–253 (2014)CrossRef
51.
Zurück zum Zitat Punzo, V., Borzacchiello, M.T., Ciuffo, B.: On the assessment of vehicle trajectory data accuracy and application to the next generation simulation (ngsim) program data. Transp. Res. Part C: Emerg. Technol. 19(6), 1243–1262 (2011)CrossRef Punzo, V., Borzacchiello, M.T., Ciuffo, B.: On the assessment of vehicle trajectory data accuracy and application to the next generation simulation (ngsim) program data. Transp. Res. Part C: Emerg. Technol. 19(6), 1243–1262 (2011)CrossRef
52.
Zurück zum Zitat Bosnak, M., Skrjanc, I.: Efficient time-to-collision estimation for a braking supervision system with LIDAR. Proc. of 3rd IEEE International Conference on Cybernetics (CYBCONF), pp. 1–6 (2017) Bosnak, M., Skrjanc, I.: Efficient time-to-collision estimation for a braking supervision system with LIDAR. Proc. of 3rd IEEE International Conference on Cybernetics (CYBCONF), pp. 1–6 (2017)
53.
Zurück zum Zitat Dong, C., Wang, H., Li, Y., Shi, X., Ni, D., Wang, W.: Application of machine learning algorithms in lane-changing model for intelligent vehicles exiting to off-ramp. Transportmetrica A: Transport Sci. 17(1), 124–150 (2021)CrossRef Dong, C., Wang, H., Li, Y., Shi, X., Ni, D., Wang, W.: Application of machine learning algorithms in lane-changing model for intelligent vehicles exiting to off-ramp. Transportmetrica A: Transport Sci. 17(1), 124–150 (2021)CrossRef
54.
Zurück zum Zitat Glaser, S., Vanholme, B., Mammar, S., Gruyer, D., Nouveliere, L.: Maneuver-based trajectory planning for highly autonomous vehicles on real road with traffic and driver interaction. IEEE Trans. Intell. Transp. Syst. 11(3), 589–606 (2010)CrossRef Glaser, S., Vanholme, B., Mammar, S., Gruyer, D., Nouveliere, L.: Maneuver-based trajectory planning for highly autonomous vehicles on real road with traffic and driver interaction. IEEE Trans. Intell. Transp. Syst. 11(3), 589–606 (2010)CrossRef
55.
Zurück zum Zitat Ward, J., Agamennoni, G., Worrall, S., Nebot, E.: Vehicle collision probability calculation for general traffic scenarios under uncertainty. In: IEEE Intelligent Vehicles Symposium Proceedings, pp 986–992 (2014) Ward, J., Agamennoni, G., Worrall, S., Nebot, E.: Vehicle collision probability calculation for general traffic scenarios under uncertainty. In: IEEE Intelligent Vehicles Symposium Proceedings, pp 986–992 (2014)
56.
Zurück zum Zitat Kim, J., Kum, D.: Collision risk assessment algorithm via lane-based probabilistic motion prediction of surrounding vehicles. IEEE Trans. Intell. Transp. Syst. 19(9), 2965–2976 (2017)CrossRef Kim, J., Kum, D.: Collision risk assessment algorithm via lane-based probabilistic motion prediction of surrounding vehicles. IEEE Trans. Intell. Transp. Syst. 19(9), 2965–2976 (2017)CrossRef
57.
Zurück zum Zitat Xu, G., Liu, L., Ou, Y., Song, Z.: Dynamic modeling of driver control strategy of lane-change behavior and trajectory planning for collision prediction. IEEE Trans. Intell. Transp. Syst. 13(3), 1138–1155 (2012)CrossRef Xu, G., Liu, L., Ou, Y., Song, Z.: Dynamic modeling of driver control strategy of lane-change behavior and trajectory planning for collision prediction. IEEE Trans. Intell. Transp. Syst. 13(3), 1138–1155 (2012)CrossRef
58.
Zurück zum Zitat Zhang, Y., Lin, Q., Wang, J., Verwer, S., Dolan, J.M.: Lane-change intention estimation for car-following control in autonomous driving. IEEE Trans. Intell. Veh. 3(3), 276–286 (2018)CrossRef Zhang, Y., Lin, Q., Wang, J., Verwer, S., Dolan, J.M.: Lane-change intention estimation for car-following control in autonomous driving. IEEE Trans. Intell. Veh. 3(3), 276–286 (2018)CrossRef
59.
Zurück zum Zitat Minderhoud, M.M., Bovy, P. H.: Extended time-to-collision measures for road traffic safety assessment. Accid. Analy. Prev. 33(1), 89–97 (2001)CrossRef Minderhoud, M.M., Bovy, P. H.: Extended time-to-collision measures for road traffic safety assessment. Accid. Analy. Prev. 33(1), 89–97 (2001)CrossRef
60.
Zurück zum Zitat Chen, T., Shi, X., Wong, Y.D.: Key feature selection and risk prediction for lane-changing behaviors based on vehicles’ trajectory data. Accid. Anal. Prev. 129, 156–169 (2019)CrossRef Chen, T., Shi, X., Wong, Y.D.: Key feature selection and risk prediction for lane-changing behaviors based on vehicles’ trajectory data. Accid. Anal. Prev. 129, 156–169 (2019)CrossRef
61.
Zurück zum Zitat Coelingh, E., Eidehall, A., Bengtsson, M.: Collision warning with full auto brake and pedestrian detection-a practical example of automatic emergency braking. Proc. of 13th International IEEE Conference on Intelligent Transportation Systems, pp. 155–160 (2010) Coelingh, E., Eidehall, A., Bengtsson, M.: Collision warning with full auto brake and pedestrian detection-a practical example of automatic emergency braking. Proc. of 13th International IEEE Conference on Intelligent Transportation Systems, pp. 155–160 (2010)
62.
Zurück zum Zitat Labayrade, R., Royere, C., Aubert, D.: A collision mitigation system using laser scanner and stereovision fusion and its assessment. Proc. of Intelligent Vehicles Symposium, pp. 441–446 (2005) Labayrade, R., Royere, C., Aubert, D.: A collision mitigation system using laser scanner and stereovision fusion and its assessment. Proc. of Intelligent Vehicles Symposium, pp. 441–446 (2005)
63.
Zurück zum Zitat Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)MATH Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)MATH
64.
Zurück zum Zitat Chen, S., Cowan, C.F., Grant, P.M.: Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Netw. 2(2), 302–309 (1991)CrossRef Chen, S., Cowan, C.F., Grant, P.M.: Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Netw. 2(2), 302–309 (1991)CrossRef
65.
Zurück zum Zitat Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite state markov chains. Ann. Math. Stat. 37(6), 1554–1563 (1966)MathSciNetMATHCrossRef Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite state markov chains. Ann. Math. Stat. 37(6), 1554–1563 (1966)MathSciNetMATHCrossRef
66.
Zurück zum Zitat Rabiner, L., Juang, B.: An introduction to hidden markov models. IEEE assp Mag 3(1), 4–16 (1986)CrossRef Rabiner, L., Juang, B.: An introduction to hidden markov models. IEEE assp Mag 3(1), 4–16 (1986)CrossRef
67.
Zurück zum Zitat Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interd. Rev. Comput. Stat. 2 (4), 433–459 (2010)CrossRef Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interd. Rev. Comput. Stat. 2 (4), 433–459 (2010)CrossRef
68.
Zurück zum Zitat McNemar, Q.: Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 12(2), 153–157 (1947)CrossRef McNemar, Q.: Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 12(2), 153–157 (1947)CrossRef
69.
Zurück zum Zitat Edwards, A.L.: Note on the “correction for continuity” in testing the significance of the difference between correlated proportions. Psychometrika 13(3), 185–187 (1948)CrossRef Edwards, A.L.: Note on the “correction for continuity” in testing the significance of the difference between correlated proportions. Psychometrika 13(3), 185–187 (1948)CrossRef
70.
Zurück zum Zitat Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10(7), 1895–1923 (1998)CrossRef Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10(7), 1895–1923 (1998)CrossRef
71.
Zurück zum Zitat Witten, I.H., Frank, E., Hall, M.A., Pal, C.J., DATA, M.: Practical machine learning tools and techniques. In: Data Mining (2), p 4 (2005) Witten, I.H., Frank, E., Hall, M.A., Pal, C.J., DATA, M.: Practical machine learning tools and techniques. In: Data Mining (2), p 4 (2005)
72.
Zurück zum Zitat Cumming, G., Calin-Jageman, R.: Introduction to the new statistics: Estimation, open science, and beyond. Routledge (2016) Cumming, G., Calin-Jageman, R.: Introduction to the new statistics: Estimation, open science, and beyond. Routledge (2016)
Metadaten
Titel
Highway Lane-Changing Prediction Using a Hierarchical Software Architecture based on Support Vector Machine and Continuous Hidden Markov Model
verfasst von
Omveer Sharma
N. C. Sahoo
N. B. Puhan
Publikationsdatum
02.06.2022
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research / Ausgabe 2/2022
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-022-00308-2

Weitere Artikel der Ausgabe 2/2022

International Journal of Intelligent Transportation Systems Research 2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.