Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2022

07.06.2022 | Technical Article

Hot Workability and Microstructural Evolution of Powder Metallurgy Ti-22Al-24Nb-0.5Mo Alloy during Hot Compression

verfasst von: Zichao Yu, Hua Zhang, Zhengjie Shao, Shangzhou Zhang, Jingjing Ruan, Lifei Wang, Xin Zhou, Lilong Zhu, Lei Xu

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, Ti-22Al-24Nb-0.5Mo alloy was processed by hot isostatic pressing and forging. The hot workability and microstructure evolution of forged alloy at temperature of 930-1050 °C and the strain rate of 0.001‐1 s−1 were investigated. The flow stress of forged alloy decreased with the increasing temperature and the decreasing strain rate. When the compression strain rate is greater than 0.1 s−1, the stress–strain curves present multiple yield phenomenon. The apparent activation energy Q values of forged alloy in the (α2+O+B2) three-phase region and the (α2+B2) two-phase region are 727 and 571 KJ mol−1, respectively. According to hot working map, there are no suitable processing zone in the three-phase region. There are two suitable processing zones (Domain I: 990-1030 °C and 0.005 s−1; Domain II: above 1035 °C and 0.1‐0.005 s−1) in the two-phase region, in which there are many dynamic recrystallized grains and the continuous dynamic recrystallization is the dominating dynamic recrystallization (DRX) mechanism. But the grains are severely deformed and the discontinuous dynamic recrystallization is activated in the instability zone.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Yang, H.P. Feng, Q. Wang, R.R. Chen, J.J. Guo, H.S. Ding, and Y.Q. Su, Improvement of Microstructure and Mechanical Properties of TiAl−Nb Alloy by Adding Fe Element, T. Nonferr. Metal. Soc., 2020, 30(5), p 1315–1324.CrossRef Y. Yang, H.P. Feng, Q. Wang, R.R. Chen, J.J. Guo, H.S. Ding, and Y.Q. Su, Improvement of Microstructure and Mechanical Properties of TiAl−Nb Alloy by Adding Fe Element, T. Nonferr. Metal. Soc., 2020, 30(5), p 1315–1324.CrossRef
2.
Zurück zum Zitat D. Banerjee, A.K. Gogia, T.K. Nandi, and V.A. Joshi, A New Ordered Orthorhombic Phase in a Ti3Al-Nb Alloy, Acta. Metall., 1988, 36(4), p 871–882.CrossRef D. Banerjee, A.K. Gogia, T.K. Nandi, and V.A. Joshi, A New Ordered Orthorhombic Phase in a Ti3Al-Nb Alloy, Acta. Metall., 1988, 36(4), p 871–882.CrossRef
3.
Zurück zum Zitat K.H. Sin Kyong-ho, G.F. Wang, J.M. Ju, J.L. Yang, and X. Li, Microstructure and Mechanical Properties of a Ti-22Al-25Nb Alloy Fabricated from Elemental Powders by Mechanical Alloying and Spark Plasma Sintering, J. Alloys Compd., 2017, 704, p 425–433.CrossRef K.H. Sin Kyong-ho, G.F. Wang, J.M. Ju, J.L. Yang, and X. Li, Microstructure and Mechanical Properties of a Ti-22Al-25Nb Alloy Fabricated from Elemental Powders by Mechanical Alloying and Spark Plasma Sintering, J. Alloys Compd., 2017, 704, p 425–433.CrossRef
4.
Zurück zum Zitat J. Wu, R. Guo, L. Xu, Z. Lu, Y. Cui, and R. Yang, Effect of Hot Isostatic Pressing Loading Route on Microstructure and Mechanical Properties of Powder Metallurgy Ti2AlNb Alloys, J. Mater. Sci. Technol., 2017, 33(2), p 172–178.CrossRef J. Wu, R. Guo, L. Xu, Z. Lu, Y. Cui, and R. Yang, Effect of Hot Isostatic Pressing Loading Route on Microstructure and Mechanical Properties of Powder Metallurgy Ti2AlNb Alloys, J. Mater. Sci. Technol., 2017, 33(2), p 172–178.CrossRef
5.
Zurück zum Zitat Q.C. Zhang, M.H. Chen, H. Wang, N. Wang, J.D. Ouyang, and X.X. Li, Thermal Deformation Behavior and Mechanism of Intermetallic Alloy Ti2AlNb, T. Nonferr. Metal. Soc., 2017, 26(3), p 722–728.CrossRef Q.C. Zhang, M.H. Chen, H. Wang, N. Wang, J.D. Ouyang, and X.X. Li, Thermal Deformation Behavior and Mechanism of Intermetallic Alloy Ti2AlNb, T. Nonferr. Metal. Soc., 2017, 26(3), p 722–728.CrossRef
6.
Zurück zum Zitat Z.G. Lu, J. Wu, R.P. Guo, L. Xu, and R. Yang, Hot Deformation Mechanism and Ring Rolling Behavior Powder Metallurgy Ti2AlNb Intermetallics, Acta Metall. Sin., 2017, 30(7), p 621–629.CrossRef Z.G. Lu, J. Wu, R.P. Guo, L. Xu, and R. Yang, Hot Deformation Mechanism and Ring Rolling Behavior Powder Metallurgy Ti2AlNb Intermetallics, Acta Metall. Sin., 2017, 30(7), p 621–629.CrossRef
7.
Zurück zum Zitat B. Shao, Y.Y. Zong, D.S. Wen, Y.T. Tian, and D.B. Shan, Investigation of the Phase Transformations in Ti-22Al-25Nb Alloy, Mater. Charact., 2016, 114, p 75–78.CrossRef B. Shao, Y.Y. Zong, D.S. Wen, Y.T. Tian, and D.B. Shan, Investigation of the Phase Transformations in Ti-22Al-25Nb Alloy, Mater. Charact., 2016, 114, p 75–78.CrossRef
8.
Zurück zum Zitat W. Wang, W.D. Zeng, D. Li, B. Zhu, Y.P. Zheng, and X.B. Liang, Microstructural Evolution and Tensile Behavior of Ti2AlNb Alloys Based α2-Phase Decomposition, Mater. Sci. Eng. A, 2016, 662, p 120–128.CrossRef W. Wang, W.D. Zeng, D. Li, B. Zhu, Y.P. Zheng, and X.B. Liang, Microstructural Evolution and Tensile Behavior of Ti2AlNb Alloys Based α2-Phase Decomposition, Mater. Sci. Eng. A, 2016, 662, p 120–128.CrossRef
9.
Zurück zum Zitat Y. Huang, Y.C. Liu, C. Li, Z.Q. Ma, L.M. Yu, and H.J. Li, Microstructure Evolution and Phase Transformations in Ti-22Al-25Nb Alloys Tailored by Super-transus Solution Treatment, Vac, 2019, 161, p 209–219.CrossRef Y. Huang, Y.C. Liu, C. Li, Z.Q. Ma, L.M. Yu, and H.J. Li, Microstructure Evolution and Phase Transformations in Ti-22Al-25Nb Alloys Tailored by Super-transus Solution Treatment, Vac, 2019, 161, p 209–219.CrossRef
10.
Zurück zum Zitat H.M. Zhang, M.Q. Yang, Y. Xu, C. Sun, G. Chen, and F. Han, Constitutive Behavior and Hot Workability of a Hot Isostatic Pressed Ti-22Al-2 5Nb Alloy During Hot Compression, J. Mater. Eng. Perform., 2019, 28, p 6816–6826.CrossRef H.M. Zhang, M.Q. Yang, Y. Xu, C. Sun, G. Chen, and F. Han, Constitutive Behavior and Hot Workability of a Hot Isostatic Pressed Ti-22Al-2 5Nb Alloy During Hot Compression, J. Mater. Eng. Perform., 2019, 28, p 6816–6826.CrossRef
11.
Zurück zum Zitat Y. Sun, X.Y. Feng, L.X. Hu, H. Zhang, and H.Z. Zhang, Characterization on Hot Deformation Behavior of Ti-22Al-25Nb Alloy using a Combination of 3D Processing Diagrams and Finite Element Simulation Method, J. Alloys Compd., 2018, 753, p 256–271.CrossRef Y. Sun, X.Y. Feng, L.X. Hu, H. Zhang, and H.Z. Zhang, Characterization on Hot Deformation Behavior of Ti-22Al-25Nb Alloy using a Combination of 3D Processing Diagrams and Finite Element Simulation Method, J. Alloys Compd., 2018, 753, p 256–271.CrossRef
12.
Zurück zum Zitat P. Lin, Y.G. Hao, B.Y. Zhang, S.Z. Zhang, and J. Shen, Strain Rate Sensitivity of Ti-22Al-25Nb (at%) Alloy during High Remperature Deformation, Mater. Sci. Eng. A, 2018, 710, p 336–342.CrossRef P. Lin, Y.G. Hao, B.Y. Zhang, S.Z. Zhang, and J. Shen, Strain Rate Sensitivity of Ti-22Al-25Nb (at%) Alloy during High Remperature Deformation, Mater. Sci. Eng. A, 2018, 710, p 336–342.CrossRef
13.
Zurück zum Zitat Y.P. Zheng, W.D. Zeng, Q.Y. Zhao, D. Li, X. Ma, X.B. Liang, and J.W. Zhang, Deformation and Microstructure Evolution Above the B2 Transus of Ti-22Al-25Nb (at%) Orthorhombic Alloy, Mater. Sci. Eng. A, 2018, 710, p 164–171.CrossRef Y.P. Zheng, W.D. Zeng, Q.Y. Zhao, D. Li, X. Ma, X.B. Liang, and J.W. Zhang, Deformation and Microstructure Evolution Above the B2 Transus of Ti-22Al-25Nb (at%) Orthorhombic Alloy, Mater. Sci. Eng. A, 2018, 710, p 164–171.CrossRef
14.
Zurück zum Zitat Dey SR, Suwas S, Fundenberger JJ, and Ray RK (2009) Evolution of Crystallographic Texture and Microstructure in the Orthorhombic Phase of a Two-Phase Alloy Ti–22Al–25Nb. Intermetallics, 17(8):622-633. Dey SR, Suwas S, Fundenberger JJ, and Ray RK (2009) Evolution of Crystallographic Texture and Microstructure in the Orthorhombic Phase of a Two-Phase Alloy Ti–22Al–25Nb. Intermetallics, 17(8):622-633.
15.
Zurück zum Zitat H. Zhang, H.J. Li, Q.Y. Guo, Y.C. Liu, and L.M. Yu, Hot Deformation Behavior of Ti-22Al-25Nb Alloy by Processing Maps and Kinetic Analysis, J. Mater. Res., 2016, 31(12), p 1764–1772.CrossRef H. Zhang, H.J. Li, Q.Y. Guo, Y.C. Liu, and L.M. Yu, Hot Deformation Behavior of Ti-22Al-25Nb Alloy by Processing Maps and Kinetic Analysis, J. Mater. Res., 2016, 31(12), p 1764–1772.CrossRef
16.
Zurück zum Zitat Y. Wu, H.C. Kou, B. Tang, and J.S. Li, Dynamic Recrystallization, and Texture Evolution of Ti-22Al-25Nb Alloy, Adv. Eng. Mater., 2017, 20(2), p 1700587.CrossRef Y. Wu, H.C. Kou, B. Tang, and J.S. Li, Dynamic Recrystallization, and Texture Evolution of Ti-22Al-25Nb Alloy, Adv. Eng. Mater., 2017, 20(2), p 1700587.CrossRef
17.
Zurück zum Zitat R. Bobbili and V. Madhu, Physically-Based Constitutive Model for FLOW behavior of a Ti-22Al-25Nb Alloy at High Strain Rates, J. Alloys Compd., 2018, 762, p 842–848.CrossRef R. Bobbili and V. Madhu, Physically-Based Constitutive Model for FLOW behavior of a Ti-22Al-25Nb Alloy at High Strain Rates, J. Alloys Compd., 2018, 762, p 842–848.CrossRef
18.
Zurück zum Zitat X. Jiao, G. Liu, D. Wang, and Y. Wu, Creep Behavior and Effects of Heat Treatment on Creep Resistance of Ti-22Al-24Nb-0.5 Mo Alloy, Mater. Sci. Eng. A., 2017, 680, p 182–189.CrossRef X. Jiao, G. Liu, D. Wang, and Y. Wu, Creep Behavior and Effects of Heat Treatment on Creep Resistance of Ti-22Al-24Nb-0.5 Mo Alloy, Mater. Sci. Eng. A., 2017, 680, p 182–189.CrossRef
19.
Zurück zum Zitat Y. Mao, M. Hagiwara and S. Emura, Creep Behavior and Tensile Properties of Mo- and Fe-Added Orthorhombic Ti-22Al-11Nb-2Mo-1Fe Alloy, Scripta Mater., 2007, 57(3), p 261–264.CrossRef Y. Mao, M. Hagiwara and S. Emura, Creep Behavior and Tensile Properties of Mo- and Fe-Added Orthorhombic Ti-22Al-11Nb-2Mo-1Fe Alloy, Scripta Mater., 2007, 57(3), p 261–264.CrossRef
20.
Zurück zum Zitat J.L. Yang, G.F. Wang, W.C. Zhang, W.Z. Chen, X.Y. Jiao, and K.F. Zhang, Microstructure Evolution and Mechanical Properties of P/M Ti-22Al-25Nb Alloy During Hot Extrusion, Mater. Sci. Eng. A, 2017, 699, p 210–216.CrossRef J.L. Yang, G.F. Wang, W.C. Zhang, W.Z. Chen, X.Y. Jiao, and K.F. Zhang, Microstructure Evolution and Mechanical Properties of P/M Ti-22Al-25Nb Alloy During Hot Extrusion, Mater. Sci. Eng. A, 2017, 699, p 210–216.CrossRef
21.
Zurück zum Zitat C.J. Boehlert, The Effects of Forging and Rolling on Microstructure in O+BCC Ti-Al-Nb Alloys, Mater. Sci. Eng. A, 2000, 279(1–2), p 118–129.CrossRef C.J. Boehlert, The Effects of Forging and Rolling on Microstructure in O+BCC Ti-Al-Nb Alloys, Mater. Sci. Eng. A, 2000, 279(1–2), p 118–129.CrossRef
22.
Zurück zum Zitat Y.P. Zheng, W.D. Zeng, D. Li, Q.Y. Zhao, X.B. Liang, J.W. Zhang, and X. Ma, Fracture Toughness of the Bimodal Size Lamellar O Phase Microstructures in Ti-22Al-25Nb (at.%) Orthorhombic Alloy, J. Alloys Compd., 2017, 709, p 511–518.CrossRef Y.P. Zheng, W.D. Zeng, D. Li, Q.Y. Zhao, X.B. Liang, J.W. Zhang, and X. Ma, Fracture Toughness of the Bimodal Size Lamellar O Phase Microstructures in Ti-22Al-25Nb (at.%) Orthorhombic Alloy, J. Alloys Compd., 2017, 709, p 511–518.CrossRef
23.
Zurück zum Zitat X. Chen, W.D. Zeng, W. Wang, X.B. Liang, and J.W. Zhang, The Enhanced Tensile Property by Introducing Bimodal Size Distribution of Lamellar O for O+B2 Ti2AlNb Based Alloy, Mater. Sci. Eng. A, 2013, 587, p 54–60.CrossRef X. Chen, W.D. Zeng, W. Wang, X.B. Liang, and J.W. Zhang, The Enhanced Tensile Property by Introducing Bimodal Size Distribution of Lamellar O for O+B2 Ti2AlNb Based Alloy, Mater. Sci. Eng. A, 2013, 587, p 54–60.CrossRef
24.
Zurück zum Zitat X.Y. Jiao, D.J. Wang, J.L. Yang, Z.Q. Liu, and G. Liu, Microstructure Analysis on Enhancing Mechanical Properties at 750°C and Room Temperature of Ti-22Al-24Nb-0.5Mo Alloy Tubes Fabricated by Hot Gas Forming, J. Alloys Compd., 2019, 789, p 639–646.CrossRef X.Y. Jiao, D.J. Wang, J.L. Yang, Z.Q. Liu, and G. Liu, Microstructure Analysis on Enhancing Mechanical Properties at 750°C and Room Temperature of Ti-22Al-24Nb-0.5Mo Alloy Tubes Fabricated by Hot Gas Forming, J. Alloys Compd., 2019, 789, p 639–646.CrossRef
25.
Zurück zum Zitat M. Li, Q. Cai, Y. Liu, Z. Ma, Z. Wang, Y. Huang, and J. Yu, Dual Structure O + B2 for Enhancement of Hardness in Furnace-Cooled Ti2AlNb-Based Alloys by Powder Metallurgy, Adv. Powder. Technol., 2017, 28(7), p 1719–1726.CrossRef M. Li, Q. Cai, Y. Liu, Z. Ma, Z. Wang, Y. Huang, and J. Yu, Dual Structure O + B2 for Enhancement of Hardness in Furnace-Cooled Ti2AlNb-Based Alloys by Powder Metallurgy, Adv. Powder. Technol., 2017, 28(7), p 1719–1726.CrossRef
26.
Zurück zum Zitat L.J. Huang, Y.Z. Zhang, L. Geng, B. Wang, and W. Ren, Hot Compression Characteristics of TiBw/Ti6Al4V Composites With Novel Network Microstructure Using Processing Maps, Mater. Sci. Eng. A, 2013, 580, p 242–249.CrossRef L.J. Huang, Y.Z. Zhang, L. Geng, B. Wang, and W. Ren, Hot Compression Characteristics of TiBw/Ti6Al4V Composites With Novel Network Microstructure Using Processing Maps, Mater. Sci. Eng. A, 2013, 580, p 242–249.CrossRef
27.
Zurück zum Zitat Y.B. Tan, Y.H. Ma, and F. Zhao, Hot Deformation Behavior and Constitutive Modeling of Fine Grained Inconel 718 Superalloy, J. Alloys Compd., 2018, 741, p 85–96.CrossRef Y.B. Tan, Y.H. Ma, and F. Zhao, Hot Deformation Behavior and Constitutive Modeling of Fine Grained Inconel 718 Superalloy, J. Alloys Compd., 2018, 741, p 85–96.CrossRef
28.
Zurück zum Zitat Y. Zhang, Z. Chai, A. Volinsky, B.H. Tian, H.L. Sun, P. Liu, and Y. Liu, Processing Maps for the Cu-Cr-Zr-Y Alloy Hot Deformation Behavior, Mater. Sci. Eng. A, 2016, 662, p 320–329.CrossRef Y. Zhang, Z. Chai, A. Volinsky, B.H. Tian, H.L. Sun, P. Liu, and Y. Liu, Processing Maps for the Cu-Cr-Zr-Y Alloy Hot Deformation Behavior, Mater. Sci. Eng. A, 2016, 662, p 320–329.CrossRef
29.
Zurück zum Zitat H.Z. Zhao, L. Xiao, P. Ge, J. Sun, and Z.P. Xi, Hot Deformation Behavior and Processing Maps of Ti-1300 Alloy, Mater. Sci. Eng. A, 2014, 604, p 111–116.CrossRef H.Z. Zhao, L. Xiao, P. Ge, J. Sun, and Z.P. Xi, Hot Deformation Behavior and Processing Maps of Ti-1300 Alloy, Mater. Sci. Eng. A, 2014, 604, p 111–116.CrossRef
30.
Zurück zum Zitat Q.G. Meng, C.G. Bai, and D.S. Xu, Flow Behavior and Processing Map for Hot Deformation of ATI425 Titanium Alloy, J. Mater. Sci. Technol., 2017, 34(4), p 679–688.CrossRef Q.G. Meng, C.G. Bai, and D.S. Xu, Flow Behavior and Processing Map for Hot Deformation of ATI425 Titanium Alloy, J. Mater. Sci. Technol., 2017, 34(4), p 679–688.CrossRef
31.
Zurück zum Zitat S.B. Wang, W.C. Xu, Y.Y. Zong, X.M. Zhong, and D.B. Shan, Effect of Initial Microstructures on Hot Deformation Behavior and Workability of Ti2AlNb-Based Alloy, Met., 2018, 8(6), p 382. S.B. Wang, W.C. Xu, Y.Y. Zong, X.M. Zhong, and D.B. Shan, Effect of Initial Microstructures on Hot Deformation Behavior and Workability of Ti2AlNb-Based Alloy, Met., 2018, 8(6), p 382.
32.
Zurück zum Zitat Y. Prasad and T. Seshacharyulu, Processing Maps for Hot Working of Titanium Alloys, Mater. Sci. Eng. A, 1998, 243(1–2), p 82–88.CrossRef Y. Prasad and T. Seshacharyulu, Processing Maps for Hot Working of Titanium Alloys, Mater. Sci. Eng. A, 1998, 243(1–2), p 82–88.CrossRef
33.
Zurück zum Zitat J. Wang, G.Q. Zhao, and M.J. Li, Establishment of Processing Map and Analysis of Microstructure on Multi-Crystalline Tungsten Plastic Deformation Process at Elevated Temperature, Mater. Des., 2016, 103, p 268–277.CrossRef J. Wang, G.Q. Zhao, and M.J. Li, Establishment of Processing Map and Analysis of Microstructure on Multi-Crystalline Tungsten Plastic Deformation Process at Elevated Temperature, Mater. Des., 2016, 103, p 268–277.CrossRef
34.
Zurück zum Zitat M.J. Wang, W.R. Wang, Z.L. Liu, C.Y. Sun, and L.Y. Qian, Hot Workability Integrating Processing and Activation Energy Maps of Inconel 740 Superalloy, Mater. Today Commun., 2018, 14, p 188–198.CrossRef M.J. Wang, W.R. Wang, Z.L. Liu, C.Y. Sun, and L.Y. Qian, Hot Workability Integrating Processing and Activation Energy Maps of Inconel 740 Superalloy, Mater. Today Commun., 2018, 14, p 188–198.CrossRef
35.
Zurück zum Zitat X. Ma, W.D. Zeng, B. Xu, Y. Sun, C. Xue, and Y.F. Han, Characterization of the Hot Deformation Behavior of a Ti-22Al-25Nb Alloy Using Processing Maps Based on the Murty Criterion, Intermetalli., 2012, 20(1), p 1–7.CrossRef X. Ma, W.D. Zeng, B. Xu, Y. Sun, C. Xue, and Y.F. Han, Characterization of the Hot Deformation Behavior of a Ti-22Al-25Nb Alloy Using Processing Maps Based on the Murty Criterion, Intermetalli., 2012, 20(1), p 1–7.CrossRef
36.
Zurück zum Zitat S.U.N. Yu, H. Zhang, Z.P. Wan, L.L. Ren, and L.X. Hu, Establishment of a Novel Constitutive Model Considering Dynamic Recrystallization Behavior of Ti-22Al-25Nb Alloy During Hot Deformation, Trans. Nonferr. Metals Soc. China, 2019, 29(3), p 546–557.CrossRef S.U.N. Yu, H. Zhang, Z.P. Wan, L.L. Ren, and L.X. Hu, Establishment of a Novel Constitutive Model Considering Dynamic Recrystallization Behavior of Ti-22Al-25Nb Alloy During Hot Deformation, Trans. Nonferr. Metals Soc. China, 2019, 29(3), p 546–557.CrossRef
37.
Zurück zum Zitat E.X. Pu, W.J. Zheng, Z.G. Song, H. Feng, and H. Dong, Hot Deformation Characterization of Nickel-Based Superalloy UNS10276 through Processing Map and Microstructural Studies, J. Alloys Compd., 2017, 694, p 617–631.CrossRef E.X. Pu, W.J. Zheng, Z.G. Song, H. Feng, and H. Dong, Hot Deformation Characterization of Nickel-Based Superalloy UNS10276 through Processing Map and Microstructural Studies, J. Alloys Compd., 2017, 694, p 617–631.CrossRef
38.
Zurück zum Zitat S. Wang, L.G. Hou, J.R. Luo, J.S. Zhang, and L.Z. Zhuang, Characterization of Hot Workability in AA 7050 Aluminum Alloy Using Activation Energy and 3-D Processing Map, J. Mater. Process. Technol., 2015, 225, p 110–121.CrossRef S. Wang, L.G. Hou, J.R. Luo, J.S. Zhang, and L.Z. Zhuang, Characterization of Hot Workability in AA 7050 Aluminum Alloy Using Activation Energy and 3-D Processing Map, J. Mater. Process. Technol., 2015, 225, p 110–121.CrossRef
39.
Zurück zum Zitat Z.J. Shao, Y. Li, B. Zhou, X.C. He, S.Z. Zhang, and L. Xu, Effect of Phase Transition Caused by Different Treatment Process on Mechanical Properties of Powder Metallurgy Ti-22Al-24Nb-0.5Mo (at. %) Alloys, Mater. Charact., 2020, 159, p 110022.CrossRef Z.J. Shao, Y. Li, B. Zhou, X.C. He, S.Z. Zhang, and L. Xu, Effect of Phase Transition Caused by Different Treatment Process on Mechanical Properties of Powder Metallurgy Ti-22Al-24Nb-0.5Mo (at. %) Alloys, Mater. Charact., 2020, 159, p 110022.CrossRef
40.
Zurück zum Zitat J.Z. Quan, L. Zhang, X. Wang, and Y.L. Li, Correspondence Between Microstructural Evolution Mechanisms and Hot Processing Parameters for Ti-13Nb-13Zr Biomedical Alloy in Comprehensive Processing Maps, J. Alloys Compd., 2017, 698, p 178–193.CrossRef J.Z. Quan, L. Zhang, X. Wang, and Y.L. Li, Correspondence Between Microstructural Evolution Mechanisms and Hot Processing Parameters for Ti-13Nb-13Zr Biomedical Alloy in Comprehensive Processing Maps, J. Alloys Compd., 2017, 698, p 178–193.CrossRef
41.
Zurück zum Zitat K. Huang and R.E. Logé, A Review of Dynamic Recrystallization Phenomena in Metallic Materials, Mater. Des., 2016, 111, p 548–574.CrossRef K. Huang and R.E. Logé, A Review of Dynamic Recrystallization Phenomena in Metallic Materials, Mater. Des., 2016, 111, p 548–574.CrossRef
42.
Zurück zum Zitat D. Ponge and G. Gottstein, Necklace Formation during Dynamic Recrystallization: Mechanisms and Impact on Flow Behavior, Acta. Mater., 1998, 46(1), p 69–80.CrossRef D. Ponge and G. Gottstein, Necklace Formation during Dynamic Recrystallization: Mechanisms and Impact on Flow Behavior, Acta. Mater., 1998, 46(1), p 69–80.CrossRef
43.
Zurück zum Zitat Z.J. Shao, Y. Li, B. Zhou, X.C. He, S.Z. Zhang, and L. Xu, Hot Deformation Behavior and Microstructural Evolution of Powder Metallurgy Ti-22Al-24Nb-0.5Mo Alloy, Mater. Charact., 2020, 165, p 110376.CrossRef Z.J. Shao, Y. Li, B. Zhou, X.C. He, S.Z. Zhang, and L. Xu, Hot Deformation Behavior and Microstructural Evolution of Powder Metallurgy Ti-22Al-24Nb-0.5Mo Alloy, Mater. Charact., 2020, 165, p 110376.CrossRef
44.
Zurück zum Zitat J.B. Jia, K.F. Zhang, and Z. Lu, Dynamic Recrystallization Kinetics of a Powder Metallurgy Ti-22Al-25Nb Alloy during Hot Compression, Mater. Sci. Eng. A, 2014, 607, p 630–639.CrossRef J.B. Jia, K.F. Zhang, and Z. Lu, Dynamic Recrystallization Kinetics of a Powder Metallurgy Ti-22Al-25Nb Alloy during Hot Compression, Mater. Sci. Eng. A, 2014, 607, p 630–639.CrossRef
45.
Zurück zum Zitat C. Sellars and W.M. Tegart, On the Mechanism of Hot Deformation, Acta Metall., 1996, 14(9), p 1136–1138.CrossRef C. Sellars and W.M. Tegart, On the Mechanism of Hot Deformation, Acta Metall., 1996, 14(9), p 1136–1138.CrossRef
Metadaten
Titel
Hot Workability and Microstructural Evolution of Powder Metallurgy Ti-22Al-24Nb-0.5Mo Alloy during Hot Compression
verfasst von
Zichao Yu
Hua Zhang
Zhengjie Shao
Shangzhou Zhang
Jingjing Ruan
Lifei Wang
Xin Zhou
Lilong Zhu
Lei Xu
Publikationsdatum
07.06.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07007-9

Weitere Artikel der Ausgabe 12/2022

Journal of Materials Engineering and Performance 12/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.