Skip to main content
Erschienen in: Tribology Letters 2/2022

01.06.2022 | Invited Viewpoint

Ice Deformation Explains Curling Stone Trajectories

verfasst von: Mark Denny

Erschienen in: Tribology Letters | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Friction forces explain why the velocity and angular velocity of a curling stone cease at the same time, but cannot explain why the curl distance is approximately independent of initial angular speed. Forces that can lead to this puzzling independence include asymmetric normal force, radial force, and center of mass drag force. The mechanisms that generate these forces depend upon asymmetries in the distribution of grit or ice fragments under the stone or upon the scratches made by the stone on the pebbled ice surface. Several current models of curling stone behavior are specific cases of the general mechanisms presented here; their applicability is discussed. Pebble wear influences curling behavior.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
It is the case quite generally that a single force in a plane is equivalent to an equal force through an arbitrary point—here the CM—and a couple [19].
 
2
This number is from Lozowski et al (2015) and is equivalent to an area density of \(\sigma =3300-33,000~\text {m}^{-2}\). Ewasko (2017) places the optimum density at 6–8 pebbles in\(^{-2}\) or \(9300-12,400~\text {m}^{-2}\). Mielke (2015) and Minnaar (2007) both state that pebbling requires 3 liters of water per sheet of ice which for Extra Fine pebble size (see Table 1) is equivalent to 7600 pebbles \(\text {m}^{-2}\).
 
3
We have assumed that if the stone is raised by a protruding pebble, then that pebble supports half the stone weight.
 
4
Thus a conical protrusion of height and width \(\delta h\) will present a projected area of \(\frac{1}{2}\delta h^2\) to the ice. RB asperities are characterized by a width s that is much greater than depth d (see Nyberg et al. 2013) so that the projected area is \(\frac{1}{2}sd\). Thus for a protrusion that is a RB asperity \(\delta h=\sqrt{sd}\) is the median scratch width scale.
 
5
A recent paper suggesting that scratches caused by directional sweeping can influence stone transverse motion also supports the idea of a scratch mechanism origin of curling behavior [42].
 
Literatur
1.
Zurück zum Zitat Harrington, E.L.: An experimental study of the motion of curling stones. Trans. R. Soc. Can. 18, 247–258 (1924) Harrington, E.L.: An experimental study of the motion of curling stones. Trans. R. Soc. Can. 18, 247–258 (1924)
3.
4.
5.
6.
Zurück zum Zitat Shegelski, M., Niebergall, R., Walton, M.: Curl guide. Phys. World 10(6), 19 (1997)CrossRef Shegelski, M., Niebergall, R., Walton, M.: Curl guide. Phys. World 10(6), 19 (1997)CrossRef
7.
8.
11.
Zurück zum Zitat Lozowski, E., Shegelski, M.R.A.: Comment on “Improved pivot-slide model of the motion of a curling rock’’. Can. J. Phys. 99, 202–203 (2021)CrossRef Lozowski, E., Shegelski, M.R.A.: Comment on “Improved pivot-slide model of the motion of a curling rock’’. Can. J. Phys. 99, 202–203 (2021)CrossRef
12.
Zurück zum Zitat Mancini, G., de Schoulepnikoff, L.: Reply to the comment by Lozowski and Shegelski on “Improved pivot-slide model of the motion of a curling rock’’. Can. J. Phys. 99, 204–205 (2021)CrossRef Mancini, G., de Schoulepnikoff, L.: Reply to the comment by Lozowski and Shegelski on “Improved pivot-slide model of the motion of a curling rock’’. Can. J. Phys. 99, 204–205 (2021)CrossRef
14.
Zurück zum Zitat Denny, M.: Curling rock dynamics. Can. J. Phys. 76, 295–304 (1998) Denny, M.: Curling rock dynamics. Can. J. Phys. 76, 295–304 (1998)
15.
Zurück zum Zitat Shegelski, M.R.A., Niebergall, R.: The motion of rapidly rotating curling rocks. Austral. J. Phys. 52, 1025–1038 (1999)CrossRef Shegelski, M.R.A., Niebergall, R.: The motion of rapidly rotating curling rocks. Austral. J. Phys. 52, 1025–1038 (1999)CrossRef
16.
Zurück zum Zitat Johnston, G.W.: The dynamics of a curling stone. Can. Aeronaut. Space J. 27, 144–161 (1981) Johnston, G.W.: The dynamics of a curling stone. Can. Aeronaut. Space J. 27, 144–161 (1981)
19.
Zurück zum Zitat Symon, K.R.: Mechanics, p. 230. Addison-Wesley, Reading (1960) Symon, K.R.: Mechanics, p. 230. Addison-Wesley, Reading (1960)
20.
Zurück zum Zitat Maeno, N.: Curl mechanism of a curling stone on ice pebbles. Bull. Glaciol. Res. 28, 1–6 (2010)CrossRef Maeno, N.: Curl mechanism of a curling stone on ice pebbles. Bull. Glaciol. Res. 28, 1–6 (2010)CrossRef
21.
Zurück zum Zitat Lozowski, E., et al.: Comparison of IMU measurements of curling stone dynamics with a numerical model. Procedia Eng. 147, 596–601 (2016)CrossRef Lozowski, E., et al.: Comparison of IMU measurements of curling stone dynamics with a numerical model. Procedia Eng. 147, 596–601 (2016)CrossRef
22.
Zurück zum Zitat Lozowski, E., Shegelski, M.R.A.: First principles pivot-slide model of the motion of a curling rock: Qualitative and quantitative predictions. Cold Regions Sci. Technol. 146, 182–186 (2018)CrossRef Lozowski, E., Shegelski, M.R.A.: First principles pivot-slide model of the motion of a curling rock: Qualitative and quantitative predictions. Cold Regions Sci. Technol. 146, 182–186 (2018)CrossRef
23.
Zurück zum Zitat Denny, M.: Comment on “On the motion of an ice hockey puck,’’ by K Voyenli and E Eriksen [Am. J. Phys. 53 (12), 1149–1153 (1985)]. Am. J. Phys. 74, 554–556 (2006)CrossRef Denny, M.: Comment on “On the motion of an ice hockey puck,’’ by K Voyenli and E Eriksen [Am. J. Phys. 53 (12), 1149–1153 (1985)]. Am. J. Phys. 74, 554–556 (2006)CrossRef
24.
Zurück zum Zitat Shegelski, M.R.A., Niebergall, R., Walton, M.A.: The motion of a curling rock. Can. J. Phys. 74, 663–670 (1996)CrossRef Shegelski, M.R.A., Niebergall, R., Walton, M.A.: The motion of a curling rock. Can. J. Phys. 74, 663–670 (1996)CrossRef
25.
Zurück zum Zitat Penner, R.A.: The physics of sliding cylinders and curling rocks. Am. J. Phys. 69, 332–339 (2001)CrossRef Penner, R.A.: The physics of sliding cylinders and curling rocks. Am. J. Phys. 69, 332–339 (2001)CrossRef
26.
Zurück zum Zitat Maeno, N.: Dynamics and curl ratio of a curling stone. Sports Eng. 17, 33–41 (2017)CrossRef Maeno, N.: Dynamics and curl ratio of a curling stone. Sports Eng. 17, 33–41 (2017)CrossRef
27.
Zurück zum Zitat Ivanov, A.P., Shuvalov, N.D.: One the motion of a heavy body with a circular base on a horizontal plane and riddles of curling. Regular Chaotic Dyn. 17, 97–104 (2012)CrossRef Ivanov, A.P., Shuvalov, N.D.: One the motion of a heavy body with a circular base on a horizontal plane and riddles of curling. Regular Chaotic Dyn. 17, 97–104 (2012)CrossRef
29.
Zurück zum Zitat Lozowski, E.P., Szilder, K., Maw, S., et al: Towards a first-principles model of curling ice friction and curling stone dynamics. In: Proc. 25th International Ocean and Polar Engineering Conference, Kona, Big Island, Hawaii, USA, June 21–26 (2015) Lozowski, E.P., Szilder, K., Maw, S., et al: Towards a first-principles model of curling ice friction and curling stone dynamics. In: Proc. 25th International Ocean and Polar Engineering Conference, Kona, Big Island, Hawaii, USA, June 21–26 (2015)
32.
Zurück zum Zitat Poirier, L., Lozowski, E.P., Thompson, R.I.: Ice hardness in winter sports. Cold Regions Sci. Technol. 67, 129–134 (2011)CrossRef Poirier, L., Lozowski, E.P., Thompson, R.I.: Ice hardness in winter sports. Cold Regions Sci. Technol. 67, 129–134 (2011)CrossRef
33.
Zurück zum Zitat Kim, E., Gagnon, R.E.: A preliminary analysis of the crushing specific energy of iceberg ice under rapid compressive loading. In: 23rd IAHR International Symposium on Ice, Ann Arbor, Michigan, May 31–June 1(2016) Kim, E., Gagnon, R.E.: A preliminary analysis of the crushing specific energy of iceberg ice under rapid compressive loading. In: 23rd IAHR International Symposium on Ice, Ann Arbor, Michigan, May 31–June 1(2016)
34.
Zurück zum Zitat Blackford, J.R.: Sintering and microstructure of ice: a review. J. Phys. D 40, R355 (2007)CrossRef Blackford, J.R.: Sintering and microstructure of ice: a review. J. Phys. D 40, R355 (2007)CrossRef
35.
Zurück zum Zitat Denny, M.: Curling rock dynamics: Towards a realistic model. Can. J. Phys. 80, 1005–1014 (2002)CrossRef Denny, M.: Curling rock dynamics: Towards a realistic model. Can. J. Phys. 80, 1005–1014 (2002)CrossRef
36.
Zurück zum Zitat Nyberg, H., Alfredson, S., Hogmark, S., et al.: The asymmetrical friction mechanism that puts the curl in the curling stone. Wear 301, 583–589 (2013)CrossRef Nyberg, H., Alfredson, S., Hogmark, S., et al.: The asymmetrical friction mechanism that puts the curl in the curling stone. Wear 301, 583–589 (2013)CrossRef
37.
Zurück zum Zitat Maeno, N.: Curling. In: Braghin, F., Cheli, F., Maldifassi, S., et al. (eds.) The Engineering Approach to Winter Sports, pp. 327–347. Springer, New York (2016)CrossRef Maeno, N.: Curling. In: Braghin, F., Cheli, F., Maldifassi, S., et al. (eds.) The Engineering Approach to Winter Sports, pp. 327–347. Springer, New York (2016)CrossRef
38.
Zurück zum Zitat Lozowski, E., Shegelski, M.R.A.: Pivot-slide model of the motion of a curling rock. Can. J. Phys. 94, 1305–1309 (2016)CrossRef Lozowski, E., Shegelski, M.R.A.: Pivot-slide model of the motion of a curling rock. Can. J. Phys. 94, 1305–1309 (2016)CrossRef
40.
Zurück zum Zitat Mancini, G., de Schoulepnikoff, L.: Improved pivot-slide model of the motion of a curling rock. Can. J. Phys. 97, 1301–1308 (2019)CrossRef Mancini, G., de Schoulepnikoff, L.: Improved pivot-slide model of the motion of a curling rock. Can. J. Phys. 97, 1301–1308 (2019)CrossRef
42.
Zurück zum Zitat Balsdon, M., Wood, J.: Comparing broom conditions in curling: Measurements using ice topography. In: Proc. 13th Internat. Sports Eng. Conference, June 22–26 (2020) Balsdon, M., Wood, J.: Comparing broom conditions in curling: Measurements using ice topography. In: Proc. 13th Internat. Sports Eng. Conference, June 22–26 (2020)
43.
Zurück zum Zitat Lozowski, E., Shegelski, M.R.A.: Null effect of scratches made by curling rocks. J. Sports Eng. Technol. 233, 370–374 (2018) Lozowski, E., Shegelski, M.R.A.: Null effect of scratches made by curling rocks. J. Sports Eng. Technol. 233, 370–374 (2018)
Metadaten
Titel
Ice Deformation Explains Curling Stone Trajectories
verfasst von
Mark Denny
Publikationsdatum
01.06.2022
Verlag
Springer US
Erschienen in
Tribology Letters / Ausgabe 2/2022
Print ISSN: 1023-8883
Elektronische ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-022-01582-7

Weitere Artikel der Ausgabe 2/2022

Tribology Letters 2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.