Skip to main content
Erschienen in: Soft Computing 11/2018

12.04.2017 | Methodologies and Application

Improving the performance of evolutionary-based complex detection models in protein–protein interaction networks

verfasst von: Bara’a A. Attea, Qusay Z. Abdullah

Erschienen in: Soft Computing | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Detecting functional modules in protein–protein interaction (PPI) networks is an important and ongoing challenge in computational biology. To partition a PPI network into complexes, most existing state-of-the-art methods, including evolutionary algorithms (EAs), are based solely on either very general graphical properties or very specific biological semantics of PPI networks or both. Despite the strength and the additional predictive improvements introduced by EA-based complex detection methods and apart from the specific biological properties of PPI networks, more inherent topological properties of protein complexes are rarely explored in these approaches. Moreover, many of these EAs view and define complex detection problem as a single-objective optimization problem. In this paper, we introduce a new multi-objective optimization model for formulating complex detection problem. A heuristic perturbation operator, called protein complex attraction and repulsion, is also introduced to improve the quality of a given solution. To the best of our knowledge, this is the first attempt to exploit the topological structure of proteins interactions in both problem formulation and complex perturbation. To demonstrate the effectiveness of the proposed multi-objective evolutionary-based complex detection algorithm, two well-known PPI networks and two reference sets of benchmark complexes created from MIPS are used in the experiments. Moreover, new random networks are generated from the Saccharomyces cerevisiae (yeast) PPI network to investigate the impact of perturbing protein interactions on the final performance of the proposed algorithm against counterpart algorithms. In comparison with several state-of-the-art methods, experimental results reveal that the proposed algorithm achieves more predictive level of matched protein complexes. Moreover, the results demonstrate the positive impact of injecting the proposed heuristic perturbation operator in improving the quality of the detected complexes obtained by all state-of-the-art EA-based methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adamcsek B, Palla G, Farkas IJ, Derényi I, Vicsek T (2006) CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22(8):1021–1023CrossRef Adamcsek B, Palla G, Farkas IJ, Derényi I, Vicsek T (2006) CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22(8):1021–1023CrossRef
Zurück zum Zitat Ahn Y-Y, Bagrow JP, Lehmann S (2010) Link communities reveal multiscale complexity in networks. Nature 466:761–764CrossRef Ahn Y-Y, Bagrow JP, Lehmann S (2010) Link communities reveal multiscale complexity in networks. Nature 466:761–764CrossRef
Zurück zum Zitat Altaf-Ul-Amin M, Shinbo Y, Mihara K, Kurokawa K, Kanaya S (2006) Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinform 7(1):207CrossRef Altaf-Ul-Amin M, Shinbo Y, Mihara K, Kurokawa K, Kanaya S (2006) Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinform 7(1):207CrossRef
Zurück zum Zitat Arnau V, Mars S, Marín I (2005) Iterative cluster analysis of protein interaction data. Bioinformatics 21(3):364–378CrossRef Arnau V, Mars S, Marín I (2005) Iterative cluster analysis of protein interaction data. Bioinformatics 21(3):364–378CrossRef
Zurück zum Zitat Attea BA, Hariz WA, Abdulhalim MF (2015) Improving the performance of evolutionary multi-objective co-clustering models for community detection in complex social networks. Swarm Evol Comput 26(2016):137–156 Attea BA, Hariz WA, Abdulhalim MF (2015) Improving the performance of evolutionary multi-objective co-clustering models for community detection in complex social networks. Swarm Evol Comput 26(2016):137–156
Zurück zum Zitat Attea BA, Khoder HS (2016) A new multi-objective evolutionary framework for community mining in dynamic social networks. Swarm Evol Comput 31:90–109CrossRef Attea BA, Khoder HS (2016) A new multi-objective evolutionary framework for community mining in dynamic social networks. Swarm Evol Comput 31:90–109CrossRef
Zurück zum Zitat Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 4(1):1CrossRef Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 4(1):1CrossRef
Zurück zum Zitat Bandyopadhyay S, Ray S, Mukhopadhyay A, Maulik U (2015) A multiobjective approach for identifying protein complexes and studying their association in multiple disorders. Algorithms Mol Biol 10(1):1CrossRef Bandyopadhyay S, Ray S, Mukhopadhyay A, Maulik U (2015) A multiobjective approach for identifying protein complexes and studying their association in multiple disorders. Algorithms Mol Biol 10(1):1CrossRef
Zurück zum Zitat Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113CrossRef Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113CrossRef
Zurück zum Zitat Becker E, Robisson B, Chapple CE, Guénoche A, Brun C (2012) Multifunctional proteins revealed by overlapping clustering in protein interaction network. Bioinformatics 28:84–90CrossRef Becker E, Robisson B, Chapple CE, Guénoche A, Brun C (2012) Multifunctional proteins revealed by overlapping clustering in protein interaction network. Bioinformatics 28:84–90CrossRef
Zurück zum Zitat Brandes U, Delling D, Gaertler M, Görke R, Hoefer M, Nikoloski Z, Wagner D (2008) On modularity clustering. IEEE Trans Knowl Data Eng 20(2):172–188CrossRefMATH Brandes U, Delling D, Gaertler M, Görke R, Hoefer M, Nikoloski Z, Wagner D (2008) On modularity clustering. IEEE Trans Knowl Data Eng 20(2):172–188CrossRefMATH
Zurück zum Zitat Brohée S, van Helden J (2006) Evaluation of clustering algorithms for protein–protein interaction networks. BMC Bioinform 7(1):488CrossRef Brohée S, van Helden J (2006) Evaluation of clustering algorithms for protein–protein interaction networks. BMC Bioinform 7(1):488CrossRef
Zurück zum Zitat Cho YR, Hwang W, Ramanathan M, Zhang A (2007) Semantic integration to identify overlapping functional modules in protein interaction networks. BMC Bioinform 8(1):1CrossRef Cho YR, Hwang W, Ramanathan M, Zhang A (2007) Semantic integration to identify overlapping functional modules in protein interaction networks. BMC Bioinform 8(1):1CrossRef
Zurück zum Zitat Coello CAC, Van Veldhuizen DA, Lamont GB (2002) Evolutionary algorithms for solving multi-objective problems, vol 242. Kluwer Academic, New YorkCrossRefMATH Coello CAC, Van Veldhuizen DA, Lamont GB (2002) Evolutionary algorithms for solving multi-objective problems, vol 242. Kluwer Academic, New YorkCrossRefMATH
Zurück zum Zitat Deb K (2001) Multi-objective optimization using evolutionary algorithms, vol 16. Wiley, New YorkMATH Deb K (2001) Multi-objective optimization using evolutionary algorithms, vol 16. Wiley, New YorkMATH
Zurück zum Zitat Ding Z, Zhang X, Sun D, Luo B (2016) Overlapping community detection based on network decomposition. Sci Rep 6:24115. doi:10.1038/srep24115 Ding Z, Zhang X, Sun D, Luo B (2016) Overlapping community detection based on network decomposition. Sci Rep 6:24115. doi:10.​1038/​srep24115
Zurück zum Zitat Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30(7):1575–1584CrossRef Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30(7):1575–1584CrossRef
Zurück zum Zitat Folino F, Pizzuti C (2010) A multiobjective and evolutionary clustering method for dynamic networks. In: 2010 International Conference on advances in social networks analysis and mining (ASONAM), IEEE, pp 256–263 Folino F, Pizzuti C (2010) A multiobjective and evolutionary clustering method for dynamic networks. In: 2010 International Conference on advances in social networks analysis and mining (ASONAM), IEEE, pp 256–263
Zurück zum Zitat Garey MR, Johnson DS (1979) Computers and intractability. A guide to the theory of NP-completeness. W. H. Freeman and Company, New YorkMATH Garey MR, Johnson DS (1979) Computers and intractability. A guide to the theory of NP-completeness. W. H. Freeman and Company, New YorkMATH
Zurück zum Zitat Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Edelmann A (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631–636CrossRef Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Edelmann A (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631–636CrossRef
Zurück zum Zitat Georgii E, Dietmann S, Uno T, Pagel P, Tsuda K (2009) Enumeration of condition-dependent dense modules in protein interaction networks. Bioinformatics 25(7):933–940CrossRef Georgii E, Dietmann S, Uno T, Pagel P, Tsuda K (2009) Enumeration of condition-dependent dense modules in protein interaction networks. Bioinformatics 25(7):933–940CrossRef
Zurück zum Zitat King AD, Pržulj N, Jurisica I (2004) Protein complex prediction via cost-based clustering. Bioinformatics 20(17):3013–3020CrossRef King AD, Pržulj N, Jurisica I (2004) Protein complex prediction via cost-based clustering. Bioinformatics 20(17):3013–3020CrossRef
Zurück zum Zitat Lubovac Z, Gamalielsson J, Olsson B (2006) Combining functional and topological properties to identify core modules in protein interaction networks. Proteins Struct Funct Bioinform 64:948–959CrossRef Lubovac Z, Gamalielsson J, Olsson B (2006) Combining functional and topological properties to identify core modules in protein interaction networks. Proteins Struct Funct Bioinform 64:948–959CrossRef
Zurück zum Zitat Mewes HW, Frishman D, Güldener U, Mannhaupt G, Mayer K, Mokrejs M, Weil B (2002) MIPS: a database for genomes and protein sequences. Nucleic Acids Res 30(1):31–34CrossRef Mewes HW, Frishman D, Güldener U, Mannhaupt G, Mayer K, Mokrejs M, Weil B (2002) MIPS: a database for genomes and protein sequences. Nucleic Acids Res 30(1):31–34CrossRef
Zurück zum Zitat Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69(2):026113CrossRef Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69(2):026113CrossRef
Zurück zum Zitat Oti M, Snel B, Huynen MA, Brunner HG (2006) Predicting disease genes using protein–protein interactions. J Med Genet 43(8):691–698CrossRef Oti M, Snel B, Huynen MA, Brunner HG (2006) Predicting disease genes using protein–protein interactions. J Med Genet 43(8):691–698CrossRef
Zurück zum Zitat Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043):814–818CrossRef Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043):814–818CrossRef
Zurück zum Zitat Pei, P, Zhang A (2005) A two-step approach for clustering proteins based on protein interaction profile. In: Proceedings/IEEE computational systems bioinformatics conference, CSB. IEEE computational systems bioinformatics conference, vol 2005, No. 1544467, NIH Public Access, p 201 Pei, P, Zhang A (2005) A two-step approach for clustering proteins based on protein interaction profile. In: Proceedings/IEEE computational systems bioinformatics conference, CSB. IEEE computational systems bioinformatics conference, vol 2005, No. 1544467, NIH Public Access, p 201
Zurück zum Zitat Pizzuti C, Rombo S (2012a) Experimental evaluation of topological-based fitness functions to detect complexes in PPI networks. In: Proceedings of the 14th annual conference on Genetic and evolutionary computation, ACM, pp 193–200 Pizzuti C, Rombo S (2012a) Experimental evaluation of topological-based fitness functions to detect complexes in PPI networks. In: Proceedings of the 14th annual conference on Genetic and evolutionary computation, ACM, pp 193–200
Zurück zum Zitat Pizzuti C, Rombo SE (2012b) A coclustering approach for mining large protein–protein interaction networks. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 9(3):717–730CrossRef Pizzuti C, Rombo SE (2012b) A coclustering approach for mining large protein–protein interaction networks. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 9(3):717–730CrossRef
Zurück zum Zitat Pizzuti C, Rombo SE (2007) PINCOC: a co-clustering based approach to analyze protein–protein interaction networks. In: Intelligent data engineering and automated learning-IDEAL 2007, Springer, Berlin, pp 821–830 Pizzuti C, Rombo SE (2007) PINCOC: a co-clustering based approach to analyze protein–protein interaction networks. In: Intelligent data engineering and automated learning-IDEAL 2007, Springer, Berlin, pp 821–830
Zurück zum Zitat Pizzuti C, Rombo SE (2008) Discovering meaningful protein–protein interaction modules by a co-clustering based approach. In: SEBD, pp 294–301 Pizzuti C, Rombo SE (2008) Discovering meaningful protein–protein interaction modules by a co-clustering based approach. In: SEBD, pp 294–301
Zurück zum Zitat Pizzuti C, Rombo SE (2014a) An evolutionary restricted neighborhood search clustering approach for PPI networks. Neurocomputing 145:53–61CrossRef Pizzuti C, Rombo SE (2014a) An evolutionary restricted neighborhood search clustering approach for PPI networks. Neurocomputing 145:53–61CrossRef
Zurück zum Zitat Pizzuti C, Rombo SE (2014b) Algorithms and tools for protein–protein interaction networks clustering, with a special focus on population-based stochastic methods. Bioinformatics 30(10):1343–1352CrossRef Pizzuti C, Rombo SE (2014b) Algorithms and tools for protein–protein interaction networks clustering, with a special focus on population-based stochastic methods. Bioinformatics 30(10):1343–1352CrossRef
Zurück zum Zitat Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004) Defining and identifying communities in networks. Proc Natl Acad Sci USA 101(9):2658–2663CrossRef Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004) Defining and identifying communities in networks. Proc Natl Acad Sci USA 101(9):2658–2663CrossRef
Zurück zum Zitat Ray S, Hossain A, Maulik U (2016) Disease associated protein complex detection: a multi-objective evolutionary approach. In: 2016 International conference on microelectronics, computing and communications (MicroCom), IEEE, pp 1–6 Ray S, Hossain A, Maulik U (2016) Disease associated protein complex detection: a multi-objective evolutionary approach. In: 2016 International conference on microelectronics, computing and communications (MicroCom), IEEE, pp 1–6
Zurück zum Zitat Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905CrossRef Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905CrossRef
Zurück zum Zitat Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. PNAS 100:12123–12128CrossRef Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. PNAS 100:12123–12128CrossRef
Zurück zum Zitat Srihari S, Leong HW (2013) A survey of computational methods for protein complex prediction from protein interaction networks. J Bioinform Comput Biol 11(02):1230002CrossRef Srihari S, Leong HW (2013) A survey of computational methods for protein complex prediction from protein interaction networks. J Bioinform Comput Biol 11(02):1230002CrossRef
Zurück zum Zitat von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P (2002) Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417(6887):399–403CrossRef von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P (2002) Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417(6887):399–403CrossRef
Zurück zum Zitat Wang H, Azuaje F, Bodenreider O, Dopazo J (2004) Gene expression correlation and gene ontology-based similarity: an assessment of quantitative relationships. In: Proceedings of the 2004 IEEE symposium on computational intelligence in bioinformatics and computational biology, 2004, CIBCB’04, IEEE, pp 25–31 Wang H, Azuaje F, Bodenreider O, Dopazo J (2004) Gene expression correlation and gene ontology-based similarity: an assessment of quantitative relationships. In: Proceedings of the 2004 IEEE symposium on computational intelligence in bioinformatics and computational biology, 2004, CIBCB’04, IEEE, pp 25–31
Zurück zum Zitat Zaki N, Berengueres J, Efimov D (2012) Detection of protein complexes using a protein ranking algorithm. Proteins Struct Funct Bioinform 80(10):2459–2468CrossRef Zaki N, Berengueres J, Efimov D (2012) Detection of protein complexes using a protein ranking algorithm. Proteins Struct Funct Bioinform 80(10):2459–2468CrossRef
Zurück zum Zitat Zhang N, Bilsland E (2011) Contributions of Saccharomyces cerevisiae to understanding mammalian gene function and therapy. Yeast Syst Biol Methods Protoc 501–523. doi:10.1007/978-1-61779-173-4_28 Zhang N, Bilsland E (2011) Contributions of Saccharomyces cerevisiae to understanding mammalian gene function and therapy. Yeast Syst Biol Methods Protoc 501–523. doi:10.​1007/​978-1-61779-173-4_​28
Zurück zum Zitat Zhang Q, Li H (2007) MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731CrossRef Zhang Q, Li H (2007) MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731CrossRef
Metadaten
Titel
Improving the performance of evolutionary-based complex detection models in protein–protein interaction networks
verfasst von
Bara’a A. Attea
Qusay Z. Abdullah
Publikationsdatum
12.04.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Soft Computing / Ausgabe 11/2018
Print ISSN: 1432-7643
Elektronische ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-017-2593-8

Weitere Artikel der Ausgabe 11/2018

Soft Computing 11/2018 Zur Ausgabe

Premium Partner