Skip to main content
Erschienen in: Archive of Applied Mechanics 10/2021

28.06.2021 | Original

Large deformation analysis of two-dimensional visco-hyperelastic beams and frames

verfasst von: Farzam Dadgar-Rad, Nasser Firouzi

Erschienen in: Archive of Applied Mechanics | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This contribution aims at developing a formulation for the large viscoelastic deformation of hyperelastic beams and frames under various loading and boundary conditions. To do so, the kinematics of deformation in two-dimensional space is formulated and basic kinematics and kinetic quantities are introduced. The quasi-linear viscoelasticity theory is employed to capture the time-dependent behavior of the underlying material. The corresponding time integration scheme and the consistent tangent moduli are then presented. Because of the highly nonlinear nature of governing equations at the large regime of deformations including time dependency, a nonlinear finite element formulation in the total Lagrangian framework is developed. Several numerical examples are provided to investigate the applicability of derived formulations. It is observed that the formulation can successfully capture the relaxation and creep phenomena in visco-hyperelastic beams and frames.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Stokes, A.A., Shepherd, R.F., Morin, S.A., Ilievski, F., Whitesides, G.M.: A hybrid combining hard and soft robots. Soft Robot 1, 70–74 (2014)CrossRef Stokes, A.A., Shepherd, R.F., Morin, S.A., Ilievski, F., Whitesides, G.M.: A hybrid combining hard and soft robots. Soft Robot 1, 70–74 (2014)CrossRef
2.
Zurück zum Zitat Hossain, M., Vu, D.K., Steinmann, P.: A comprehensive characterization of the electro-mechanically coupled properties of VHB \(4910\) polymer. Arch. Appl. Mech. 85, 523–537 (2015)CrossRef Hossain, M., Vu, D.K., Steinmann, P.: A comprehensive characterization of the electro-mechanically coupled properties of VHB \(4910\) polymer. Arch. Appl. Mech. 85, 523–537 (2015)CrossRef
3.
Zurück zum Zitat Lewandowski, R., Wielentejczyk, P.: Analysis of dynamic characteristics of viscoelastic frame structures. Arch. Appl. Mech. 90, 147–171 (2020)CrossRef Lewandowski, R., Wielentejczyk, P.: Analysis of dynamic characteristics of viscoelastic frame structures. Arch. Appl. Mech. 90, 147–171 (2020)CrossRef
4.
Zurück zum Zitat Green, A.E., Naghdi, P.M., Wenner, M.L.: On the theory of rods I, derivations from the three-dimensional equations. Proc. R. Soc. Lond. A 337, 451–483 (1974)MathSciNetMATHCrossRef Green, A.E., Naghdi, P.M., Wenner, M.L.: On the theory of rods I, derivations from the three-dimensional equations. Proc. R. Soc. Lond. A 337, 451–483 (1974)MathSciNetMATHCrossRef
5.
Zurück zum Zitat Green, A.E., Naghdi, P.M., Wenner, M.L.: On the theory of rods II, developments by direct approach. Proc. R. Soc. Lond. A 337, 485–507 (1974)MathSciNetMATHCrossRef Green, A.E., Naghdi, P.M., Wenner, M.L.: On the theory of rods II, developments by direct approach. Proc. R. Soc. Lond. A 337, 485–507 (1974)MathSciNetMATHCrossRef
6.
Zurück zum Zitat Reissner, E.: On one-dimensional finite-strain beam theory: the plane problem. J. Appl. Math. Phys. 23, 795–804 (1972)MATH Reissner, E.: On one-dimensional finite-strain beam theory: the plane problem. J. Appl. Math. Phys. 23, 795–804 (1972)MATH
7.
Zurück zum Zitat Bathe, K.J., Ramm, E., Wilson, E.L.: Finite element formulations for large deformation dynamic analysis. Int. J. Numer. Meth. Eng. 9, 353–386 (1975)MATHCrossRef Bathe, K.J., Ramm, E., Wilson, E.L.: Finite element formulations for large deformation dynamic analysis. Int. J. Numer. Meth. Eng. 9, 353–386 (1975)MATHCrossRef
8.
Zurück zum Zitat Noor, A.K., Peters, J.M.: Mixed models and reduced/selective integration displacement models for nonlinear analysis of curved beams. Int. J. Numer. Meth. Eng. 17, 615–631 (1981)MATHCrossRef Noor, A.K., Peters, J.M.: Mixed models and reduced/selective integration displacement models for nonlinear analysis of curved beams. Int. J. Numer. Meth. Eng. 17, 615–631 (1981)MATHCrossRef
9.
Zurück zum Zitat Simo, J.C.: A finite strain beam formulation, the three-dimensional dynamic problem, part I. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1985)MATHCrossRef Simo, J.C.: A finite strain beam formulation, the three-dimensional dynamic problem, part I. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1985)MATHCrossRef
10.
Zurück zum Zitat Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model, part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986)MATHCrossRef Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model, part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986)MATHCrossRef
11.
12.
Zurück zum Zitat Jelenić, G., Crisfield, M.A.: Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc. R. Soc. Lond. A 455, 1125–1147 (1999)MathSciNetMATHCrossRef Jelenić, G., Crisfield, M.A.: Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc. R. Soc. Lond. A 455, 1125–1147 (1999)MathSciNetMATHCrossRef
13.
Zurück zum Zitat Betsch, P., Steinmann, P.: Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int. J. Numer. Methods Eng. 54, 1775–1788 (2002)MathSciNetMATHCrossRef Betsch, P., Steinmann, P.: Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int. J. Numer. Methods Eng. 54, 1775–1788 (2002)MathSciNetMATHCrossRef
14.
Zurück zum Zitat Zupan, E., Saje, M., Zupan, D.: The quaternion-based three-dimensional beam theory. Comput. Methods Appl. Mech. Eng. 198, 3944–3956 (2009)MathSciNetMATHCrossRef Zupan, E., Saje, M., Zupan, D.: The quaternion-based three-dimensional beam theory. Comput. Methods Appl. Mech. Eng. 198, 3944–3956 (2009)MathSciNetMATHCrossRef
15.
Zurück zum Zitat Irschik, H., Gerstmayr, J.: A continuum-mechanics interpretation of Reissner’s non-linear shear-deformable beam theory. Math. Comp. Model Dyn. 17, 19–29 (2011)MathSciNetMATHCrossRef Irschik, H., Gerstmayr, J.: A continuum-mechanics interpretation of Reissner’s non-linear shear-deformable beam theory. Math. Comp. Model Dyn. 17, 19–29 (2011)MathSciNetMATHCrossRef
16.
Zurück zum Zitat Sokolov, I., Krylov, S., Harari, I.: Extension of non-linear beam models with deformable cross sections. Comput. Mech. 56, 999–1021 (2015)MathSciNetMATHCrossRef Sokolov, I., Krylov, S., Harari, I.: Extension of non-linear beam models with deformable cross sections. Comput. Mech. 56, 999–1021 (2015)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Ortigosa, R., Gil, A.J., Bonet, J., Hesch, C.: A computational framework for polyconvex large strain elasticity for geometrically exact beam theory. Comput. Mech. 57, 277–303 (2016)MathSciNetMATHCrossRef Ortigosa, R., Gil, A.J., Bonet, J., Hesch, C.: A computational framework for polyconvex large strain elasticity for geometrically exact beam theory. Comput. Mech. 57, 277–303 (2016)MathSciNetMATHCrossRef
18.
Zurück zum Zitat Marino, E.: Locking-free isogeometric collocation formulation for three-dimensional geometrically exact shear-deformable beams with arbitrary initial curvature. Comput. Methods Appl. Mech. Eng. 3241, 546–572 (2017)MathSciNetMATHCrossRef Marino, E.: Locking-free isogeometric collocation formulation for three-dimensional geometrically exact shear-deformable beams with arbitrary initial curvature. Comput. Methods Appl. Mech. Eng. 3241, 546–572 (2017)MathSciNetMATHCrossRef
19.
Zurück zum Zitat Tasora, A., Benatti, S., Mangoni, D., Garziera, R.: A geometrically exact isogeometric beam for large displacements and contacts. Comput. Methods Appl. Mech. Eng. 358, 112635 (2020)MathSciNetMATHCrossRef Tasora, A., Benatti, S., Mangoni, D., Garziera, R.: A geometrically exact isogeometric beam for large displacements and contacts. Comput. Methods Appl. Mech. Eng. 358, 112635 (2020)MathSciNetMATHCrossRef
20.
Zurück zum Zitat Dadgar-Rad, F., Sahraee, S.: Large deformation analysis of fully incompressible hyperelastic curved beams. Appl. Math. Model. 93, 89–100 (2021)MathSciNetCrossRef Dadgar-Rad, F., Sahraee, S.: Large deformation analysis of fully incompressible hyperelastic curved beams. Appl. Math. Model. 93, 89–100 (2021)MathSciNetCrossRef
21.
22.
Zurück zum Zitat Katsikadelis, J.T.: Generalized fractional derivatives and their applications to mechanical systems. Arch. Appl. Mech. 85, 1307–1320 (2015)MATHCrossRef Katsikadelis, J.T.: Generalized fractional derivatives and their applications to mechanical systems. Arch. Appl. Mech. 85, 1307–1320 (2015)MATHCrossRef
23.
Zurück zum Zitat Martin, O.: Nonlinear dynamic analysis of viscoelastic beams using a fractional rheological model. Appl. Math. Model. 43, 351–359 (2017)MathSciNetMATHCrossRef Martin, O.: Nonlinear dynamic analysis of viscoelastic beams using a fractional rheological model. Appl. Math. Model. 43, 351–359 (2017)MathSciNetMATHCrossRef
24.
Zurück zum Zitat Pipkin, A.C., Rogers, T.G.: A non-linear integral representation for viscoelastic behaviour. J. Mech. Phys. Solids 16, 59–72 (1968)MATHCrossRef Pipkin, A.C., Rogers, T.G.: A non-linear integral representation for viscoelastic behaviour. J. Mech. Phys. Solids 16, 59–72 (1968)MATHCrossRef
25.
26.
Zurück zum Zitat Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1981)CrossRef Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1981)CrossRef
27.
Zurück zum Zitat Simo, J.C.: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60, 153–173 (1987) MATHCrossRef Simo, J.C.: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60, 153–173 (1987) MATHCrossRef
28.
Zurück zum Zitat Lubliner, J.: A model of rubber viscoelasticity. Mech. Res. Commun. 12, 93–99 (1985)CrossRef Lubliner, J.: A model of rubber viscoelasticity. Mech. Res. Commun. 12, 93–99 (1985)CrossRef
29.
Zurück zum Zitat Le Tallec, P., Rahier, Ch., Kaiss, A.: Three-dimensional incompressible viscoelasticity in large strains formulation and numerical approximation. Comput. Methods Appl. Mech. Eng. 109, 233–258 (1993)MathSciNetMATHCrossRef Le Tallec, P., Rahier, Ch., Kaiss, A.: Three-dimensional incompressible viscoelasticity in large strains formulation and numerical approximation. Comput. Methods Appl. Mech. Eng. 109, 233–258 (1993)MathSciNetMATHCrossRef
30.
Zurück zum Zitat Reese, S., Govindjee, S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35, 3455–3482 (1998)MATHCrossRef Reese, S., Govindjee, S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35, 3455–3482 (1998)MATHCrossRef
31.
Zurück zum Zitat Bonet, J.: Large strain viscoelastic constitutive models. Int. J. Solids Struct. 38, 2953–2968 (2001)MATHCrossRef Bonet, J.: Large strain viscoelastic constitutive models. Int. J. Solids Struct. 38, 2953–2968 (2001)MATHCrossRef
32.
Zurück zum Zitat Koprowski-Theiss, N., Johlitz, M., Diebels, S.: Compressible rubber materials: experiments and simulations. Arch. Appl. Mech. 82, 1117–1132 (2012)CrossRef Koprowski-Theiss, N., Johlitz, M., Diebels, S.: Compressible rubber materials: experiments and simulations. Arch. Appl. Mech. 82, 1117–1132 (2012)CrossRef
33.
Zurück zum Zitat Huber, N., Tsakmakis, C.: Finite deformation viscoelasticity laws. Mech. Mater. 32, 1–18 (2000)MATHCrossRef Huber, N., Tsakmakis, C.: Finite deformation viscoelasticity laws. Mech. Mater. 32, 1–18 (2000)MATHCrossRef
34.
Zurück zum Zitat Holden, J.T.: On the finite deformation of thin viscoelastic beams. Int. J. Numer. Methods Eng. 5, 271–275 (1972)MATHCrossRef Holden, J.T.: On the finite deformation of thin viscoelastic beams. Int. J. Numer. Methods Eng. 5, 271–275 (1972)MATHCrossRef
35.
Zurück zum Zitat Yang, T.Y., Lianis, G.: Large displacement analysis of viscoelastic beams and frames by the finite element method. J. Appl. Mech. 41, 635–640 (1974)CrossRef Yang, T.Y., Lianis, G.: Large displacement analysis of viscoelastic beams and frames by the finite element method. J. Appl. Mech. 41, 635–640 (1974)CrossRef
36.
Zurück zum Zitat Baranenko, V.A.: Large displacements of viscoelastic beams. Int. J. Numer. Methods. Eng. 5, 271–275 (1980) Baranenko, V.A.: Large displacements of viscoelastic beams. Int. J. Numer. Methods. Eng. 5, 271–275 (1980)
37.
Zurück zum Zitat Chen, T.M.: The hybrid Laplace transform/finite element method applied to the quasi-static and dynamic analysis of viscoelastic timoshenko beams. Int. J. Numer. Methods. Eng. 38, 509–522 (1995)MATHCrossRef Chen, T.M.: The hybrid Laplace transform/finite element method applied to the quasi-static and dynamic analysis of viscoelastic timoshenko beams. Int. J. Numer. Methods. Eng. 38, 509–522 (1995)MATHCrossRef
38.
Zurück zum Zitat Lee, U., Oh, H.: Dynamics of an axially moving viscoelastic beam subject to axial tension. Int. J. Solids Struct. 42, 2381–2398 (2005)MATHCrossRef Lee, U., Oh, H.: Dynamics of an axially moving viscoelastic beam subject to axial tension. Int. J. Solids Struct. 42, 2381–2398 (2005)MATHCrossRef
39.
Zurück zum Zitat Lee, K.: Large deflection of viscoelastic fiber beams. Text. Res. J. 77, 47–51 (2007)CrossRef Lee, K.: Large deflection of viscoelastic fiber beams. Text. Res. J. 77, 47–51 (2007)CrossRef
40.
Zurück zum Zitat Vaz, M.A., Caire, M.: On the large deflections of linear viscoelastic beams. Int. J. Non-Linear Mech. 45, 75–81 (2010)CrossRef Vaz, M.A., Caire, M.: On the large deflections of linear viscoelastic beams. Int. J. Non-Linear Mech. 45, 75–81 (2010)CrossRef
41.
Zurück zum Zitat Muliana, A.: Large deformations of nonlinear viscoelastic and multi-responsive beams. Int. J. Non-Linear Mech. 71, 152–164 (2015)CrossRef Muliana, A.: Large deformations of nonlinear viscoelastic and multi-responsive beams. Int. J. Non-Linear Mech. 71, 152–164 (2015)CrossRef
42.
Zurück zum Zitat Drapaca, C., Tenti, G., Rohlf, K., Sivaloganathan, S.: A quasi-linear viscoelastic constitutive equation for the brain: application to hydrocephalus. J. Elast. 85, 65–83 (2006)MathSciNetMATHCrossRef Drapaca, C., Tenti, G., Rohlf, K., Sivaloganathan, S.: A quasi-linear viscoelastic constitutive equation for the brain: application to hydrocephalus. J. Elast. 85, 65–83 (2006)MathSciNetMATHCrossRef
43.
Zurück zum Zitat Nekouzadeh, A., Pryse, K.M., Elson, E.L., Genin, G.M.: A simplified approach to quasi-linear viscoelastic modeling. J. Biomech. 40, 3070–3078 (2007)CrossRef Nekouzadeh, A., Pryse, K.M., Elson, E.L., Genin, G.M.: A simplified approach to quasi-linear viscoelastic modeling. J. Biomech. 40, 3070–3078 (2007)CrossRef
44.
Zurück zum Zitat Muliana, A., Rajagopal, K.R., Wineman, A.S.: A new class of quasi-linear models for describing the nonlinear viscoelastic response of materials. Acta. Mech. 224, 2169–2183 (2013)MathSciNetMATHCrossRef Muliana, A., Rajagopal, K.R., Wineman, A.S.: A new class of quasi-linear models for describing the nonlinear viscoelastic response of materials. Acta. Mech. 224, 2169–2183 (2013)MathSciNetMATHCrossRef
45.
Zurück zum Zitat Dadgar-Rad, F., Firouzi, N.: Time-dependent response of incompressible membranes based on quasi-linear viscoelasticity theory. Int. J. Appl. Mech. 13, 2150036 (2021)CrossRef Dadgar-Rad, F., Firouzi, N.: Time-dependent response of incompressible membranes based on quasi-linear viscoelasticity theory. Int. J. Appl. Mech. 13, 2150036 (2021)CrossRef
46.
Zurück zum Zitat Puso, M.A., Weiss, J.A.: Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. J. Biomech. Eng. 120, 62–70 (1998)CrossRef Puso, M.A., Weiss, J.A.: Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. J. Biomech. Eng. 120, 62–70 (1998)CrossRef
47.
Zurück zum Zitat De Pascalis, R., Abrahams, I.D., Parnell, W.J.: On nonlinear viscoelastic deformations: a reappraisal of Fung’s quasi-linear viscoelastic model. Proc. R. Soc. A 470, 20140058 (2014)CrossRef De Pascalis, R., Abrahams, I.D., Parnell, W.J.: On nonlinear viscoelastic deformations: a reappraisal of Fung’s quasi-linear viscoelastic model. Proc. R. Soc. A 470, 20140058 (2014)CrossRef
48.
Zurück zum Zitat De Pascalis, R., Parnell, W.J., Abrahams, I.D., Shearer, T., Daly, D.M., Grundy, D.: The inflation of viscoelastic balloons and hollow viscera. Proc. R. Soc. A 474, 20180102 (2018)MathSciNetMATHCrossRef De Pascalis, R., Parnell, W.J., Abrahams, I.D., Shearer, T., Daly, D.M., Grundy, D.: The inflation of viscoelastic balloons and hollow viscera. Proc. R. Soc. A 474, 20180102 (2018)MathSciNetMATHCrossRef
49.
Zurück zum Zitat Zhi, Y., Muliana, A., Rajagopal, K.R.: Quasi-linear viscoelastic modeling of light-activated shape memory polymers. J. Intell. Mater. Syst. Struct. 1, 1–16 (2017)MATH Zhi, Y., Muliana, A., Rajagopal, K.R.: Quasi-linear viscoelastic modeling of light-activated shape memory polymers. J. Intell. Mater. Syst. Struct. 1, 1–16 (2017)MATH
50.
Zurück zum Zitat Sansour, C.: A theory and finite element formulation of shells at finite deformations involving thickness change: circumventing the use of a rotation tensor. Arch. Appl. Mech. 65, 194–216 (1995)MATH Sansour, C.: A theory and finite element formulation of shells at finite deformations involving thickness change: circumventing the use of a rotation tensor. Arch. Appl. Mech. 65, 194–216 (1995)MATH
51.
Zurück zum Zitat Sansour, C.: Large strain deformations of elastic shells, constitutive modelling and finite element analysis. Comput. Methods Appl. Mech. Eng. 161, 1–18 (1998)MathSciNetMATHCrossRef Sansour, C.: Large strain deformations of elastic shells, constitutive modelling and finite element analysis. Comput. Methods Appl. Mech. Eng. 161, 1–18 (1998)MathSciNetMATHCrossRef
52.
Zurück zum Zitat Sansour, C., Kollmann, F.G.: Families of 4-node and 9-node finite elements for a finite deformation shell theory, an assessment of hybrid stress, hybrid strain and enhanced strain elements. Comput. Mech. 24, 435–447 (2000)MATHCrossRef Sansour, C., Kollmann, F.G.: Families of 4-node and 9-node finite elements for a finite deformation shell theory, an assessment of hybrid stress, hybrid strain and enhanced strain elements. Comput. Mech. 24, 435–447 (2000)MATHCrossRef
53.
Zurück zum Zitat Dadgar-Rad, F.: A two dimensional electro-beam model for large deformation analysis of dielectric polymer actuators. Int. J. Solids Struct. 165, 104–114 (2019)CrossRef Dadgar-Rad, F.: A two dimensional electro-beam model for large deformation analysis of dielectric polymer actuators. Int. J. Solids Struct. 165, 104–114 (2019)CrossRef
54.
Zurück zum Zitat Holzapfel, G.A.: Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Wiley, New York (2000)MATH Holzapfel, G.A.: Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Wiley, New York (2000)MATH
55.
Zurück zum Zitat Ciarlet, P.G.: Mathematical Elasticity, Volume I: Three Dimensional Elasticity. Elsevier, Amsterdam (1988)MATH Ciarlet, P.G.: Mathematical Elasticity, Volume I: Three Dimensional Elasticity. Elsevier, Amsterdam (1988)MATH
56.
Zurück zum Zitat Simo, J.C., Hughes, T.: Computational Inelasticity. Springer, New York (1998)MATH Simo, J.C., Hughes, T.: Computational Inelasticity. Springer, New York (1998)MATH
57.
Zurück zum Zitat Crisfield, M.A.: Nonlinear Finite Element Analysis of Solids and Structures. Volume 1, Essentials, vol. 1. Wiley, Chichester (1991)MATH Crisfield, M.A.: Nonlinear Finite Element Analysis of Solids and Structures. Volume 1, Essentials, vol. 1. Wiley, Chichester (1991)MATH
58.
Zurück zum Zitat Warriner, W.C.: Designing with Delrin. Mech. Eng. 81, 60–64 (1959) Warriner, W.C.: Designing with Delrin. Mech. Eng. 81, 60–64 (1959)
59.
Zurück zum Zitat Williams, F.W.: An approach to the nonlinear behaviour of the members of a rigid jointed plane framework with finite deflections. Q. J. Mech. Appl. Maths. 17, 451–469 (1964)MATHCrossRef Williams, F.W.: An approach to the nonlinear behaviour of the members of a rigid jointed plane framework with finite deflections. Q. J. Mech. Appl. Maths. 17, 451–469 (1964)MATHCrossRef
60.
Zurück zum Zitat Wood, R.D., Zienkiewicz, O.C.: Geometrically nonlinear finite element analysis of beams, frames, arches and axisymmetric shells. Comput. Struct. 7, 725–735 (1977)MathSciNetMATHCrossRef Wood, R.D., Zienkiewicz, O.C.: Geometrically nonlinear finite element analysis of beams, frames, arches and axisymmetric shells. Comput. Struct. 7, 725–735 (1977)MathSciNetMATHCrossRef
61.
Zurück zum Zitat Jetteur, P.H., Cescotto, S., de Goyet, V.D., Frey, F.: Improved nonlinear finite elements for oriented bodies using an extension of Marguerre’s theory. Comput. Struct. 17, 129–137 (1983)MATHCrossRef Jetteur, P.H., Cescotto, S., de Goyet, V.D., Frey, F.: Improved nonlinear finite elements for oriented bodies using an extension of Marguerre’s theory. Comput. Struct. 17, 129–137 (1983)MATHCrossRef
62.
Zurück zum Zitat Akoussah, E., Beaulieu, D., Dhatt, G.: Curved beam element via penalty/mixed formulation for nonlinear in-plane analysis. Commun. Appl. Numer. Methods. 2, 617–623 (1986)MATHCrossRef Akoussah, E., Beaulieu, D., Dhatt, G.: Curved beam element via penalty/mixed formulation for nonlinear in-plane analysis. Commun. Appl. Numer. Methods. 2, 617–623 (1986)MATHCrossRef
63.
Zurück zum Zitat Sze, K.Y., Liu, X.H., Lo, S.H.: Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem. Anal. Des. 40, 1551–1569 (2004)CrossRef Sze, K.Y., Liu, X.H., Lo, S.H.: Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem. Anal. Des. 40, 1551–1569 (2004)CrossRef
Metadaten
Titel
Large deformation analysis of two-dimensional visco-hyperelastic beams and frames
verfasst von
Farzam Dadgar-Rad
Nasser Firouzi
Publikationsdatum
28.06.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 10/2021
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-021-02008-x

Weitere Artikel der Ausgabe 10/2021

Archive of Applied Mechanics 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.