Skip to main content
Erschienen in: Meccanica 1-2/2019

02.01.2019

Lattice Boltzmann simulation of nanofluid conjugate heat transfer in a wide microchannel: effect of temperature jump, axial conduction and viscous dissipation

verfasst von: Ali Alipour Lalami, Mohammad Kalteh

Erschienen in: Meccanica | Ausgabe 1-2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study, conjugate heat transfer of nanofluid in a wide microchannel with thick wall, by considering the velocity slip and temperature jump on the fluid–solid interface and also the effect of viscous dissipation is investigated. For numerical solution of velocity field, preconditioned lattice Boltzmann method (PLBM) based on standard LBM, and for temperature field, standard LBM are used. Upper wall of the microchannel is insulated and uniform heat flux is imposed on the lower wall of the solid region. For applying the temperature jump boundary condition on the fluid–solid interface, a new algorithm reported here, is used. The problem is solved for dimensionless slip coefficient 0–0.1, volume fraction 0, 0.02 and 0.04, nanoparticles diameters (10–50) nm, and also Reynolds numbers 10–150. The results of the presented algorithm for conjugate heat transfer with temperature jump at the fluid–solid interface, show good agreement with analytical and other numerical solutions. Also, it is shown that in conjugate heat transfer of nanofluid, using super hydrophobic surfaces not only has no considerable negative effect on the average Nusselt number, but also it can increase it, especially in higher Reynolds numbers. As well as, in conjugate heat transfer, unlike the conditions of ignoring the wall thickness (at constant heat flux boundary condition), temperature jump on the wall is not constant and depends on the Reynolds number. On the other hands, using super hydrophobic surfaces (considering velocity slip and temperature jump on the wall), decreases the effect of viscous dissipation, specially at higher volume fraction of nanoparticles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akbarinia A, Abdolzadeh M, Laur R (2011) Critical investigation of heat transfer enhancement using nanofluids in microchannels with slip and non-slip flow regimes. Appl Therm Eng 31:556–565CrossRef Akbarinia A, Abdolzadeh M, Laur R (2011) Critical investigation of heat transfer enhancement using nanofluids in microchannels with slip and non-slip flow regimes. Appl Therm Eng 31:556–565CrossRef
2.
Zurück zum Zitat Wang J, Wang M, Li Z (2007) A lattice Boltzmann algorithm for fluid–solid conjugate heat transfer. Int J Therm Sci 46:228–234CrossRef Wang J, Wang M, Li Z (2007) A lattice Boltzmann algorithm for fluid–solid conjugate heat transfer. Int J Therm Sci 46:228–234CrossRef
3.
Zurück zum Zitat Tuckerman DB, Pease RFW (1981) High performance heat sink for VLSI. Electron Devices Lett 2(5):126–129ADSCrossRef Tuckerman DB, Pease RFW (1981) High performance heat sink for VLSI. Electron Devices Lett 2(5):126–129ADSCrossRef
4.
Zurück zum Zitat Muthtamilselvan M, Kandaswamy P, Lee J (2010) Heat transfer enhancement of copper-water nanofluids in a lid-driven enclosure. Commun Nonlinear Sci Numer Simul 15:1501–1510ADSMathSciNetCrossRefMATH Muthtamilselvan M, Kandaswamy P, Lee J (2010) Heat transfer enhancement of copper-water nanofluids in a lid-driven enclosure. Commun Nonlinear Sci Numer Simul 15:1501–1510ADSMathSciNetCrossRefMATH
5.
Zurück zum Zitat Frank M, Drikakis D (2015) Thermal conductivity of nanofluid in nanochannels. Microfluid Nanofluid 19(5):1011–1017CrossRef Frank M, Drikakis D (2015) Thermal conductivity of nanofluid in nanochannels. Microfluid Nanofluid 19(5):1011–1017CrossRef
6.
Zurück zum Zitat Kalteh M, Abbassi A, Saffar-Avval M, Harting J (2011) Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel. Int J Heat Fluid Flow 32:107–116CrossRef Kalteh M, Abbassi A, Saffar-Avval M, Harting J (2011) Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel. Int J Heat Fluid Flow 32:107–116CrossRef
7.
Zurück zum Zitat Kalteh M (2013) Investigating the effect of various nanoparticle and base liquid types on the nanofluids heat and fluid flow in a microchannel. Appl Math Model 37(18-19):8600–8609MathSciNetCrossRefMATH Kalteh M (2013) Investigating the effect of various nanoparticle and base liquid types on the nanofluids heat and fluid flow in a microchannel. Appl Math Model 37(18-19):8600–8609MathSciNetCrossRefMATH
8.
Zurück zum Zitat Kalteh M, Javaherdeh K, Azarbarzin T (2014) Numerical solution of nanofluid mixed convection heat transfer in a lid-driven square cavity with triangular heat source. Powder Technol 253:780–788CrossRef Kalteh M, Javaherdeh K, Azarbarzin T (2014) Numerical solution of nanofluid mixed convection heat transfer in a lid-driven square cavity with triangular heat source. Powder Technol 253:780–788CrossRef
9.
Zurück zum Zitat Fani B, Kalteh M, Abbassi A (2015) Investigating the effect of Brownian motion and viscous dissipation on the nanofluid heat transfer in a trapezoidal microchannel heat sink. Adv Powder Technol 26:83–90CrossRef Fani B, Kalteh M, Abbassi A (2015) Investigating the effect of Brownian motion and viscous dissipation on the nanofluid heat transfer in a trapezoidal microchannel heat sink. Adv Powder Technol 26:83–90CrossRef
10.
Zurück zum Zitat Shahriari A, Jahanshahi Javaran E, Rahnama M (2018) Effect of nanoparticles Brownian motion and uniform sinusoidal roughness elements on natural convection in an enclosure. J Therm Anal Calorim 131(3):2865–2884CrossRef Shahriari A, Jahanshahi Javaran E, Rahnama M (2018) Effect of nanoparticles Brownian motion and uniform sinusoidal roughness elements on natural convection in an enclosure. J Therm Anal Calorim 131(3):2865–2884CrossRef
11.
Zurück zum Zitat Khandekar S, Moharana MK (2015) Axial back conduction through channel walls during internal convective microchannel flows. In: Joshi Y, Khandekar S (eds) Nanoscale and microscale phenomena part of the series Springer tracts in mechanical engineering. Springer, New Delhi, pp 335–369CrossRef Khandekar S, Moharana MK (2015) Axial back conduction through channel walls during internal convective microchannel flows. In: Joshi Y, Khandekar S (eds) Nanoscale and microscale phenomena part of the series Springer tracts in mechanical engineering. Springer, New Delhi, pp 335–369CrossRef
12.
Zurück zum Zitat Knupp DC, Naveira-Cotta CP, Cotta RM (2012) Theoretical analysis of conjugated heat transfer with a single domain formulation and integral transforms. Int Commun Heat Mass Transf 39:355–362CrossRef Knupp DC, Naveira-Cotta CP, Cotta RM (2012) Theoretical analysis of conjugated heat transfer with a single domain formulation and integral transforms. Int Commun Heat Mass Transf 39:355–362CrossRef
13.
Zurück zum Zitat Cole KD, Çetin B (2011) Th effect of axial conduction on heat transfer in a liquid microchannel flow. Int J Heat Mass Transf 54:2542–2549CrossRefMATH Cole KD, Çetin B (2011) Th effect of axial conduction on heat transfer in a liquid microchannel flow. Int J Heat Mass Transf 54:2542–2549CrossRefMATH
14.
Zurück zum Zitat Sharp Kendra V, Adrian Ronald J, Santiago Juan G, Molho Joshua I (2006) MEMS: introduction and fundamentals. Liquid flow in microchannel, chapter 10, 2nd edn. CRC Press, Boca Raton Sharp Kendra V, Adrian Ronald J, Santiago Juan G, Molho Joshua I (2006) MEMS: introduction and fundamentals. Liquid flow in microchannel, chapter 10, 2nd edn. CRC Press, Boca Raton
15.
Zurück zum Zitat Gentili D, Chinappi M, Bolognesi G, Giacomello A, Casciola CM (2013) Water slippage on hydrophobic nanostructured surfaces: molecular dynamics results for different filling levels. Meccanica 48(8):1853–1861CrossRefMATH Gentili D, Chinappi M, Bolognesi G, Giacomello A, Casciola CM (2013) Water slippage on hydrophobic nanostructured surfaces: molecular dynamics results for different filling levels. Meccanica 48(8):1853–1861CrossRefMATH
16.
Zurück zum Zitat Tretheway DC, Meinhart CD (2002) Apparent fluid slip at hydrophobic microchannel walls. Phys Fluids 14(3):L9–L12ADSCrossRef Tretheway DC, Meinhart CD (2002) Apparent fluid slip at hydrophobic microchannel walls. Phys Fluids 14(3):L9–L12ADSCrossRef
17.
Zurück zum Zitat Guo Z, Zhao TS, Shi Y (2004) Preconditioned lattice-Boltzmann method for steady flows. Phys Rev E 70:066706ADSCrossRef Guo Z, Zhao TS, Shi Y (2004) Preconditioned lattice-Boltzmann method for steady flows. Phys Rev E 70:066706ADSCrossRef
18.
Zurück zum Zitat Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G, Viggen EM (2017) The lattice Boltzmann method, vol 10. Springer, Berlin, p 978-3CrossRefMATH Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G, Viggen EM (2017) The lattice Boltzmann method, vol 10. Springer, Berlin, p 978-3CrossRefMATH
19.
Zurück zum Zitat Gokaltun S, Dulikravich GS (2010) Lattice Boltzmann computations of incompressible laminar flow and heat transfer in a constricted channel. Comput Math Appl 59:2431–2441MathSciNetCrossRefMATH Gokaltun S, Dulikravich GS (2010) Lattice Boltzmann computations of incompressible laminar flow and heat transfer in a constricted channel. Comput Math Appl 59:2431–2441MathSciNetCrossRefMATH
20.
Zurück zum Zitat Kalteh M, Hasani H (2014) Lattice Boltzmann simulation of nanofluid free convection heat transfer in an L-shaped enclosure. Superlattices Microstruct 66:112–128ADSCrossRef Kalteh M, Hasani H (2014) Lattice Boltzmann simulation of nanofluid free convection heat transfer in an L-shaped enclosure. Superlattices Microstruct 66:112–128ADSCrossRef
21.
Zurück zum Zitat Chen ChL, Chang ShCh, Chen ChK, Chang ChK (2015) Lattice Boltzmann simulation for mixed convection of nanofluids in a square enclosure. Appl Math Model 39(8):2436–2451MathSciNetCrossRef Chen ChL, Chang ShCh, Chen ChK, Chang ChK (2015) Lattice Boltzmann simulation for mixed convection of nanofluids in a square enclosure. Appl Math Model 39(8):2436–2451MathSciNetCrossRef
22.
Zurück zum Zitat Jourabian M, Farhadi M, Sedighi K, Rabienataj Darzi AA, Vazifeshenas Y (2012) Simulation of natural convection melting in a cavity with fin using lattice Boltzmann method. Int J Numer Method Fluid 70:313–325MathSciNetCrossRefMATH Jourabian M, Farhadi M, Sedighi K, Rabienataj Darzi AA, Vazifeshenas Y (2012) Simulation of natural convection melting in a cavity with fin using lattice Boltzmann method. Int J Numer Method Fluid 70:313–325MathSciNetCrossRefMATH
23.
Zurück zum Zitat D’Orazio A, Karimipour A, Hossein Nezhad A, Shirani E (2014) Lattice Boltzmann method with heat flux boundary condition applied to mixed convection in inclined lid driven cavity. Meccanica 50(4):945–962MathSciNetCrossRef D’Orazio A, Karimipour A, Hossein Nezhad A, Shirani E (2014) Lattice Boltzmann method with heat flux boundary condition applied to mixed convection in inclined lid driven cavity. Meccanica 50(4):945–962MathSciNetCrossRef
24.
25.
Zurück zum Zitat Meghdadi Isfahani AH, Afrand M (2017) Experiment and lattice Boltzmann numerical study on nanofluids flow in a micromodel as porous medium. Phys E 94:15–21CrossRef Meghdadi Isfahani AH, Afrand M (2017) Experiment and lattice Boltzmann numerical study on nanofluids flow in a micromodel as porous medium. Phys E 94:15–21CrossRef
26.
Zurück zum Zitat Zhang J (2011) Lattice Boltzmann method for microfluidics: models and applications. Microfluid Nanofluid 10(1):1–28MathSciNetCrossRef Zhang J (2011) Lattice Boltzmann method for microfluidics: models and applications. Microfluid Nanofluid 10(1):1–28MathSciNetCrossRef
27.
Zurück zum Zitat Yuan Y, Rahman Sh (2016) Extended application of lattice Boltzmann method to rarefied gas flow in micro-channels. Phys A 463:25–36MathSciNetCrossRefMATH Yuan Y, Rahman Sh (2016) Extended application of lattice Boltzmann method to rarefied gas flow in micro-channels. Phys A 463:25–36MathSciNetCrossRefMATH
28.
Zurück zum Zitat Karimipour A (2017) Provide a suitable range to include the thermal creeping effect on slip velocity and temperature jump of an air flow in a nanochannel by lattice Boltzmann method. Phys E 85:141–151CrossRef Karimipour A (2017) Provide a suitable range to include the thermal creeping effect on slip velocity and temperature jump of an air flow in a nanochannel by lattice Boltzmann method. Phys E 85:141–151CrossRef
29.
Zurück zum Zitat Meng F, Wang M, Li Z (2008) Lattice Boltzmann simulations of conjugate heat transfer in high-frequency oscillating flows. Int J Heat Fluid Flow 29:1203–1210CrossRef Meng F, Wang M, Li Z (2008) Lattice Boltzmann simulations of conjugate heat transfer in high-frequency oscillating flows. Int J Heat Fluid Flow 29:1203–1210CrossRef
30.
Zurück zum Zitat Seddiq M, Maerefat M, Mirzaei M (2014) Modeling of heat transfer at the fluid-solid interface by lattice Boltzmann method. Int J Therm Sci 75:28–35CrossRef Seddiq M, Maerefat M, Mirzaei M (2014) Modeling of heat transfer at the fluid-solid interface by lattice Boltzmann method. Int J Therm Sci 75:28–35CrossRef
31.
Zurück zum Zitat Hu Y, Li D, Shu Sh, Niu X (2015) Simulation of steady fluid–solid conjugate heat transfer problems via immersed boundary-lattice Boltzmann method. Comput Math Appl 70:2227–2237MathSciNetCrossRef Hu Y, Li D, Shu Sh, Niu X (2015) Simulation of steady fluid–solid conjugate heat transfer problems via immersed boundary-lattice Boltzmann method. Comput Math Appl 70:2227–2237MathSciNetCrossRef
32.
Zurück zum Zitat Le G, Oulaid O, Zhang J (2015) Counter-extrapolation method for conjugate interfaces in computational heat and mass transfer. Phys Rev E 91:033306–033315ADSCrossRef Le G, Oulaid O, Zhang J (2015) Counter-extrapolation method for conjugate interfaces in computational heat and mass transfer. Phys Rev E 91:033306–033315ADSCrossRef
33.
Zurück zum Zitat Mozafari Shamsi M, Sefid M, Imani Gh (2016) New formulation for the simulation of the conjugate heat transfer at the curved interfaces based on the ghost fluid lattice Boltzmann method. Numer Heat Transf Part B 70(6):559–576ADSCrossRefMATH Mozafari Shamsi M, Sefid M, Imani Gh (2016) New formulation for the simulation of the conjugate heat transfer at the curved interfaces based on the ghost fluid lattice Boltzmann method. Numer Heat Transf Part B 70(6):559–576ADSCrossRefMATH
34.
Zurück zum Zitat Lu JH, Lei HY, Dai CS (2017) A simple difference method for lattice Boltzmann algorithm to simulate conjugate heat transfer. Int J Heat Mass Transf 114:268–276CrossRef Lu JH, Lei HY, Dai CS (2017) A simple difference method for lattice Boltzmann algorithm to simulate conjugate heat transfer. Int J Heat Mass Transf 114:268–276CrossRef
35.
Zurück zum Zitat Guo K, Li L, Xiao G, AuYeung N, Mei R (2016) Lattice Boltzmann method for conjugate heat and mass transfer with interfacial jump conditions. Int J Heat Mass Transf 88:306–322CrossRef Guo K, Li L, Xiao G, AuYeung N, Mei R (2016) Lattice Boltzmann method for conjugate heat and mass transfer with interfacial jump conditions. Int J Heat Mass Transf 88:306–322CrossRef
36.
Zurück zum Zitat Hu Z, Huang J, Yong WA (2016) Lattice Boltzmann method for convection–diffusion equations with general interfacial conditions. Phys Rev E 93:043320-16ADSMathSciNet Hu Z, Huang J, Yong WA (2016) Lattice Boltzmann method for convection–diffusion equations with general interfacial conditions. Phys Rev E 93:043320-16ADSMathSciNet
37.
Zurück zum Zitat Ramiar A, Ranjbar AA, Hosseinizadeh SF (2011) Effect of axial conduction and variable properties on two dimensional conjugate heat transfer of Al2O3-EG/water mixture nanofluid in microchannel. J Appl Fluid Mech 5(3):79–87 Ramiar A, Ranjbar AA, Hosseinizadeh SF (2011) Effect of axial conduction and variable properties on two dimensional conjugate heat transfer of Al2O3-EG/water mixture nanofluid in microchannel. J Appl Fluid Mech 5(3):79–87
38.
Zurück zum Zitat Ramiar A, Ranjbar AA (2011) Effects of viscous dissipation and variable properties on nanofuids flow in two dimensional microchannel. Int J Eng Trans A 24(2):131–142 Ramiar A, Ranjbar AA (2011) Effects of viscous dissipation and variable properties on nanofuids flow in two dimensional microchannel. Int J Eng Trans A 24(2):131–142
39.
Zurück zum Zitat Yang YT, Lai FH (2011) Lattice Boltzmann simulation of heat transfer and fluid flow in a microchannel with nanofluids. Heat Mass Transf 47:1229–1240ADSCrossRef Yang YT, Lai FH (2011) Lattice Boltzmann simulation of heat transfer and fluid flow in a microchannel with nanofluids. Heat Mass Transf 47:1229–1240ADSCrossRef
40.
Zurück zum Zitat Tarokh A, Mohamad AA, Jiang L (2013) Simulation of conjugate heat transfer using the lattice Boltzmann method. Numer Heat Transf Part A 63:159–178ADSCrossRef Tarokh A, Mohamad AA, Jiang L (2013) Simulation of conjugate heat transfer using the lattice Boltzmann method. Numer Heat Transf Part A 63:159–178ADSCrossRef
41.
Zurück zum Zitat Kabar Y, Bessaïh R, Rebay M (2013) Conjugate heat transfer with rarefaction in parallel plates microchannel. Superlattices Microstruct 60:370–388ADSCrossRef Kabar Y, Bessaïh R, Rebay M (2013) Conjugate heat transfer with rarefaction in parallel plates microchannel. Superlattices Microstruct 60:370–388ADSCrossRef
42.
Zurück zum Zitat Shetab Bushehri MR, Ramin H, Salimpour MR (2014) A new coupling method for slip-flow and conjugate heat transfer in a parallel plate micro heat sink. Int J Therm Sci 89:174–184CrossRef Shetab Bushehri MR, Ramin H, Salimpour MR (2014) A new coupling method for slip-flow and conjugate heat transfer in a parallel plate micro heat sink. Int J Therm Sci 89:174–184CrossRef
43.
Zurück zum Zitat Izadi M, Shahmardan MM, Norouzi M, Rashidi AM, Behzadmehr A (2014) Cooling performance of a nanofluid flow in a heat sink microchannel with axial conduction effect. Appl Phys A 117(4):1821–1833ADSCrossRef Izadi M, Shahmardan MM, Norouzi M, Rashidi AM, Behzadmehr A (2014) Cooling performance of a nanofluid flow in a heat sink microchannel with axial conduction effect. Appl Phys A 117(4):1821–1833ADSCrossRef
44.
Zurück zum Zitat Karimipour A, Hossein Nezhad A, D’Orazio A, Hemmat Esfe M, Safaei MR, Shirani E (2015) Simulation of copper-water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method. Eur J Mech B/Fluids 49:89–99CrossRefMATH Karimipour A, Hossein Nezhad A, D’Orazio A, Hemmat Esfe M, Safaei MR, Shirani E (2015) Simulation of copper-water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method. Eur J Mech B/Fluids 49:89–99CrossRefMATH
45.
Zurück zum Zitat Saberi AH, Kalteh M (2016) Numerical investigation of nanofluid flow and conjugated heat transfer in a micro-heat-exchanger using the lattice Boltzmann method. Numer Heat Transf Part A Appl 70(12):1390–1401ADSCrossRef Saberi AH, Kalteh M (2016) Numerical investigation of nanofluid flow and conjugated heat transfer in a micro-heat-exchanger using the lattice Boltzmann method. Numer Heat Transf Part A Appl 70(12):1390–1401ADSCrossRef
46.
Zurück zum Zitat Arabpour A, Karimipour A, Toghraie D, Ali Akbari O (2017) Investigation into the effects of slip boundary conditionon nanofluid flow in a double-layer microchannel. J Therm Anal Calorim 131(3):2975–2991CrossRef Arabpour A, Karimipour A, Toghraie D, Ali Akbari O (2017) Investigation into the effects of slip boundary conditionon nanofluid flow in a double-layer microchannel. J Therm Anal Calorim 131(3):2975–2991CrossRef
47.
Zurück zum Zitat Ghadirzadeh S, Kalteh M (2017) Lattice Boltzmann simulation of temperature jump effect on the nanofluid heat transfer in an annulus microchannel. Int J Mech Sci 133:524–534CrossRef Ghadirzadeh S, Kalteh M (2017) Lattice Boltzmann simulation of temperature jump effect on the nanofluid heat transfer in an annulus microchannel. Int J Mech Sci 133:524–534CrossRef
48.
Zurück zum Zitat Corcione M (2010) Heat transfer features of buoyancy- driven nanofluids inside rectangular enclosures differentially heated at the side walls. Int J Therm Sci 49:1536–1546CrossRef Corcione M (2010) Heat transfer features of buoyancy- driven nanofluids inside rectangular enclosures differentially heated at the side walls. Int J Therm Sci 49:1536–1546CrossRef
49.
Zurück zum Zitat Chon CH, Kihm KD, Lee SP, Choi SUS (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett 87(15):153107–153110ADSCrossRef Chon CH, Kihm KD, Lee SP, Choi SUS (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett 87(15):153107–153110ADSCrossRef
50.
Zurück zum Zitat Deng B, Shi BC, Wang GC (2004) A new lattice Bhatnagar–Gross–Krook model for the convection–diffusion equation with a source term. Chin Phys Lett 22(2):267–270ADS Deng B, Shi BC, Wang GC (2004) A new lattice Bhatnagar–Gross–Krook model for the convection–diffusion equation with a source term. Chin Phys Lett 22(2):267–270ADS
51.
Zurück zum Zitat Zarita R, Hachemi M (2014) Microchannel fluid flow and heat transfer by lattice Boltzmann method. In: 4th micro and nano flows conference UCL, London, UK Zarita R, Hachemi M (2014) Microchannel fluid flow and heat transfer by lattice Boltzmann method. In: 4th micro and nano flows conference UCL, London, UK
52.
Zurück zum Zitat Alipour Lalami A (2017) Numerical investigation of nanofluid conjugate heat transfer in a microchannel. Dissertation, University of Guilan, Rasht, Iran (in Persian) Alipour Lalami A (2017) Numerical investigation of nanofluid conjugate heat transfer in a microchannel. Dissertation, University of Guilan, Rasht, Iran (in Persian)
53.
Zurück zum Zitat Afshar H, Shams M, Nainian SMM, Ahmadi G (2009) Microchannel heat transfer and dispersion of nanoparticles in slip flow regime with constant heat flux. Int Commun Heat Mass Transf 36:1060–1066CrossRef Afshar H, Shams M, Nainian SMM, Ahmadi G (2009) Microchannel heat transfer and dispersion of nanoparticles in slip flow regime with constant heat flux. Int Commun Heat Mass Transf 36:1060–1066CrossRef
54.
Zurück zum Zitat Shigechi T, Momoki S, Ganbat D (1999) Effect of viscous dissipation on fully developed heat transfer of plane Couette–Poiseuille laminar flow. Reports of the Faculty of Engineering, Nagasaki University, vol 29, no. 53, pp 153–156 Shigechi T, Momoki S, Ganbat D (1999) Effect of viscous dissipation on fully developed heat transfer of plane Couette–Poiseuille laminar flow. Reports of the Faculty of Engineering, Nagasaki University, vol 29, no. 53, pp 153–156
55.
Zurück zum Zitat Bejan A (2004) Convection heat transfer, 3rd edn. Wiley, New YorkMATH Bejan A (2004) Convection heat transfer, 3rd edn. Wiley, New YorkMATH
56.
Zurück zum Zitat Auerkari P (1996) Mechanical and physical properties of engineering alumina ceramics. Technical Research Centre of Finland, Espoo Auerkari P (1996) Mechanical and physical properties of engineering alumina ceramics. Technical Research Centre of Finland, Espoo
Metadaten
Titel
Lattice Boltzmann simulation of nanofluid conjugate heat transfer in a wide microchannel: effect of temperature jump, axial conduction and viscous dissipation
verfasst von
Ali Alipour Lalami
Mohammad Kalteh
Publikationsdatum
02.01.2019
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 1-2/2019
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-018-00937-6

Weitere Artikel der Ausgabe 1-2/2019

Meccanica 1-2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.