Skip to main content
Erschienen in:
Buchtitelbild

2017 | OriginalPaper | Buchkapitel

1. Introduction and Literature Review

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The piezoresistance is defined as the change in electrical resistance of a material under external mechanical strain or stress, which was discovered by Smith in 1954 (Barlian et al., Proc IEEE, 97(3):513–552, 2009, [1]). Since then, a great number of research works have been relentlessly carried out to elucidate the phenomenon in numerous materials. Besides fundamental investigation, applications of the piezoresistive effect in semiconductors can be found in numerous Micro Electro Mechanical Systems (MEMS) sensors, thanks to its superior properties, including device miniaturization, simple readout circuit, and low power consumption (Eaton and Smith, Smart Mater Struct, 6:530–539, 1997, [2]; Kumar and Pant, Microsyst Technol, 20(7):1213–1247, 2014, [3]), compared to other sensing technologies (e.g. electrostatic, piezoelectric and optical).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A.A. Barlian, W.T. Park, J.R. Mallon Jr., A.J. Rastegar, B.L. Pruitt, Review: semiconductor piezoresistance for microsystems. Proc. IEEE 97(3), 513–552 (2009)CrossRef A.A. Barlian, W.T. Park, J.R. Mallon Jr., A.J. Rastegar, B.L. Pruitt, Review: semiconductor piezoresistance for microsystems. Proc. IEEE 97(3), 513–552 (2009)CrossRef
2.
Zurück zum Zitat W.P. Eaton, J.H. Smith, Micromachined pressure sensors: review and recent developments. Smart Mater. Struct. 6, 530–539 (1997)CrossRef W.P. Eaton, J.H. Smith, Micromachined pressure sensors: review and recent developments. Smart Mater. Struct. 6, 530–539 (1997)CrossRef
3.
Zurück zum Zitat S.S. Kumar, B.D. Pant, Design principles and considerations for the ‘ideal’ silicon piezoresistive pressure sensor: a focused review. Microsyst. Technol. 20(7), 1213–1247 (2014)CrossRef S.S. Kumar, B.D. Pant, Design principles and considerations for the ‘ideal’ silicon piezoresistive pressure sensor: a focused review. Microsyst. Technol. 20(7), 1213–1247 (2014)CrossRef
4.
Zurück zum Zitat M. Elwenspoek, H.V. Jansen, Silicon Micromachining (Cambridge University Press, London, 2004) M. Elwenspoek, H.V. Jansen, Silicon Micromachining (Cambridge University Press, London, 2004)
5.
Zurück zum Zitat D.V. Dao, K. Nakamura, T.T. Bui, S. Sugiyama, Micro/nano-mechanical sensors and actuators based on SOI-MEMS technology. Adv. Nat. Sci: Nanosci. Nanotechnol. 1(1), 013001 (2010) D.V. Dao, K. Nakamura, T.T. Bui, S. Sugiyama, Micro/nano-mechanical sensors and actuators based on SOI-MEMS technology. Adv. Nat. Sci: Nanosci. Nanotechnol. 1(1), 013001 (2010)
6.
Zurück zum Zitat S.M. Spearing, Materials issues in microelectromechanical systems (MEMS). Acta Materialia 48(1), 179–196 (2000)CrossRef S.M. Spearing, Materials issues in microelectromechanical systems (MEMS). Acta Materialia 48(1), 179–196 (2000)CrossRef
7.
Zurück zum Zitat D.V. Dao, T. Toriyama, J. Wells, S. Sugiyama, Six-degree of freedom micro force-moment sensor for application in geophysics, in 2002 IEEE 15th International Conference on Micro Electro Mechanical Systems (MEMS) (Las Vegas, USA, 2002), pp. 312–315 D.V. Dao, T. Toriyama, J. Wells, S. Sugiyama, Six-degree of freedom micro force-moment sensor for application in geophysics, in 2002 IEEE 15th International Conference on Micro Electro Mechanical Systems (MEMS) (Las Vegas, USA, 2002), pp. 312–315
8.
Zurück zum Zitat H. Yousef, M. Boukallel, K. Althoefer, Tactile sensing for dexterous in-hand manipulation in robotics-a review. Sens. Actuators A-Phys. 167(2), 171–187 (2011)CrossRef H. Yousef, M. Boukallel, K. Althoefer, Tactile sensing for dexterous in-hand manipulation in robotics-a review. Sens. Actuators A-Phys. 167(2), 171–187 (2011)CrossRef
9.
Zurück zum Zitat M.-D. Nguyen, H.-P. Phan, K. Matsumoto, I. Shimoyama, A sensitive liquid-cantilever diaphragm for pressure sensor, in 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS) (2013), pp. 617–620 M.-D. Nguyen, H.-P. Phan, K. Matsumoto, I. Shimoyama, A sensitive liquid-cantilever diaphragm for pressure sensor, in 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS) (2013), pp. 617–620
10.
Zurück zum Zitat N.C. Tsai, C.Y. Sue, Review of MEMS-based drug delivery and dosing systems. Sens. Actuators A-Phys. 134(2), 555–564 (2007)CrossRef N.C. Tsai, C.Y. Sue, Review of MEMS-based drug delivery and dosing systems. Sens. Actuators A-Phys. 134(2), 555–564 (2007)CrossRef
11.
Zurück zum Zitat M. Li, H.X. Tang, M.L. Roukes, Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat. Nanotechnol. 2(2), 114–120 (2007)CrossRef M. Li, H.X. Tang, M.L. Roukes, Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat. Nanotechnol. 2(2), 114–120 (2007)CrossRef
12.
Zurück zum Zitat D.G. Senesky, B. Jamshidi, K.B. Cheng, A.P. Pisano, Harsh environment silicon carbide sensors for health and performance monitoring of aerospace systems: a review. IEEE Sens. J. 9(11), 1472–1478 (2009)CrossRef D.G. Senesky, B. Jamshidi, K.B. Cheng, A.P. Pisano, Harsh environment silicon carbide sensors for health and performance monitoring of aerospace systems: a review. IEEE Sens. J. 9(11), 1472–1478 (2009)CrossRef
13.
Zurück zum Zitat C.V. Gungor, G.P. Hancke, Industrial wireless sensor networks: challenges, design principles, and technical approaches. IEEE Trans. Industr. Electron. 56(10), 4258–4265 (2009)CrossRef C.V. Gungor, G.P. Hancke, Industrial wireless sensor networks: challenges, design principles, and technical approaches. IEEE Trans. Industr. Electron. 56(10), 4258–4265 (2009)CrossRef
14.
Zurück zum Zitat M. Werner, G. Kroetz, H. Moller, M. Eickhoff, P. Gluche, M. Adamschik, C. Johnston, P.R. Chalker, High-temperature sensors based on SiC and diamond technology. Sens. Update 5, 141–190 (1999)CrossRef M. Werner, G. Kroetz, H. Moller, M. Eickhoff, P. Gluche, M. Adamschik, C. Johnston, P.R. Chalker, High-temperature sensors based on SiC and diamond technology. Sens. Update 5, 141–190 (1999)CrossRef
15.
Zurück zum Zitat G.H. Kroetz, M.H. Eickhoff, H. Moeller, Silicon compatible materials for harsh environment sensors. Sens. Actuators A-Phys. 74, 182–189 (1999)CrossRef G.H. Kroetz, M.H. Eickhoff, H. Moeller, Silicon compatible materials for harsh environment sensors. Sens. Actuators A-Phys. 74, 182–189 (1999)CrossRef
16.
Zurück zum Zitat M. Willander, M. Friesel, Q.U. Wahab, B. Straumal, Silicon carbide and diamond for high temperature device applications. J. Mater. Sci. Mater. Electron. 17(1), 1–25 (2006)CrossRef M. Willander, M. Friesel, Q.U. Wahab, B. Straumal, Silicon carbide and diamond for high temperature device applications. J. Mater. Sci. Mater. Electron. 17(1), 1–25 (2006)CrossRef
17.
Zurück zum Zitat W.R. Fahrner, R. Job, M. Werner, Sensors and smart electronics in harsh environment applications. Microsyst. Technol. 7, 138–1144 (2001)CrossRef W.R. Fahrner, R. Job, M. Werner, Sensors and smart electronics in harsh environment applications. Microsyst. Technol. 7, 138–1144 (2001)CrossRef
18.
Zurück zum Zitat P.G. Neudeck, R.S. Okojie, L.Y. Chen, High-temperature electronics - a role for wide bandgap semiconductors? Proc. IEEE 90(6), 1065–1076 (2002)CrossRef P.G. Neudeck, R.S. Okojie, L.Y. Chen, High-temperature electronics - a role for wide bandgap semiconductors? Proc. IEEE 90(6), 1065–1076 (2002)CrossRef
19.
Zurück zum Zitat M.R. Werner, W.R. Fahrner, Review on materials, microsensors, systems, and devices for high-temperature and harsh-environment applications. IEEE Trans. Industr. Electron. 48(2), 249–257 (2001)CrossRef M.R. Werner, W.R. Fahrner, Review on materials, microsensors, systems, and devices for high-temperature and harsh-environment applications. IEEE Trans. Industr. Electron. 48(2), 249–257 (2001)CrossRef
20.
Zurück zum Zitat M. Mehregany, C.A. Zorman, N. Rajan, C.H. Wu, Silicon carbide MEMS for harsh environments. Proc. IEEE 86(8), 1594–1610 (1998)CrossRef M. Mehregany, C.A. Zorman, N. Rajan, C.H. Wu, Silicon carbide MEMS for harsh environments. Proc. IEEE 86(8), 1594–1610 (1998)CrossRef
21.
Zurück zum Zitat P.M. Sarro, Silicon carbide as a new MEMS technology. Sens. Actuators A-Phys. 82, 210–218 (2000)CrossRef P.M. Sarro, Silicon carbide as a new MEMS technology. Sens. Actuators A-Phys. 82, 210–218 (2000)CrossRef
22.
Zurück zum Zitat D. Masse, Market for GaN and SiC semiconductors set to rise 18x from 2012 to 2022. J. Microwave 56(6), 55 (2013) D. Masse, Market for GaN and SiC semiconductors set to rise 18x from 2012 to 2022. J. Microwave 56(6), 55 (2013)
23.
Zurück zum Zitat L. Wang, S. Dimitrijev, J. Han, A. Iacopi, L. Hold, P. Tanner, H.B. Harrison, Growth of 3C-SiC on 150-mm Si(100) substrates by alternating supply epitaxy at \(1000^{\circ }\)C. Thin Solid Films 519, 6443–6446 (2011)CrossRef L. Wang, S. Dimitrijev, J. Han, A. Iacopi, L. Hold, P. Tanner, H.B. Harrison, Growth of 3C-SiC on 150-mm Si(100) substrates by alternating supply epitaxy at \(1000^{\circ }\)C. Thin Solid Films 519, 6443–6446 (2011)CrossRef
25.
Zurück zum Zitat R. Maboudian, C. Carraro, D.G. Senesky, C.S. Roper, Advances in silicon carbide science and technology at the micro-and nanoscales. J. Vac. Sci. Technol. A 31(5), 050805 (2013)CrossRef R. Maboudian, C. Carraro, D.G. Senesky, C.S. Roper, Advances in silicon carbide science and technology at the micro-and nanoscales. J. Vac. Sci. Technol. A 31(5), 050805 (2013)CrossRef
26.
Zurück zum Zitat W.D. Edwards, R.P. Beaulieu, Germanium piezoresistive element on a flexible substrate. J. Phys. E: Sci. Instrum. 2(2), 613–615 (1969)CrossRef W.D. Edwards, R.P. Beaulieu, Germanium piezoresistive element on a flexible substrate. J. Phys. E: Sci. Instrum. 2(2), 613–615 (1969)CrossRef
27.
Zurück zum Zitat A.D. Bykhovski, V.V. Kaminski, M.S. Shur, Q.C. Chen, M.A. Khan, Piezoresistive effect in wurtzite n type GaN. Appl. Phys. Lett. 68, 818 (1996)CrossRef A.D. Bykhovski, V.V. Kaminski, M.S. Shur, Q.C. Chen, M.A. Khan, Piezoresistive effect in wurtzite n type GaN. Appl. Phys. Lett. 68, 818 (1996)CrossRef
28.
Zurück zum Zitat V. Tilak, A. Vertiatchikh, J. Jiang, N. Reeves, S. Dasgupta, Piezoresistive and piezoelectric effects in GaN. Phys. Status Solidi (C) 6, 2307–2311 (2006)CrossRef V. Tilak, A. Vertiatchikh, J. Jiang, N. Reeves, S. Dasgupta, Piezoresistive and piezoelectric effects in GaN. Phys. Status Solidi (C) 6, 2307–2311 (2006)CrossRef
29.
Zurück zum Zitat C.H. Park, B.H. Cheong, K.H. Lee, K.J. Chang, Structural and electronic properties of cubic, 2H, 4H and 6H SiC. Phys. Rev. B 49(7), 4485–4493 (1994)CrossRef C.H. Park, B.H. Cheong, K.H. Lee, K.J. Chang, Structural and electronic properties of cubic, 2H, 4H and 6H SiC. Phys. Rev. B 49(7), 4485–4493 (1994)CrossRef
30.
Zurück zum Zitat J.B. Casady, R.W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid State Electron. 39(10), 1409–1422 (1996)CrossRef J.B. Casady, R.W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid State Electron. 39(10), 1409–1422 (1996)CrossRef
31.
Zurück zum Zitat V. Cimalla, J. Pezoldt, O. Ambacher, Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications. J. Phys. D: Appl. Phys. 379(3–4), 149–255 (2003) V. Cimalla, J. Pezoldt, O. Ambacher, Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications. J. Phys. D: Appl. Phys. 379(3–4), 149–255 (2003)
32.
Zurück zum Zitat M. Wijesundara, R. Azevedo, Silicon Carbide Microsystems for Harsh Environments (Springer, Berlin, 2011)CrossRef M. Wijesundara, R. Azevedo, Silicon Carbide Microsystems for Harsh Environments (Springer, Berlin, 2011)CrossRef
33.
Zurück zum Zitat Q. Zhang, R. Callanan, M.K. Das, S.H. Ryu, A.K. Agarwal, J.W. Palmour, SiC power devices for microgrids. IEEE. Trans. Power Electron. 25(12), 2889–2896 (2010)CrossRef Q. Zhang, R. Callanan, M.K. Das, S.H. Ryu, A.K. Agarwal, J.W. Palmour, SiC power devices for microgrids. IEEE. Trans. Power Electron. 25(12), 2889–2896 (2010)CrossRef
34.
Zurück zum Zitat P. Friedrichs, SiC power devices as enabler for high power density-aspects and prospects. Mater. Sci. Forum 778, 1104–1109 (2014)CrossRef P. Friedrichs, SiC power devices as enabler for high power density-aspects and prospects. Mater. Sci. Forum 778, 1104–1109 (2014)CrossRef
35.
Zurück zum Zitat G.S. Chung, J.M. Jeong, Fabrication of micro heaters on polycrystalline 3C-SiC suspended membranes for gas sensors and their characteristics. Microelectron. Eng. 87, 2348–2352 (2010)CrossRef G.S. Chung, J.M. Jeong, Fabrication of micro heaters on polycrystalline 3C-SiC suspended membranes for gas sensors and their characteristics. Microelectron. Eng. 87, 2348–2352 (2010)CrossRef
36.
Zurück zum Zitat J.G. Lee, M.I. Lei, S.P. Lee, S. Rajgopal, M. Mehregany, Micro flow sensor using polycrystalline silicon carbide. J. Sens. Sci. Technol. 18(2), 147–153 (2009)CrossRef J.G. Lee, M.I. Lei, S.P. Lee, S. Rajgopal, M. Mehregany, Micro flow sensor using polycrystalline silicon carbide. J. Sens. Sci. Technol. 18(2), 147–153 (2009)CrossRef
37.
Zurück zum Zitat T. Dinh, D.V. Dao, H.P. Phan, L. Wang, A. Qamar, N.T. Nguyen, P. Tanner, M. Rybachuk, Charge transport and activation energy of amorphous silicon carbide thin film on quartz at elevated temperature. Appl. Phys. Express 8(6), 061303 (2015)CrossRef T. Dinh, D.V. Dao, H.P. Phan, L. Wang, A. Qamar, N.T. Nguyen, P. Tanner, M. Rybachuk, Charge transport and activation energy of amorphous silicon carbide thin film on quartz at elevated temperature. Appl. Phys. Express 8(6), 061303 (2015)CrossRef
38.
Zurück zum Zitat S. Ma, S. Wang, F. Iacopi, H. Huang, A resonant method for determining the residual stress and elastic modulus of a thin film. Appl. Phys. Lett. 103(3), 031603 (2013)CrossRef S. Ma, S. Wang, F. Iacopi, H. Huang, A resonant method for determining the residual stress and elastic modulus of a thin film. Appl. Phys. Lett. 103(3), 031603 (2013)CrossRef
39.
Zurück zum Zitat G. Cheng, T.H. Chang, Q. Qin, H. Huang, Y. Zhu, Mechanical properties of silicon carbide nanowires: effect of size-dependent defect density. Nano Lett. 14(2), 754–758 (2014)CrossRef G. Cheng, T.H. Chang, Q. Qin, H. Huang, Y. Zhu, Mechanical properties of silicon carbide nanowires: effect of size-dependent defect density. Nano Lett. 14(2), 754–758 (2014)CrossRef
40.
Zurück zum Zitat S. Gong, N.K. Kuo, G. Piazza, GHz high-Q lateral overmoded bulk acoustic-wave resonators using epitaxial SiC thin film. J. Micromech. Syst. 21(2), 253–255 (2012)CrossRef S. Gong, N.K. Kuo, G. Piazza, GHz high-Q lateral overmoded bulk acoustic-wave resonators using epitaxial SiC thin film. J. Micromech. Syst. 21(2), 253–255 (2012)CrossRef
41.
Zurück zum Zitat A.R. Kermany, G. Brawley, N. Mishra, E. Sheridan, W.P. Bowen, F. Iacopi, Microresonator with Q-factors over a million from highly stressed epitaxial silicon carbide on silicon. Appl. Phys. Lett. 104, 801901 (2014)CrossRef A.R. Kermany, G. Brawley, N. Mishra, E. Sheridan, W.P. Bowen, F. Iacopi, Microresonator with Q-factors over a million from highly stressed epitaxial silicon carbide on silicon. Appl. Phys. Lett. 104, 801901 (2014)CrossRef
42.
Zurück zum Zitat Z. Wang, J. Lee, P.X.-L. Feng, Spatial mapping of multimode Brownian motions in high-frequency silicon carbide microdisk resonators. Nat. Commun. 5, 5158 (2014)CrossRef Z. Wang, J. Lee, P.X.-L. Feng, Spatial mapping of multimode Brownian motions in high-frequency silicon carbide microdisk resonators. Nat. Commun. 5, 5158 (2014)CrossRef
43.
Zurück zum Zitat C. Forster, V. Cimalla, V. Lebedev, J. Pezoldt, K. Brueckner, R. Stephan, M. Hein, E. Aperathitis, O. Ambacher, Group III-nitride and SiC based micro- and nanoelectromechanical resonators for sensor applications. Phisica Status Solidi A 203(7), 1829–1833 (2006)CrossRef C. Forster, V. Cimalla, V. Lebedev, J. Pezoldt, K. Brueckner, R. Stephan, M. Hein, E. Aperathitis, O. Ambacher, Group III-nitride and SiC based micro- and nanoelectromechanical resonators for sensor applications. Phisica Status Solidi A 203(7), 1829–1833 (2006)CrossRef
44.
Zurück zum Zitat A. Oliveros, A. Guiseppi-Elie, S.E. Saddow, Silicon carbide: a versatile material for biosensor applications. Biomed. Microdevices 15(2), 353 (2013)CrossRef A. Oliveros, A. Guiseppi-Elie, S.E. Saddow, Silicon carbide: a versatile material for biosensor applications. Biomed. Microdevices 15(2), 353 (2013)CrossRef
45.
Zurück zum Zitat S.E. Saddow, C.L. Frewin, C. Coletti, N. Schettini, E. Weeber, A. Oliveros, Single-crystal silicon carbide: a bio-compatible and hemocompatible semiconductor for advanced biomedical applications. Mater. Sci. Forum 679–680, 824–830 (2011)CrossRef S.E. Saddow, C.L. Frewin, C. Coletti, N. Schettini, E. Weeber, A. Oliveros, Single-crystal silicon carbide: a bio-compatible and hemocompatible semiconductor for advanced biomedical applications. Mater. Sci. Forum 679–680, 824–830 (2011)CrossRef
46.
Zurück zum Zitat G. Gabriel, I. Erill, J. Caro, R. Gomez, D. Riera, R. Villa, Manufacturing and full characterization of silicon carbide based multi-sensor micro-probe for biomedical applications. Microelectron. J. 38, 406–415 (2007)CrossRef G. Gabriel, I. Erill, J. Caro, R. Gomez, D. Riera, R. Villa, Manufacturing and full characterization of silicon carbide based multi-sensor micro-probe for biomedical applications. Microelectron. J. 38, 406–415 (2007)CrossRef
47.
Zurück zum Zitat S. Fujita, Wide-bandgap semiconductor materials: for their full bloom. Jpn. J. Appl. Phys. 54(3), 030101 (2015)CrossRef S. Fujita, Wide-bandgap semiconductor materials: for their full bloom. Jpn. J. Appl. Phys. 54(3), 030101 (2015)CrossRef
48.
Zurück zum Zitat H. Amano, Progress and prospect of the growth of wide-band-gap group III nitrides: development of the growth method for single-crystal bulk GaN. J. Jpn. Appl. Phys. 52, 050001 (2013)CrossRef H. Amano, Progress and prospect of the growth of wide-band-gap group III nitrides: development of the growth method for single-crystal bulk GaN. J. Jpn. Appl. Phys. 52, 050001 (2013)CrossRef
49.
Zurück zum Zitat N.G. Wright, A.B. Horsfall, SiC sensors: a review. J. Phys. D: Appl. Phys. 40, 6345–6354 (2007)CrossRef N.G. Wright, A.B. Horsfall, SiC sensors: a review. J. Phys. D: Appl. Phys. 40, 6345–6354 (2007)CrossRef
50.
Zurück zum Zitat C.M. Zetterling, Integrated circuits in silicon carbide for high-temperature applications. MRS Bull. 40(05), 431–438 (2015)CrossRef C.M. Zetterling, Integrated circuits in silicon carbide for high-temperature applications. MRS Bull. 40(05), 431–438 (2015)CrossRef
51.
Zurück zum Zitat N.G. Wright, A.B. Horsfall, K. Vassilevski, Prospects for SiC electronics and sensors. Mater. Today 11(1), 16–21 (2008)CrossRef N.G. Wright, A.B. Horsfall, K. Vassilevski, Prospects for SiC electronics and sensors. Mater. Today 11(1), 16–21 (2008)CrossRef
52.
Zurück zum Zitat J.A. Lely, Sublimation process for manufacturing silicon carbide crystals, United States Patent 2, 854, 364 (30.09.58) (1958) J.A. Lely, Sublimation process for manufacturing silicon carbide crystals, United States Patent 2, 854, 364 (30.09.58) (1958)
53.
Zurück zum Zitat Y.M. Tairov, V.F. Tsvetkov, Investigation of growth processes of ingots of silicon carbide single crystals. J. Cryst. Growth 43, 209–212 (1978)CrossRef Y.M. Tairov, V.F. Tsvetkov, Investigation of growth processes of ingots of silicon carbide single crystals. J. Cryst. Growth 43, 209–212 (1978)CrossRef
54.
Zurück zum Zitat D. Chaussende, P.J. Wellmann, M. Pons, Status of SiC bulk growth processes. J. Phys. D: Appl. Phys. 40, 6150–6158 (2007)CrossRef D. Chaussende, P.J. Wellmann, M. Pons, Status of SiC bulk growth processes. J. Phys. D: Appl. Phys. 40, 6150–6158 (2007)CrossRef
55.
Zurück zum Zitat A. Itoh, H. Matsunami, Single crystal growth of SiC and electronic devices. Crit. Rev. Solid State Mater. Sci. 22(2), 111–197 (1997)CrossRef A. Itoh, H. Matsunami, Single crystal growth of SiC and electronic devices. Crit. Rev. Solid State Mater. Sci. 22(2), 111–197 (1997)CrossRef
56.
Zurück zum Zitat M. Portail, M. Zielinski, T. Chasssagne, S. Roy, M. Nemoz, Comparative study of the role of the nucleation stage on the final crystalline quality of (111) and (100) silicon carbide films deposited on silicon substrates. J. Appl. Phys. 105, 083505 (2009)CrossRef M. Portail, M. Zielinski, T. Chasssagne, S. Roy, M. Nemoz, Comparative study of the role of the nucleation stage on the final crystalline quality of (111) and (100) silicon carbide films deposited on silicon substrates. J. Appl. Phys. 105, 083505 (2009)CrossRef
57.
Zurück zum Zitat T. Fuyuki, T. Yoshinobu, H. Matsunami, Atomic layer epitaxy controlled by surface superstructure in SiC. Thin Solid Films 225, 225 (1993)CrossRef T. Fuyuki, T. Yoshinobu, H. Matsunami, Atomic layer epitaxy controlled by surface superstructure in SiC. Thin Solid Films 225, 225 (1993)CrossRef
58.
Zurück zum Zitat H. Zhuang, L. Zhang, T. Staedler, X. Jiang, Low temperature hetero-epitaxial growth of 3C-SiC films on Si utilizing microwave plasma CVD. Chem. Vap. Depos. 19, 29–37 (2013)CrossRef H. Zhuang, L. Zhang, T. Staedler, X. Jiang, Low temperature hetero-epitaxial growth of 3C-SiC films on Si utilizing microwave plasma CVD. Chem. Vap. Depos. 19, 29–37 (2013)CrossRef
59.
Zurück zum Zitat K. Yasui, H. Miura, M. Takata, T. Akadane, SiCOI structure fabricated by catalytic chemical vapor deposition. Thin Solid Film 516, 644–647 (2008)CrossRef K. Yasui, H. Miura, M. Takata, T. Akadane, SiCOI structure fabricated by catalytic chemical vapor deposition. Thin Solid Film 516, 644–647 (2008)CrossRef
60.
Zurück zum Zitat A. Gupta, C. Jacob, Selective epitaxy and lateral overgrowth of 3C-SiC on Si - a review. Prog. Cryst. Growth Charact. Mater. 51, 43–69 (2005)CrossRef A. Gupta, C. Jacob, Selective epitaxy and lateral overgrowth of 3C-SiC on Si - a review. Prog. Cryst. Growth Charact. Mater. 51, 43–69 (2005)CrossRef
61.
Zurück zum Zitat V. Heera, D. Panknin, W. Skorupa, P-type doping of SiC by high dose Al implatation-problems and progress. Appl. Surf. Sci. 184, 307–316 (2001)CrossRef V. Heera, D. Panknin, W. Skorupa, P-type doping of SiC by high dose Al implatation-problems and progress. Appl. Surf. Sci. 184, 307–316 (2001)CrossRef
62.
Zurück zum Zitat L. Wang, S. Dimitrijev, P. Tanner, J. Zou, Aluminum induced in situ crystallization of armourphous SiC. Appl. Phys. Lett. 94, 181909 (2009)CrossRef L. Wang, S. Dimitrijev, P. Tanner, J. Zou, Aluminum induced in situ crystallization of armourphous SiC. Appl. Phys. Lett. 94, 181909 (2009)CrossRef
63.
Zurück zum Zitat S.A. Sakwe, R. Muller, P.J. Wellmann, Optimization of KOH etching parameters for quantitative defect recognition in n- and p-type doped SiC. J. Cryst. Growth 289, 520–526 (2006)CrossRef S.A. Sakwe, R. Muller, P.J. Wellmann, Optimization of KOH etching parameters for quantitative defect recognition in n- and p-type doped SiC. J. Cryst. Growth 289, 520–526 (2006)CrossRef
64.
Zurück zum Zitat D. Zhuang, J.H. Edgar, Wet etching of GaN, AlN, and SiC: a review. Mater. Sci. Eng. R-Rep. 48(1), 1–46 (2005)CrossRef D. Zhuang, J.H. Edgar, Wet etching of GaN, AlN, and SiC: a review. Mater. Sci. Eng. R-Rep. 48(1), 1–46 (2005)CrossRef
65.
Zurück zum Zitat J.S. Shor, R.M. Osgood, A.D. Kurtz, Photoelectrochemical conductivity selective etch stops for SiC. Appl. Phys. Lett. 60, 1001 (1992)CrossRef J.S. Shor, R.M. Osgood, A.D. Kurtz, Photoelectrochemical conductivity selective etch stops for SiC. Appl. Phys. Lett. 60, 1001 (1992)CrossRef
66.
Zurück zum Zitat T.K. Hossain, S. MacLaren, J.M. Engel, C. Liu, I. Adesida, R. Okojie, The fabrication of suspended micromechanical structures from bulk 6H-SiC using an ICP-RIE system. J. Micromech. Microeng. 16, 751–756 (2006)CrossRef T.K. Hossain, S. MacLaren, J.M. Engel, C. Liu, I. Adesida, R. Okojie, The fabrication of suspended micromechanical structures from bulk 6H-SiC using an ICP-RIE system. J. Micromech. Microeng. 16, 751–756 (2006)CrossRef
67.
Zurück zum Zitat S. Tanaka, K. Rajanna, T. Abe, M. Esashi, Deep reactive ion etching of silicon carbide. J. Vac. Sci. Technol. B. 19(6), 2173–2176 (2001)CrossRef S. Tanaka, K. Rajanna, T. Abe, M. Esashi, Deep reactive ion etching of silicon carbide. J. Vac. Sci. Technol. B. 19(6), 2173–2176 (2001)CrossRef
68.
Zurück zum Zitat K.N. Vinod, C.A. Zorman, A.A. Yasseen, M. Mehregany, Fabrication of low defect density 3C-SiC on \(\text{SiO}_2\) structures using wafer bonding techniques. J. Electron. Mater. 27(3) (1998) K.N. Vinod, C.A. Zorman, A.A. Yasseen, M. Mehregany, Fabrication of low defect density 3C-SiC on \(\text{SiO}_2\) structures using wafer bonding techniques. J. Electron. Mater. 27(3) (1998)
69.
Zurück zum Zitat A. Sandhu, S. Jinno, Piezoresistive properties of 3C-SiC films anodically bonded to aluminosilicate glass substrates. Electron. Lett. 36(6), 497–498 (2000)CrossRef A. Sandhu, S. Jinno, Piezoresistive properties of 3C-SiC films anodically bonded to aluminosilicate glass substrates. Electron. Lett. 36(6), 497–498 (2000)CrossRef
70.
Zurück zum Zitat P. Cong, D.J. Young, Single crystal 6H-SiC MEMS fabrication based on smart-cut technique. J. Micromech. Microeng. 15, 2243–2248 (2005)CrossRef P. Cong, D.J. Young, Single crystal 6H-SiC MEMS fabrication based on smart-cut technique. J. Micromech. Microeng. 15, 2243–2248 (2005)CrossRef
71.
Zurück zum Zitat R. Yang, Z. Wang, J. Lee, K. Ladhane, D.J. Young, P.X.-L. Feng, 6H-SiC microdisk torsional resonators in a smart-cut technology. Appl. Phys. Lett. 104, 091906 (2014)CrossRef R. Yang, Z. Wang, J. Lee, K. Ladhane, D.J. Young, P.X.-L. Feng, 6H-SiC microdisk torsional resonators in a smart-cut technology. Appl. Phys. Lett. 104, 091906 (2014)CrossRef
72.
Zurück zum Zitat W. Reichert, E. Obermeier, J. Stoemenos, \(\beta \)-SiC films on SOI substrates for high temperature applications. Diam. Relat. Mater. 6(10), 1448–1450 (1997)CrossRef W. Reichert, E. Obermeier, J. Stoemenos, \(\beta \)-SiC films on SOI substrates for high temperature applications. Diam. Relat. Mater. 6(10), 1448–1450 (1997)CrossRef
73.
Zurück zum Zitat C.A. Zorman, R.J. Parro, Micro- and nanomechanical structures for silicon carbide MEMS and NEMS. Phys. Status Solidi B 245, 1404–1424 (2008)CrossRef C.A. Zorman, R.J. Parro, Micro- and nanomechanical structures for silicon carbide MEMS and NEMS. Phys. Status Solidi B 245, 1404–1424 (2008)CrossRef
74.
Zurück zum Zitat T. Akiyama, D. Briand, N.F. de Rooij, Piezoresistive n-type 4H-SiC pressure sensor with membrane formed by mechanical milling, in Proceedings of the IEEE Sensors Conference 2011 (2011), p. 222 T. Akiyama, D. Briand, N.F. de Rooij, Piezoresistive n-type 4H-SiC pressure sensor with membrane formed by mechanical milling, in Proceedings of the IEEE Sensors Conference 2011 (2011), p. 222
75.
Zurück zum Zitat A.A. Yasseen, C.H. Wu, C.A. Zorman, M. Mehregany, Fabrication and testing of surface micromachined silicon carbide micromotors, in Proceedings of the 12th IEEE International Conference on Micro Electro Mechanical Systems (Florida, USA, 1999), pp. 644–649 A.A. Yasseen, C.H. Wu, C.A. Zorman, M. Mehregany, Fabrication and testing of surface micromachined silicon carbide micromotors, in Proceedings of the 12th IEEE International Conference on Micro Electro Mechanical Systems (Florida, USA, 1999), pp. 644–649
76.
Zurück zum Zitat A.C.H. Rowe, Piezoresistance in silicon and its nanostructures. Mater. Res. Soc. 29(6), 731–744 (2014)CrossRef A.C.H. Rowe, Piezoresistance in silicon and its nanostructures. Mater. Res. Soc. 29(6), 731–744 (2014)CrossRef
77.
Zurück zum Zitat J.C. Doll, B.L. Pruitt, Piezoresistor Design and Applications (Springer, Berlin, 2013)CrossRef J.C. Doll, B.L. Pruitt, Piezoresistor Design and Applications (Springer, Berlin, 2013)CrossRef
78.
Zurück zum Zitat G.L. Bir, G.E. Pirkus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974) G.L. Bir, G.E. Pirkus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974)
79.
Zurück zum Zitat Y. Sun, S.E. Thompson, T. Nishida, Strain Effect in Semiconductor: Theory and Device Applications, 1st edn. (Springer, Berlin, 2009) Y. Sun, S.E. Thompson, T. Nishida, Strain Effect in Semiconductor: Theory and Device Applications, 1st edn. (Springer, Berlin, 2009)
80.
Zurück zum Zitat C.S. Smith, Piezoresistance effect in germanium and silicon. Phys. Rev. 94, 42 (1954)CrossRef C.S. Smith, Piezoresistance effect in germanium and silicon. Phys. Rev. 94, 42 (1954)CrossRef
81.
Zurück zum Zitat J. Bardeen, W. Shockley, Deformation potentials and mobilities in non-polar crystals. Phys. Rev. 80, 72–80 (1950)CrossRef J. Bardeen, W. Shockley, Deformation potentials and mobilities in non-polar crystals. Phys. Rev. 80, 72–80 (1950)CrossRef
82.
Zurück zum Zitat C. Herring, Transport properties of a many valley semiconductor. Bell Syst. Tech. J. 34, 237–290 (1955)CrossRef C. Herring, Transport properties of a many valley semiconductor. Bell Syst. Tech. J. 34, 237–290 (1955)CrossRef
83.
Zurück zum Zitat C. Herring, E. Vogt, Transport and deformation potential theory for many-valley semiconductors with anisotropic scattering. Phys. Rev. 101, 944 (1956)CrossRef C. Herring, E. Vogt, Transport and deformation potential theory for many-valley semiconductors with anisotropic scattering. Phys. Rev. 101, 944 (1956)CrossRef
84.
Zurück zum Zitat D. Long, Stress dependence of the piezoresistance effect. J. App. Phys. 32, 2050–2051 (1961)CrossRef D. Long, Stress dependence of the piezoresistance effect. J. App. Phys. 32, 2050–2051 (1961)CrossRef
85.
Zurück zum Zitat Y. Kanda, The piezoresistive effect effect of silicon. Sens. Actuators A-Phys. 28, 83–91 (1991)CrossRef Y. Kanda, The piezoresistive effect effect of silicon. Sens. Actuators A-Phys. 28, 83–91 (1991)CrossRef
86.
Zurück zum Zitat Y. Kanda, A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans. Electron Devices 29(1), 64–70 (1982)CrossRef Y. Kanda, A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans. Electron Devices 29(1), 64–70 (1982)CrossRef
87.
Zurück zum Zitat I.V. Rapatskaya, G.E. Rudashevskii, M.G. Kasaganova, M.I. Iglitsin, M.B. Reifman, E.F. Fedetova, The piezoresistive effect coefficients of n-type \(\alpha \)-SiC. Sov. Phys. Solid State 9(12), 2833 (1968) I.V. Rapatskaya, G.E. Rudashevskii, M.G. Kasaganova, M.I. Iglitsin, M.B. Reifman, E.F. Fedetova, The piezoresistive effect coefficients of n-type \(\alpha \)-SiC. Sov. Phys. Solid State 9(12), 2833 (1968)
88.
Zurück zum Zitat G.N. Guk, N.Y. Usoltseva, V.S. Shadrin, N.K. Prokopeva, The piezoresistive effect of cubic silicon carbide under hydrostatic compression. Sov. Phys. Semicond. 10(1), 83 (1976) G.N. Guk, N.Y. Usoltseva, V.S. Shadrin, N.K. Prokopeva, The piezoresistive effect of cubic silicon carbide under hydrostatic compression. Sov. Phys. Semicond. 10(1), 83 (1976)
89.
Zurück zum Zitat G.N. Guk, V.M. Lyubimskii, E.P. Gofman, V.B. Zinovev, E.A. Chalyi, Temperature dependence of the piezoresistive effect constant \(\pi _{11}\) of n-type SiC(6H). Sov. Phys. Semicond. 9, 104 (1974) G.N. Guk, V.M. Lyubimskii, E.P. Gofman, V.B. Zinovev, E.A. Chalyi, Temperature dependence of the piezoresistive effect constant \(\pi _{11}\) of n-type SiC(6H). Sov. Phys. Semicond. 9, 104 (1974)
90.
Zurück zum Zitat J.S. Shor, D. Goldstein, A.D. Kurtz, Characterization of n-type \(\beta \)-Sic as a piezoresistor. IEEE Trans. Electron Devices 40(6), 1093–1099 (1993)CrossRef J.S. Shor, D. Goldstein, A.D. Kurtz, Characterization of n-type \(\beta \)-Sic as a piezoresistor. IEEE Trans. Electron Devices 40(6), 1093–1099 (1993)CrossRef
91.
Zurück zum Zitat M. Eickhoff, H. Moller, G. Kroetz, J.V. Berg, R. Ziermann, A high temperature pressure sensor prepared by selective deposition of cubic silicon carbide on SOI substrates. Sens. Actuators A-Phys. 74, 56–59 (1999)CrossRef M. Eickhoff, H. Moller, G. Kroetz, J.V. Berg, R. Ziermann, A high temperature pressure sensor prepared by selective deposition of cubic silicon carbide on SOI substrates. Sens. Actuators A-Phys. 74, 56–59 (1999)CrossRef
92.
Zurück zum Zitat A. Qamar, H.-P. Phan, D.V. Dao, P. Tanner, T. Dinh, L. Wang, S. Dimitrijev, The dependence of offset voltage in p-type 3C-SiC van der pauw device on applied strain. IEEE Electron Devices Lett. 36(7), 708–710 (2015)CrossRef A. Qamar, H.-P. Phan, D.V. Dao, P. Tanner, T. Dinh, L. Wang, S. Dimitrijev, The dependence of offset voltage in p-type 3C-SiC van der pauw device on applied strain. IEEE Electron Devices Lett. 36(7), 708–710 (2015)CrossRef
93.
Zurück zum Zitat M. Eickhoff, H. Moller, J. Stoemenos, S. Zappe, G. Kroetz, M. Stutzmann, Influence of crystal quality on the electronic properties of n-type 3C-SiC grown by low temperature low pressure chemical vapor deposition. J. Appl. Phys. 95, 7908 (2004)CrossRef M. Eickhoff, H. Moller, J. Stoemenos, S. Zappe, G. Kroetz, M. Stutzmann, Influence of crystal quality on the electronic properties of n-type 3C-SiC grown by low temperature low pressure chemical vapor deposition. J. Appl. Phys. 95, 7908 (2004)CrossRef
94.
Zurück zum Zitat M. Eickhoff, M. Stutzmann, Influence of crystal defects on the piezoresistive properties of 3C-SiC. J. Appl. Phys. 96, 2878 (2004)CrossRef M. Eickhoff, M. Stutzmann, Influence of crystal defects on the piezoresistive properties of 3C-SiC. J. Appl. Phys. 96, 2878 (2004)CrossRef
95.
Zurück zum Zitat C.H. Wu, C.A. Zorman, M. Mehregany, Fabrication and testing of bulk micromachined silicon carbide piezoresistive pressure Sensors for high temperature applications. IEEE Sens. J. 6(2), 316–324 (2006)CrossRef C.H. Wu, C.A. Zorman, M. Mehregany, Fabrication and testing of bulk micromachined silicon carbide piezoresistive pressure Sensors for high temperature applications. IEEE Sens. J. 6(2), 316–324 (2006)CrossRef
96.
Zurück zum Zitat H.I. Kuo, C.A. Zorman, M. Mehregany, Fabrication and testing of single crystalline 3C-SiC devices using a novel SiC on insulator substrate, in Proceedings of the Transducer 03 International Conference on Solid State Sensors and Actuators (Boston, USA, 2003), pp. 724–745 H.I. Kuo, C.A. Zorman, M. Mehregany, Fabrication and testing of single crystalline 3C-SiC devices using a novel SiC on insulator substrate, in Proceedings of the Transducer 03 International Conference on Solid State Sensors and Actuators (Boston, USA, 2003), pp. 724–745
97.
Zurück zum Zitat T. Toriyama, S. Sugiyama, Analysis of the piezoresistive effect in n-type \(\beta \)-SiC based on electron transport and deformation potential theory, International Symposium on Micromechatronic and Human Science (2000), pp. 175–180 T. Toriyama, S. Sugiyama, Analysis of the piezoresistive effect in n-type \(\beta \)-SiC based on electron transport and deformation potential theory, International Symposium on Micromechatronic and Human Science (2000), pp. 175–180
98.
Zurück zum Zitat T. Toriyama, S. Sugiyama, Analysis of the piezoresistive effect in n-type \(\beta \)-SiC for high-temperature mechanical sensors. Appl. Phys. Lett. 81, 2797 (2002)CrossRef T. Toriyama, S. Sugiyama, Analysis of the piezoresistive effect in n-type \(\beta \)-SiC for high-temperature mechanical sensors. Appl. Phys. Lett. 81, 2797 (2002)CrossRef
99.
Zurück zum Zitat J.S. Shor, L. Bemis, A.D. Kurtz, Characterization of monolithic n-type 6H-SiC piezoresistive sensing elements. IEEE Trans. Electron Devices 41(5), 661–665 (1994)CrossRef J.S. Shor, L. Bemis, A.D. Kurtz, Characterization of monolithic n-type 6H-SiC piezoresistive sensing elements. IEEE Trans. Electron Devices 41(5), 661–665 (1994)CrossRef
100.
Zurück zum Zitat R.S. Okojie, A.A. Ned, A.D. Kurtz, W.N. Carr, Characterization of highly doped n- and p-type 6H-SiC piezoresistors. IEEE Trans. Electron Devices 45(4), 785–790 (1998)CrossRef R.S. Okojie, A.A. Ned, A.D. Kurtz, W.N. Carr, Characterization of highly doped n- and p-type 6H-SiC piezoresistors. IEEE Trans. Electron Devices 45(4), 785–790 (1998)CrossRef
101.
Zurück zum Zitat T. Toriyama, S. Sugiyama, Analysis of piezoresistance in n-type 6H-SiC for high temperature mechanical sensors, Proceedings of the Transducers 2003 International Conference on Solid State Sensors and Actuators (Boston, USA, 2003), pp. 758–761 T. Toriyama, S. Sugiyama, Analysis of piezoresistance in n-type 6H-SiC for high temperature mechanical sensors, Proceedings of the Transducers 2003 International Conference on Solid State Sensors and Actuators (Boston, USA, 2003), pp. 758–761
102.
Zurück zum Zitat T. Toriyama, Piezoresistance consideration on n-type 6H SiC for MEMS-based piezoresistance sensors. J. Micromech. Microeng. 14, 1445–1448 (2004)CrossRef T. Toriyama, Piezoresistance consideration on n-type 6H SiC for MEMS-based piezoresistance sensors. J. Micromech. Microeng. 14, 1445–1448 (2004)CrossRef
103.
Zurück zum Zitat T.K. Kinoshita, M. Itoh, M. Schadt, G. Pensl, Theory of the electron mobility in n-type 6H-SiC. J. Appl. Phys. 85(12), 8193–8198 (1999)CrossRef T.K. Kinoshita, M. Itoh, M. Schadt, G. Pensl, Theory of the electron mobility in n-type 6H-SiC. J. Appl. Phys. 85(12), 8193–8198 (1999)CrossRef
104.
Zurück zum Zitat W.J. Choyke, H. Matsunami, Silicon Carbide: Recent Major Advances (Springer Science & Business Media, Berlin, 2004)CrossRef W.J. Choyke, H. Matsunami, Silicon Carbide: Recent Major Advances (Springer Science & Business Media, Berlin, 2004)CrossRef
105.
Zurück zum Zitat T. Akiyama, D. Briand, N.F. de Rooiji, Design-dependent gauge factors of highly doped n-type 4H-SiC piezoresistors. J. Micromech. Microeng. 22, 085034 (2012)CrossRef T. Akiyama, D. Briand, N.F. de Rooiji, Design-dependent gauge factors of highly doped n-type 4H-SiC piezoresistors. J. Micromech. Microeng. 22, 085034 (2012)CrossRef
106.
Zurück zum Zitat T. Homma, K. Kamimura, H.Y. Cai, Y. Onuma, Preparation of polycrystalline SiC films for sensors used at high temperature. Sens. Sensors A-Phys. 40, 93–96 (1994)CrossRef T. Homma, K. Kamimura, H.Y. Cai, Y. Onuma, Preparation of polycrystalline SiC films for sensors used at high temperature. Sens. Sensors A-Phys. 40, 93–96 (1994)CrossRef
107.
Zurück zum Zitat J. Strass, M. Eickhoff, The influence of crystal quality on the piezoresistive effect of p-SiC between RT and \(450^{\circ }\)C measured by using microstructures, Proceedings of the Transducer 97 International Conference on Solid State Sensors and Actuators (Chicago, USA, 1997), pp. 1439–1442 J. Strass, M. Eickhoff, The influence of crystal quality on the piezoresistive effect of p-SiC between RT and \(450^{\circ }\)C measured by using microstructures, Proceedings of the Transducer 97 International Conference on Solid State Sensors and Actuators (Chicago, USA, 1997), pp. 1439–1442
108.
Zurück zum Zitat M. Eickhoff, M. Moller, G. Kroetz, M. Stutzmann, Piezoresistive properties of single crystalline, polycrystalline, and nanocrystalline n-type 3C-SiC. J. Appl. Phys. 96, 2872–2877 (2004)CrossRef M. Eickhoff, M. Moller, G. Kroetz, M. Stutzmann, Piezoresistive properties of single crystalline, polycrystalline, and nanocrystalline n-type 3C-SiC. J. Appl. Phys. 96, 2872–2877 (2004)CrossRef
109.
Zurück zum Zitat J.Y.W. Seto, Piezoresistive properties of polycrystalline silicon. J. Appl. Phys. 47, 4780 (1976)CrossRef J.Y.W. Seto, Piezoresistive properties of polycrystalline silicon. J. Appl. Phys. 47, 4780 (1976)CrossRef
110.
Zurück zum Zitat X. Liu, C. Shi, R. Chuai, Polycrystalline silicon piezoresistive nano thin film technology, Solid State Circuits Technologies (2010) X. Liu, C. Shi, R. Chuai, Polycrystalline silicon piezoresistive nano thin film technology, Solid State Circuits Technologies (2010)
111.
Zurück zum Zitat V. Mosser, J. Suski, J. Goss, E. Obermeier, Piezoresistive pressure sensors based on polycrystalline silicon. Sens. Actuators A 28(2), 113–132 (1991)CrossRef V. Mosser, J. Suski, J. Goss, E. Obermeier, Piezoresistive pressure sensors based on polycrystalline silicon. Sens. Actuators A 28(2), 113–132 (1991)CrossRef
112.
Zurück zum Zitat M.A. Fraga, M. Massi, H. Furlan, I.C. Oliveira, L.A. Rasia, C.F.R. Mateus, Preliminary evaluation of the influence of the temperature on the performance of a piezoresistive pressure sensor based on a-SiC film. Microsys. Technol. 17, 477–480 (2011)CrossRef M.A. Fraga, M. Massi, H. Furlan, I.C. Oliveira, L.A. Rasia, C.F.R. Mateus, Preliminary evaluation of the influence of the temperature on the performance of a piezoresistive pressure sensor based on a-SiC film. Microsys. Technol. 17, 477–480 (2011)CrossRef
113.
Zurück zum Zitat M.A. Fraga, H. Furlan, R.S. Pessoa, L.A. Rasia, C.F.R. Mateus, Studies on SiC, DLC and TiO2 thin films as piezoresistive sensor materials for high temperature application. Microsys. Technol. 18, 1027–1033 (2012)CrossRef M.A. Fraga, H. Furlan, R.S. Pessoa, L.A. Rasia, C.F.R. Mateus, Studies on SiC, DLC and TiO2 thin films as piezoresistive sensor materials for high temperature application. Microsys. Technol. 18, 1027–1033 (2012)CrossRef
114.
Zurück zum Zitat A. Kishimoto, D. Mutaguchi, H. Hayashi, Y. Numata, High temperature the piezoresistive effect properties of 6H-SiC ceramics doped with trivalent elements. Mater. Sci. Eng. B 135, 145–149 (2006)CrossRef A. Kishimoto, D. Mutaguchi, H. Hayashi, Y. Numata, High temperature the piezoresistive effect properties of 6H-SiC ceramics doped with trivalent elements. Mater. Sci. Eng. B 135, 145–149 (2006)CrossRef
115.
Zurück zum Zitat A. Kishimoto, Y. Okada, H. Hayashi, Improvement of the piezoresistive effect properties of silicon carbide ceramics through co-doping of aluminum nitride and nitrogen. Ceram. Int. 34, 845–848 (2008)CrossRef A. Kishimoto, Y. Okada, H. Hayashi, Improvement of the piezoresistive effect properties of silicon carbide ceramics through co-doping of aluminum nitride and nitrogen. Ceram. Int. 34, 845–848 (2008)CrossRef
116.
Zurück zum Zitat K. Zekentes, K. Rogdakis, SiC nanowires: material and devices. J. Phys. D: Appl. Phys. 44, 133011 (2011)CrossRef K. Zekentes, K. Rogdakis, SiC nanowires: material and devices. J. Phys. D: Appl. Phys. 44, 133011 (2011)CrossRef
117.
Zurück zum Zitat R. Wu, K. Zhou, C.Y. Yue, J. Wei, Y. Pan, Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog. Mater. Sci. 72, 1–60 (2015)CrossRef R. Wu, K. Zhou, C.Y. Yue, J. Wei, Y. Pan, Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog. Mater. Sci. 72, 1–60 (2015)CrossRef
118.
Zurück zum Zitat A. Lugstein, M. Steinmair, A. Steiger, H. Kosina, E. Bertagnolli, Anomalous piezoresistance effect in ultrastrained silicon nanowires. Nano Lett. 10, 3204–3208 (2010)CrossRef A. Lugstein, M. Steinmair, A. Steiger, H. Kosina, E. Bertagnolli, Anomalous piezoresistance effect in ultrastrained silicon nanowires. Nano Lett. 10, 3204–3208 (2010)CrossRef
119.
Zurück zum Zitat R. He, P. Yang, Giant the piezoresistive effect effect in silicon nanowires. Nature Nanotechnol. 1, 42–46 (2006)CrossRef R. He, P. Yang, Giant the piezoresistive effect effect in silicon nanowires. Nature Nanotechnol. 1, 42–46 (2006)CrossRef
120.
Zurück zum Zitat A.C.H. Rowe, Silicon nanowires feel the pinch. Nature Nanotechnol. 3(6), 311–312 (2008)CrossRef A.C.H. Rowe, Silicon nanowires feel the pinch. Nature Nanotechnol. 3(6), 311–312 (2008)CrossRef
121.
Zurück zum Zitat R. Shao, K. Zheng, Y. Zhang, Y. Li, Z. Zhang, The piezoresistive effect behaviors of ultra-strained SiC nanowires. Appl. Phys. Lett. 101, 233109 (2012)CrossRef R. Shao, K. Zheng, Y. Zhang, Y. Li, Z. Zhang, The piezoresistive effect behaviors of ultra-strained SiC nanowires. Appl. Phys. Lett. 101, 233109 (2012)CrossRef
122.
Zurück zum Zitat H. Zeng, T. Li, M. Bartenwerfer, S. Fatikow, Y. Wang, In situ SEM electromechanical characterization of nanowire using an electrostatic tensile device. J. Phys. D: Appl. Phys. 46, 305501 (2013)CrossRef H. Zeng, T. Li, M. Bartenwerfer, S. Fatikow, Y. Wang, In situ SEM electromechanical characterization of nanowire using an electrostatic tensile device. J. Phys. D: Appl. Phys. 46, 305501 (2013)CrossRef
123.
Zurück zum Zitat J. Bi, G. Wei, L. Wang, F. Gao, J. Zheng, B. Tang, W. Yang, Highly sensitive piezoresistance behaviors of n-type 3C-SiC nanowires. J. Mater. Chem. C 1, 4514 (2013)CrossRef J. Bi, G. Wei, L. Wang, F. Gao, J. Zheng, B. Tang, W. Yang, Highly sensitive piezoresistance behaviors of n-type 3C-SiC nanowires. J. Mater. Chem. C 1, 4514 (2013)CrossRef
124.
Zurück zum Zitat F. Gao, J. Zheng, M. Wang, G. Wei, W. Yang, Piezoresistance behaviors of p-type 6H-SiC nanowires. Chem. Commun. 47, 11993–11995 (2011)CrossRef F. Gao, J. Zheng, M. Wang, G. Wei, W. Yang, Piezoresistance behaviors of p-type 6H-SiC nanowires. Chem. Commun. 47, 11993–11995 (2011)CrossRef
125.
Zurück zum Zitat K. Nakamura, T. Toriyama, S. Sugiyama, Analysis on piezoresistive property of silicon carbide on the basis of first-principles calculation, Proceedings of the 27th Sensor Symposium (2010), pp. 1–16 K. Nakamura, T. Toriyama, S. Sugiyama, Analysis on piezoresistive property of silicon carbide on the basis of first-principles calculation, Proceedings of the 27th Sensor Symposium (2010), pp. 1–16
126.
Zurück zum Zitat K. Nakamura, T. Toriyama, S. Sugiyama, First-principles simulation on piezoresistivity in alpha and beta silicon carbide nanosheets. Jpn. J. Appl. Phys. 50, 06GE05 (2011)CrossRef K. Nakamura, T. Toriyama, S. Sugiyama, First-principles simulation on piezoresistivity in alpha and beta silicon carbide nanosheets. Jpn. J. Appl. Phys. 50, 06GE05 (2011)CrossRef
127.
Zurück zum Zitat K. Nakamura, Y. Isono, T. Toriyama, First-principles study on piezoresistance effect in silicon nanowires. Jpn. J. Appl. Phys. 47, 5132–5138 (2008)CrossRef K. Nakamura, Y. Isono, T. Toriyama, First-principles study on piezoresistance effect in silicon nanowires. Jpn. J. Appl. Phys. 47, 5132–5138 (2008)CrossRef
128.
Zurück zum Zitat K. Nakamura, Y. Isono, T. Toriyama, S. Sugiyama, Simulation of piezoresistivity in n-type single-crystal silicon on the basis of the first-principles band structure. Phys. Rev. B 80, 045205 (2009)CrossRef K. Nakamura, Y. Isono, T. Toriyama, S. Sugiyama, Simulation of piezoresistivity in n-type single-crystal silicon on the basis of the first-principles band structure. Phys. Rev. B 80, 045205 (2009)CrossRef
129.
Zurück zum Zitat Y. Yang, X. Li, Giant piezoresistance of p-type nano-thick silicon induced by interface electron trapping instead of 2D quantum confinement. Nanotechnology 22, 015501 (2011)CrossRef Y. Yang, X. Li, Giant piezoresistance of p-type nano-thick silicon induced by interface electron trapping instead of 2D quantum confinement. Nanotechnology 22, 015501 (2011)CrossRef
130.
Zurück zum Zitat L.M. Terman, An investigation of surface states at silicon/silicon oxide interface employing metal-oxide-silicon diodes. Solid State Electron. 5, 285 (1962)CrossRef L.M. Terman, An investigation of surface states at silicon/silicon oxide interface employing metal-oxide-silicon diodes. Solid State Electron. 5, 285 (1962)CrossRef
131.
Zurück zum Zitat R. Ziermann, J.V. Berg, W. Reichert, E. Obermeier, M. Eichkoff, G. Kroetz, A high temperature pressure sensor with \(\beta \)-SiC piezoresistors on SOI substrates, Proceedings of the Transducers 97 International Conference on Solid State Sensors and Actuators (Chicago, USA, 1997), pp. 1411–1414 R. Ziermann, J.V. Berg, W. Reichert, E. Obermeier, M. Eichkoff, G. Kroetz, A high temperature pressure sensor with \(\beta \)-SiC piezoresistors on SOI substrates, Proceedings of the Transducers 97 International Conference on Solid State Sensors and Actuators (Chicago, USA, 1997), pp. 1411–1414
132.
Zurück zum Zitat J.V. Berg, R. Ziermann, W. Reichert, E. Obermeier, Measurement of the cylinder pressure in combustion engines with a piezoresistive \(\beta \)-SiC-on-SOI pressure sensor, Proceedings of the High Temperature Electronics Conference (1998), pp. 245–249 J.V. Berg, R. Ziermann, W. Reichert, E. Obermeier, Measurement of the cylinder pressure in combustion engines with a piezoresistive \(\beta \)-SiC-on-SOI pressure sensor, Proceedings of the High Temperature Electronics Conference (1998), pp. 245–249
133.
Zurück zum Zitat R. Ziermann, J.V. Berg, E. Obermeier, F. Wischmeyer, E. Niemann, H. Moller, M. Eickhoff, G. Kroetz, High temperature piezoresistive \(\beta \)-SiC-on-SOI pressure sensor with on chip SiC thermistor. Mater. Sci. Eng. B 61–62, 576–578 (1999)CrossRef R. Ziermann, J.V. Berg, E. Obermeier, F. Wischmeyer, E. Niemann, H. Moller, M. Eickhoff, G. Kroetz, High temperature piezoresistive \(\beta \)-SiC-on-SOI pressure sensor with on chip SiC thermistor. Mater. Sci. Eng. B 61–62, 576–578 (1999)CrossRef
134.
Zurück zum Zitat G.S. Chung, Fabrication and characterization of a polycrystalline 3C-SiC piezoresistive micro-pressure sensor. J. Korean Phys. Soc. 56(6), 1759–1762 (2010)CrossRef G.S. Chung, Fabrication and characterization of a polycrystalline 3C-SiC piezoresistive micro-pressure sensor. J. Korean Phys. Soc. 56(6), 1759–1762 (2010)CrossRef
135.
Zurück zum Zitat G. Wieczorek, B. Schellin, E. Obermeier, G. Fagnani, L. Drera, SiC based pressure sensor for high-temperature environments, in Proceedings of the IEEE Sensors Conference (2007), pp. 748–751 G. Wieczorek, B. Schellin, E. Obermeier, G. Fagnani, L. Drera, SiC based pressure sensor for high-temperature environments, in Proceedings of the IEEE Sensors Conference (2007), pp. 748–751
136.
Zurück zum Zitat R.S. Okojie, A.A. Ned, A.D. Kurtz, Operation of \(\alpha \)(6H)-SiC pressure sensor at \(500^{\circ }\)C. Sens. Actuators A-Phys. 66, 200–204 (1998)CrossRef R.S. Okojie, A.A. Ned, A.D. Kurtz, Operation of \(\alpha \)(6H)-SiC pressure sensor at \(500^{\circ }\)C. Sens. Actuators A-Phys. 66, 200–204 (1998)CrossRef
137.
Zurück zum Zitat R.S. Okojie, D. Lukco, C. Blaha, V. Nguyen, E. Savrun, Zero offset drift suppression in SiC pressure sensors at \(600^\circ \)C, in Proceedings of the IEEE Sensors Conference (2010), pp. 2269–2274 R.S. Okojie, D. Lukco, C. Blaha, V. Nguyen, E. Savrun, Zero offset drift suppression in SiC pressure sensors at \(600^\circ \)C, in Proceedings of the IEEE Sensors Conference (2010), pp. 2269–2274
138.
Zurück zum Zitat R.S. Okojie, D. Lukco, V. Nguyen, E. Savrun, 4H-SiC piezoresistive pressure sensors at \(800^\circ \)C with observed sensitivity recovery. IEEE Electron Device Lett. 36(2), 174–176 (2015)CrossRef R.S. Okojie, D. Lukco, V. Nguyen, E. Savrun, 4H-SiC piezoresistive pressure sensors at \(800^\circ \)C with observed sensitivity recovery. IEEE Electron Device Lett. 36(2), 174–176 (2015)CrossRef
139.
Zurück zum Zitat G.S. Chung, R. Maboudian, Bonding characteristics of 3C-SiC wafers with hydrofluoric acid for high-temperature MEMS applications. Sens. Actuators A-Phys. 119, 599–604 (2005)CrossRef G.S. Chung, R. Maboudian, Bonding characteristics of 3C-SiC wafers with hydrofluoric acid for high-temperature MEMS applications. Sens. Actuators A-Phys. 119, 599–604 (2005)CrossRef
140.
Zurück zum Zitat F. Laermer, A. Urban, Challenges, developments and applications of silicon deep reactive ion etching. Microelectron. Eng. 67–68, 349–355 (2003)CrossRef F. Laermer, A. Urban, Challenges, developments and applications of silicon deep reactive ion etching. Microelectron. Eng. 67–68, 349–355 (2003)CrossRef
141.
Zurück zum Zitat A.R. Atwell, R.S. Okojie, K.T. Kornegay, S.L. Roberson, A. Beliveau, Simulation, fabrication and testing of bulk micromachined 6H-SiC high-g piezoresistive accelerometers. Sens. Actuators A-Phys. 104, 11–18 (2003)CrossRef A.R. Atwell, R.S. Okojie, K.T. Kornegay, S.L. Roberson, A. Beliveau, Simulation, fabrication and testing of bulk micromachined 6H-SiC high-g piezoresistive accelerometers. Sens. Actuators A-Phys. 104, 11–18 (2003)CrossRef
142.
Zurück zum Zitat M.A. Fraga, H. Furlan, S.M. Wakavaiachi, M. Massi, Fabrication and characterization of piezoresistive strain sensors for high temperature applications, in Proceedings of the IEEE International Conference on Industrial Technology (ICIT) (2010), pp. 513–516 M.A. Fraga, H. Furlan, S.M. Wakavaiachi, M. Massi, Fabrication and characterization of piezoresistive strain sensors for high temperature applications, in Proceedings of the IEEE International Conference on Industrial Technology (ICIT) (2010), pp. 513–516
143.
Zurück zum Zitat M. Kumar, H. Bhaskaran, Ultrasensitive room-temperature piezoresistive transduction in graphene-based nanoelectromechanical systems. Nano Lett. 15(4), 2562–2567 (2015)CrossRef M. Kumar, H. Bhaskaran, Ultrasensitive room-temperature piezoresistive transduction in graphene-based nanoelectromechanical systems. Nano Lett. 15(4), 2562–2567 (2015)CrossRef
Metadaten
Titel
Introduction and Literature Review
verfasst von
Hoang-Phuong Phan
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-55544-7_1