Skip to main content
Erschienen in: Cellulose 4/2014

01.08.2014 | Original Paper

Bacterial cellulose/gelatin composites: in situ preparation and glutaraldehyde treatment

verfasst von: Yuanxi Chen, Xiaodong Zhou, Qunfang Lin, Danfeng Jiang

Erschienen in: Cellulose | Ausgabe 4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bacterial cellulose (BC)/GEL composites were prepared in situ by adding gelatin into BC-producing culture medium. The addition of gelatin interfered with the formation of the BC pellicle structure and thus made the BC yield and growth rate quite different from that of pure BC. Scanning electron microscope images showed that the width of cellulose ribbons became narrower than that of pure BC and the gelatin filled in the pores of BC to form a dense structure. The addition level of gelatin significantly influences the yield of BC/GEL composites. An optimum value of 0.5 wt/v% gelatin was attained, with which the highest yield of 0.0541 g/100 mL was achieved. Under this condition, the weight percentage of gelatin in BC/GEL composite was 65 wt%. BC/GEL composites were treated with glutaraldehyde to crosslink BC fibrils and gelatin. The crosslinking degree, determined by the concentration of glutaraldehyde and crosslinking time, could affect the swelling behavior, thermal stability and mechanical properties of composites. With increasing of the crosslinking degree, the crystallinity index and swelling behavior of the composites decreased. The increase in the crosslinking degree also descreased the composite’s strain at break in elongation but increased the compressive and tensile strength. Covalent bonding between BC and gelatin provides good strength retention to the glutaraldehyde-treated composites with a high crosslinking degree. Considering the cytocompatibility and properties of composites, the most appropriate concentration of glutaraldehyde and crosslinking time were 1.0 wt/v% and 24 h, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149CrossRef Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149CrossRef
Zurück zum Zitat Bäckdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med 2:320–330CrossRef Bäckdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med 2:320–330CrossRef
Zurück zum Zitat Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, Gatenholm P (2007) Modification of nanocellulose with a xyloglucan-RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromolecules 8:3697–3704CrossRef Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, Gatenholm P (2007) Modification of nanocellulose with a xyloglucan-RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromolecules 8:3697–3704CrossRef
Zurück zum Zitat Brown EE, Zhang JW, Laborie MPG (2011) Never-dried bacterial cellulose/fibrin composites: preparation, morphology and mechanical properties. Cellulose 18:631–641CrossRef Brown EE, Zhang JW, Laborie MPG (2011) Never-dried bacterial cellulose/fibrin composites: preparation, morphology and mechanical properties. Cellulose 18:631–641CrossRef
Zurück zum Zitat Brown EE, Laborie MPG, Zhang JW (2012) Glutaraldehyde treatment of bacterial cellulose/fibrin composites: impact on morphology, tensile and viscoelastic properties. Cellulose 19:127–137CrossRef Brown EE, Laborie MPG, Zhang JW (2012) Glutaraldehyde treatment of bacterial cellulose/fibrin composites: impact on morphology, tensile and viscoelastic properties. Cellulose 19:127–137CrossRef
Zurück zum Zitat Cai ZJ, Hou CW, Yang G (2011) Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J Polym Res 121:1488–1494 Cai ZJ, Hou CW, Yang G (2011) Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J Polym Res 121:1488–1494
Zurück zum Zitat Chang ST, Chen LC, Lin SB, Chen HH (2012) Nano-biomaterials application: morphology and physical properties of bacterial cellulose/gelatin composites via crosslinking. Food Hydrocoll 27:137–144CrossRef Chang ST, Chen LC, Lin SB, Chen HH (2012) Nano-biomaterials application: morphology and physical properties of bacterial cellulose/gelatin composites via crosslinking. Food Hydrocoll 27:137–144CrossRef
Zurück zum Zitat Chen YX, Zhou XD, Yin XC, Lin QF, Zhu MQ (2014) A novel route to modify the interface of glass fiber-reinforced epoxy resin composite via bacterial cellulose. Int J Polym Mater 63:221–227CrossRef Chen YX, Zhou XD, Yin XC, Lin QF, Zhu MQ (2014) A novel route to modify the interface of glass fiber-reinforced epoxy resin composite via bacterial cellulose. Int J Polym Mater 63:221–227CrossRef
Zurück zum Zitat Choi YS, Hong SR, Lee YM et al (1999) Study on gelatin-containing artificial skin: I. Prepatation and characteristics of novel gelatin-alginate sponge. Biomaterials 20:409–417CrossRef Choi YS, Hong SR, Lee YM et al (1999) Study on gelatin-containing artificial skin: I. Prepatation and characteristics of novel gelatin-alginate sponge. Biomaterials 20:409–417CrossRef
Zurück zum Zitat Courts A (1954) The N-terminal amino acid residues of gelatin. 2 thermal degradation. Biochem J 58:74–79 Courts A (1954) The N-terminal amino acid residues of gelatin. 2 thermal degradation. Biochem J 58:74–79
Zurück zum Zitat Engelhardt J (1995) Sources, industrial derivatives, and commercial applications of cellulose. Carbohydr Eur 12:5–14 Engelhardt J (1995) Sources, industrial derivatives, and commercial applications of cellulose. Carbohydr Eur 12:5–14
Zurück zum Zitat Gao C, Yan T, Dai K, Wan Y (2011) Immobilization of gelatin onto natural nanofibers for tissue engineering scaffold applications without utilization of any crosslinking agent. Cellulose 19:761–768CrossRef Gao C, Yan T, Dai K, Wan Y (2011) Immobilization of gelatin onto natural nanofibers for tissue engineering scaffold applications without utilization of any crosslinking agent. Cellulose 19:761–768CrossRef
Zurück zum Zitat Gennadios A, Handa A, Froning GW, Weller CL, Hanna MA (1998) Physical properties of egg white dialdehyde starch films. J Agric Food Chem 46:1297–1302CrossRef Gennadios A, Handa A, Froning GW, Weller CL, Hanna MA (1998) Physical properties of egg white dialdehyde starch films. J Agric Food Chem 46:1297–1302CrossRef
Zurück zum Zitat Goissis G, Junior ME, Marcantônio RAC et al (1999) Biocompatibility studies of anionic collagen membranes with different degree of glutaraldehyde cross-linking. Biomaterials 20:27–34CrossRef Goissis G, Junior ME, Marcantônio RAC et al (1999) Biocompatibility studies of anionic collagen membranes with different degree of glutaraldehyde cross-linking. Biomaterials 20:27–34CrossRef
Zurück zum Zitat Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646CrossRef Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646CrossRef
Zurück zum Zitat Hans S (1992) Swelling kinetics of polymers. Macromol Sci Phys Part B 33:1–9 Hans S (1992) Swelling kinetics of polymers. Macromol Sci Phys Part B 33:1–9
Zurück zum Zitat Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54:13–36CrossRef Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54:13–36CrossRef
Zurück zum Zitat Hwang JW, Yang YK, Hwang JK, Pyun YR, Kim YS (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter Xylinum BRC5 in agitated culture. J Biosci Bioeng 88:183–188CrossRef Hwang JW, Yang YK, Hwang JK, Pyun YR, Kim YS (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter Xylinum BRC5 in agitated culture. J Biosci Bioeng 88:183–188CrossRef
Zurück zum Zitat Imai T, Kimura S, Iijima T et al (1990) Rapidly absorbed solid oral formulations of ibuprofen using water-soluble gelatin. J Pharm Pharmacol 42:615–619CrossRef Imai T, Kimura S, Iijima T et al (1990) Rapidly absorbed solid oral formulations of ibuprofen using water-soluble gelatin. J Pharm Pharmacol 42:615–619CrossRef
Zurück zum Zitat Jonas R, Farah LH (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106CrossRef Jonas R, Farah LH (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106CrossRef
Zurück zum Zitat Khor E (1997) Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials 18:95–105CrossRef Khor E (1997) Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials 18:95–105CrossRef
Zurück zum Zitat Kimura S, Nishiyama T, Imai T, Otagiri M (1990) Improved dissolution and absorption of drugs using low molecular gelatin. Acta Pharm Nord 2:65–72 Kimura S, Nishiyama T, Imai T, Otagiri M (1990) Improved dissolution and absorption of drugs using low molecular gelatin. Acta Pharm Nord 2:65–72
Zurück zum Zitat Kramer F, Klemm D, Schumann D et al (2006) Nanocellulose polymer composites as innovative pool for (bio)material development. Macromol Symp 224:136–148CrossRef Kramer F, Klemm D, Schumann D et al (2006) Nanocellulose polymer composites as innovative pool for (bio)material development. Macromol Symp 224:136–148CrossRef
Zurück zum Zitat Lin YK, Chen KH, Ou KL, Liu M (2011) Effects of different extracellular matrices and growth factor immobilization on biodegradability and biocompatibility of macroporous bacterial cellulose. J Bioact Compat Polym 26:508–518CrossRef Lin YK, Chen KH, Ou KL, Liu M (2011) Effects of different extracellular matrices and growth factor immobilization on biodegradability and biocompatibility of macroporous bacterial cellulose. J Bioact Compat Polym 26:508–518CrossRef
Zurück zum Zitat Mansur HS, Costa ESJ, Mansur AAP, Barbosa-Stancioli EF (2009) Cytocompatibility evaluation in cell-culture systems of chemically crosslinked chitosan/PVA hydrogels. Mater Sci Eng, C 29:1574–1583CrossRef Mansur HS, Costa ESJ, Mansur AAP, Barbosa-Stancioli EF (2009) Cytocompatibility evaluation in cell-culture systems of chemically crosslinked chitosan/PVA hydrogels. Mater Sci Eng, C 29:1574–1583CrossRef
Zurück zum Zitat Maréchal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196CrossRef Maréchal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196CrossRef
Zurück zum Zitat Marois Y, Chakfé N, Deng X et al (1995) Carbodiimide cross-linked gelatin: a new coating for porous polyester arterial prostheses. Biomaterials 16:1131–1139CrossRef Marois Y, Chakfé N, Deng X et al (1995) Carbodiimide cross-linked gelatin: a new coating for porous polyester arterial prostheses. Biomaterials 16:1131–1139CrossRef
Zurück zum Zitat Martucci JF, Ruseckaite RA (2009) Tensile properties, barrier properties, and biodegradation in soil of compression: molded gelatin-dialdehyde starch films. J Appl Polym Sci 112:2166–2178CrossRef Martucci JF, Ruseckaite RA (2009) Tensile properties, barrier properties, and biodegradation in soil of compression: molded gelatin-dialdehyde starch films. J Appl Polym Sci 112:2166–2178CrossRef
Zurück zum Zitat Mathew AP, Oksman K, Pierron D, Harmad MF (2012) Crosslinked fibrous composites based on cellulose nanofibers and in situ pH induced collagen fibrillation. Cellulose 19:139–150CrossRef Mathew AP, Oksman K, Pierron D, Harmad MF (2012) Crosslinked fibrous composites based on cellulose nanofibers and in situ pH induced collagen fibrillation. Cellulose 19:139–150CrossRef
Zurück zum Zitat Mu C, Liu F, Cheng Q, Li H, Wu B, Zhang G et al (2010) Collagen cryogel cross-linked by dialdehyde starch. Macromol Mater Eng 295:100–107 Mu C, Liu F, Cheng Q, Li H, Wu B, Zhang G et al (2010) Collagen cryogel cross-linked by dialdehyde starch. Macromol Mater Eng 295:100–107
Zurück zum Zitat Nakayama A, Kakugo A, Gong JP et al (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128CrossRef Nakayama A, Kakugo A, Gong JP et al (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128CrossRef
Zurück zum Zitat Pardo AG (1996) Effect of surfactants on cellulose production by Necteia catalinensis. Curr Microbiol 33:275–278CrossRef Pardo AG (1996) Effect of surfactants on cellulose production by Necteia catalinensis. Curr Microbiol 33:275–278CrossRef
Zurück zum Zitat Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58 Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58
Zurück zum Zitat Strobin G, Wlochowicz A, Ciechańska D, Boryniec S, Struszczyk H, Sobczak S (2003) Molecular parameters of bacterial cellulose. Effect of temperature and pH biosynthesis medium. Polimery 48:779–783 Strobin G, Wlochowicz A, Ciechańska D, Boryniec S, Struszczyk H, Sobczak S (2003) Molecular parameters of bacterial cellulose. Effect of temperature and pH biosynthesis medium. Polimery 48:779–783
Zurück zum Zitat Tahara N, Yano H, Yoshinaga F (1997) Two types of cellulase activity produced by a cellulose-producing Acetobacter strain. J Ferment Bioeng 83:389–392CrossRef Tahara N, Yano H, Yoshinaga F (1997) Two types of cellulase activity produced by a cellulose-producing Acetobacter strain. J Ferment Bioeng 83:389–392CrossRef
Zurück zum Zitat Taokaew S, Seetabhawang S, Siripong P, Phisalaphong M (2013) Biosynthesis and characterization of nanocellulose-gelatin films. Materials 6:782–794CrossRef Taokaew S, Seetabhawang S, Siripong P, Phisalaphong M (2013) Biosynthesis and characterization of nanocellulose-gelatin films. Materials 6:782–794CrossRef
Zurück zum Zitat Ulubayram K, Cakar AN, Korkusuz P et al (2001) EGF containing gelatin-based wound dressings. Biomaterials 22:1345–1356CrossRef Ulubayram K, Cakar AN, Korkusuz P et al (2001) EGF containing gelatin-based wound dressings. Biomaterials 22:1345–1356CrossRef
Zurück zum Zitat Wang J, Wan YZ, Han J et al (2011) Nanocomposite prepared by immobilizing gelatin and hydroxyapatite on bacterial cellulose nanofibres. Micro Nano Lett 6:133–136CrossRef Wang J, Wan YZ, Han J et al (2011) Nanocomposite prepared by immobilizing gelatin and hydroxyapatite on bacterial cellulose nanofibres. Micro Nano Lett 6:133–136CrossRef
Zurück zum Zitat Wine Y, Cohen-Hadar N, Freeman A, Frolow F (2007) Elucidation of the mechanism and end products of glutaraldehyde crosslinking reaction by X-ray structure analysis. Biotechnol Bioeng 9:711–718CrossRef Wine Y, Cohen-Hadar N, Freeman A, Frolow F (2007) Elucidation of the mechanism and end products of glutaraldehyde crosslinking reaction by X-ray structure analysis. Biotechnol Bioeng 9:711–718CrossRef
Zurück zum Zitat Yao CH, Liu BS, Chang CJ et al (2004) Preparation of networks of gelatin and genipin as degradable biomaterials. Mater Chem Phys 83:204–208CrossRef Yao CH, Liu BS, Chang CJ et al (2004) Preparation of networks of gelatin and genipin as degradable biomaterials. Mater Chem Phys 83:204–208CrossRef
Zurück zum Zitat Zhang YZ, Venugopal J, Huang ZM et al (2006) Crosslinking of the electrospun gelatin nanofibers. Polymer 47:2911–2917CrossRef Zhang YZ, Venugopal J, Huang ZM et al (2006) Crosslinking of the electrospun gelatin nanofibers. Polymer 47:2911–2917CrossRef
Metadaten
Titel
Bacterial cellulose/gelatin composites: in situ preparation and glutaraldehyde treatment
verfasst von
Yuanxi Chen
Xiaodong Zhou
Qunfang Lin
Danfeng Jiang
Publikationsdatum
01.08.2014
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 4/2014
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-014-0272-9

Weitere Artikel der Ausgabe 4/2014

Cellulose 4/2014 Zur Ausgabe