Skip to main content
Erschienen in: Cellulose 8/2018

02.06.2018 | Original Paper

Green method to reinforce natural rubber with tunicate cellulose nanocrystals via one-pot reaction

verfasst von: Liming Cao, Daosheng Yuan, Xingfeng Fu, Yukun Chen

Erschienen in: Cellulose | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tunicate cellulose nanocrystals (t-CNs) isolated from marine biomass were mixed with natural rubber (NR) via two different approaches. The first approach was the green one-pot route, NR latex was first mixed with t-CNs suspension, followed by epoxidization of the mixture. Meanwhile, a two-step method, referring to the way that NR latex was first epoxidized and then mixed with t-CNs suspension, was also carried out for comparison. The interfacial interaction, thermal performance, morphology, mechanical properties and water swelling behavior were investigated. Hydrogen bonds formed in the both nanocomposites and mechanical properties improved with increasing t-CNs content. Moreover, better dispersion and enhanced interfacial interaction were achieved for one-pot method, which was ascribed to the etching effect of hydrogen peroxide on the t-CNs surface and the possible grafting reaction during one-pot process. Therefore, compared with two-step method, 20% increase in tensile strength and 50% increase in tensile modulus were achieved for one-pot method at 10 phr t-CNs content.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bitinis N, Verdejo R, Bras J et al (2013) Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites part I: Processing and morphology. Carbohydr Polym 96:611–620CrossRefPubMed Bitinis N, Verdejo R, Bras J et al (2013) Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites part I: Processing and morphology. Carbohydr Polym 96:611–620CrossRefPubMed
Zurück zum Zitat Bokobza L, Erman B (2000) A theoretical and experimental study of filler effect on stress-deformation-segmental orientation relations for poly(-dimethylsiloxane) networks. Macromolecules 33:8858–8864CrossRef Bokobza L, Erman B (2000) A theoretical and experimental study of filler effect on stress-deformation-segmental orientation relations for poly(-dimethylsiloxane) networks. Macromolecules 33:8858–8864CrossRef
Zurück zum Zitat Cao XD, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J Mater Chem 19:7137–7145CrossRef Cao XD, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J Mater Chem 19:7137–7145CrossRef
Zurück zum Zitat Cao XD, Xu CH, Liu YH et al (2013) Preparation and properties of carboxylated styrene-butadiene rubber/cellulose anocrystals composites. Carbohyd Polym 92:69–76CrossRef Cao XD, Xu CH, Liu YH et al (2013) Preparation and properties of carboxylated styrene-butadiene rubber/cellulose anocrystals composites. Carbohyd Polym 92:69–76CrossRef
Zurück zum Zitat Cao LM, Fu XF, Xu CH et al (2017a) High-performance natural rubber nanocomposites with marine biomass (tunicate cellulose). Cellulose 24:2849–2860CrossRef Cao LM, Fu XF, Xu CH et al (2017a) High-performance natural rubber nanocomposites with marine biomass (tunicate cellulose). Cellulose 24:2849–2860CrossRef
Zurück zum Zitat Cao LM, Yuan DS, Xu CH et al (2017b) Biobased, self-healable, high strength rubber with tunicate cellulose nanocrystals. Nanoscale 9:15696–15706CrossRefPubMed Cao LM, Yuan DS, Xu CH et al (2017b) Biobased, self-healable, high strength rubber with tunicate cellulose nanocrystals. Nanoscale 9:15696–15706CrossRefPubMed
Zurück zum Zitat Chen YK, Zhang YB, Xu CH et al (2015) Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites. Carbohyd Polym 130:149–154CrossRef Chen YK, Zhang YB, Xu CH et al (2015) Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites. Carbohyd Polym 130:149–154CrossRef
Zurück zum Zitat Chen YK, Wang YH, Xu CH et al (2016) New approach to fabricate novel fluorosilicone thermoplastic vulcanizate with bicrosslinked silicone rubber-core/fluororubbershell particles dispersed in poly(vinylidene fluoride): structure and property. Ind Eng Chem Res 55:1701–1709CrossRef Chen YK, Wang YH, Xu CH et al (2016) New approach to fabricate novel fluorosilicone thermoplastic vulcanizate with bicrosslinked silicone rubber-core/fluororubbershell particles dispersed in poly(vinylidene fluoride): structure and property. Ind Eng Chem Res 55:1701–1709CrossRef
Zurück zum Zitat Chen YK, Huang XH, Gong Z et al (2017) Fabrication of high performance magnetic rubber from NBR and Fe3O4 via in situ compatibilization with zinc dimethacrylate. Ind Eng Chem Res 56:183–190CrossRef Chen YK, Huang XH, Gong Z et al (2017) Fabrication of high performance magnetic rubber from NBR and Fe3O4 via in situ compatibilization with zinc dimethacrylate. Ind Eng Chem Res 56:183–190CrossRef
Zurück zum Zitat Chen YK, Wang WT, Yuan DS et al (2018) Bio-based PLA/NR-PMMA/NR ternary thermoplastic vulcanizates with balanced stiffness and toughness: “Soft–Hard” core–shell continuous rubber phase, in situ compatibilization, and properties. ACS Sustain Chem Eng 6:6488–6496CrossRef Chen YK, Wang WT, Yuan DS et al (2018) Bio-based PLA/NR-PMMA/NR ternary thermoplastic vulcanizates with balanced stiffness and toughness: “Soft–Hard” core–shell continuous rubber phase, in situ compatibilization, and properties. ACS Sustain Chem Eng 6:6488–6496CrossRef
Zurück zum Zitat Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367CrossRef Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367CrossRef
Zurück zum Zitat Fortunati E, Luzi F, Puglia D et al (2015) Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: innovative reuse of coastal plant. Ind Crop Prod 67:439–447CrossRef Fortunati E, Luzi F, Puglia D et al (2015) Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: innovative reuse of coastal plant. Ind Crop Prod 67:439–447CrossRef
Zurück zum Zitat Fox J, Wie JJ, Greenland BW et al (2012) High-Strength, healable, supramolecular polymer nanocomposites. J Am Chem Soc 134:5362–5368CrossRefPubMed Fox J, Wie JJ, Greenland BW et al (2012) High-Strength, healable, supramolecular polymer nanocomposites. J Am Chem Soc 134:5362–5368CrossRefPubMed
Zurück zum Zitat Fu LH, Wu FD, Xu CH et al (2018) Anisotropic shape memory behaviors of polylactic acid/citric acid-bentonite composite with a gradient filler concentration in thickness direction. Ind Eng Chem Res 57:6265–6274CrossRef Fu LH, Wu FD, Xu CH et al (2018) Anisotropic shape memory behaviors of polylactic acid/citric acid-bentonite composite with a gradient filler concentration in thickness direction. Ind Eng Chem Res 57:6265–6274CrossRef
Zurück zum Zitat George N, Bipinbal PK, Bhadran B et al (2017) Segregated network formation of multiwalled carbon nanotubes in natural rubber through surfactant assisted latex compounding: a novel technique for multifunctional properties. Polymer 112:264–277CrossRef George N, Bipinbal PK, Bhadran B et al (2017) Segregated network formation of multiwalled carbon nanotubes in natural rubber through surfactant assisted latex compounding: a novel technique for multifunctional properties. Polymer 112:264–277CrossRef
Zurück zum Zitat Goetz L, Foston M, Mathew AP et al (2010) Poly(methyl vinyl ether-co-maleic acid)–polyethylene glycol nanocomposites cross-linked in situ with cellulose nanowhiskers. Biomacromol 11:660–2666CrossRef Goetz L, Foston M, Mathew AP et al (2010) Poly(methyl vinyl ether-co-maleic acid)–polyethylene glycol nanocomposites cross-linked in situ with cellulose nanowhiskers. Biomacromol 11:660–2666CrossRef
Zurück zum Zitat Ha QX, Wu YP, Wang YQ et al (2008) Enhanced interfacial interaction of rubber/clay nanocomposites by a novel two-step method. Compos Sci Technol 68:1050–1056CrossRef Ha QX, Wu YP, Wang YQ et al (2008) Enhanced interfacial interaction of rubber/clay nanocomposites by a novel two-step method. Compos Sci Technol 68:1050–1056CrossRef
Zurück zum Zitat Kanoth BP, Claudino M, Johansson M et al (2015) Biocomposites from natural rubber: synergistic effects of functionalized cellulose nanocrystals as both reinforcing and crosslinking agents via free-radical thiol-ene chemistry. ACS Appl Mater Interfaces 7:16303–16310CrossRef Kanoth BP, Claudino M, Johansson M et al (2015) Biocomposites from natural rubber: synergistic effects of functionalized cellulose nanocrystals as both reinforcing and crosslinking agents via free-radical thiol-ene chemistry. ACS Appl Mater Interfaces 7:16303–16310CrossRef
Zurück zum Zitat Lin N, Dufresne A (2013) Physical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites. Macromolecules 46:5570–5583CrossRef Lin N, Dufresne A (2013) Physical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites. Macromolecules 46:5570–5583CrossRef
Zurück zum Zitat Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advance functional nanomaterials: a review. Nanoscale 4:3274–3294CrossRefPubMed Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advance functional nanomaterials: a review. Nanoscale 4:3274–3294CrossRefPubMed
Zurück zum Zitat Liu MX, Peng Q, Luo BH, Zhou CR (2015a) The improvement of mechanical performance and water-response of carboxylated SBR by chitin nanocrystals. Eur Polym J 68:190–206CrossRef Liu MX, Peng Q, Luo BH, Zhou CR (2015a) The improvement of mechanical performance and water-response of carboxylated SBR by chitin nanocrystals. Eur Polym J 68:190–206CrossRef
Zurück zum Zitat Liu X, Kuang WY, Guo BC (2015b) Preparation of rubber/grapheme oxide composites with in situ interfacial design. Polymer 56:553–562CrossRef Liu X, Kuang WY, Guo BC (2015b) Preparation of rubber/grapheme oxide composites with in situ interfacial design. Polymer 56:553–562CrossRef
Zurück zum Zitat Liu XH, Lu CH, Wu XD et al (2017) Self-healing strain sensors based on nanostructured supramolecular conductive elastomers. J Mater Chem A 5:9824–9832CrossRef Liu XH, Lu CH, Wu XD et al (2017) Self-healing strain sensors based on nanostructured supramolecular conductive elastomers. J Mater Chem A 5:9824–9832CrossRef
Zurück zum Zitat Mariano M, Kissi NE, Dufresne A (2016) Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites. Carbohyd Polym 137:174–183CrossRef Mariano M, Kissi NE, Dufresne A (2016) Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites. Carbohyd Polym 137:174–183CrossRef
Zurück zum Zitat Miao CW, Haman W (2016) In-situ polymerized cellulose nanocrystals (CNC)-poly(l-lactide) (PLLA) nanomaterials and applications in nanocomposite processing. Carbohyd Polym 153:549–558CrossRef Miao CW, Haman W (2016) In-situ polymerized cellulose nanocrystals (CNC)-poly(l-lactide) (PLLA) nanomaterials and applications in nanocomposite processing. Carbohyd Polym 153:549–558CrossRef
Zurück zum Zitat Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefPubMed Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefPubMed
Zurück zum Zitat Oksman K, Aitomaki Y, Mathew A et al (2016) Review of the recent development in cellulose nanocomposites processing. Compos Part A-Appl Sci 83:2–18CrossRef Oksman K, Aitomaki Y, Mathew A et al (2016) Review of the recent development in cellulose nanocomposites processing. Compos Part A-Appl Sci 83:2–18CrossRef
Zurück zum Zitat Pei A, Malho JM, Ruokolainen J et al (2011) Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44:4422–4427CrossRef Pei A, Malho JM, Ruokolainen J et al (2011) Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44:4422–4427CrossRef
Zurück zum Zitat Sacui IA, Nieruwendaal RC, Burnett DJ et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138CrossRefPubMed Sacui IA, Nieruwendaal RC, Burnett DJ et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138CrossRefPubMed
Zurück zum Zitat Saralegi A, Gonzalez ML, Valea A et al (2014) The role of cellulose nanocrystals in the improvement of the shape-memory properties of castor oil-based segmented thermoplastic polyurethanes. Compos Sci Technol 92:27–33CrossRef Saralegi A, Gonzalez ML, Valea A et al (2014) The role of cellulose nanocrystals in the improvement of the shape-memory properties of castor oil-based segmented thermoplastic polyurethanes. Compos Sci Technol 92:27–33CrossRef
Zurück zum Zitat Sarkawi SS, Dierkes WK, Noordermeer JWM (2014) Elucidation of filler-to-filler and filler-to-rubber interactions in silica-reinforced natural rubber by TEM network visualization. Eur Polym J 54:118–127CrossRef Sarkawi SS, Dierkes WK, Noordermeer JWM (2014) Elucidation of filler-to-filler and filler-to-rubber interactions in silica-reinforced natural rubber by TEM network visualization. Eur Polym J 54:118–127CrossRef
Zurück zum Zitat Scafaro R, Botta L, Lopresti F et al (2017) Polysaccharide nanocrystals as fillers for PLA based nanocomposites. Cellulose 24:447–478CrossRef Scafaro R, Botta L, Lopresti F et al (2017) Polysaccharide nanocrystals as fillers for PLA based nanocomposites. Cellulose 24:447–478CrossRef
Zurück zum Zitat Song T, Tanpichai S, Oksman K (2016) Cross-linked polyvinyl alcohol (PVA) foams reinforced with cellulose nanocrystals (CNCs). Cellulose 23:1925–1938CrossRef Song T, Tanpichai S, Oksman K (2016) Cross-linked polyvinyl alcohol (PVA) foams reinforced with cellulose nanocrystals (CNCs). Cellulose 23:1925–1938CrossRef
Zurück zum Zitat Spinella S, Re GL, Liu B et al (2015) Polylactide/cellulose nanocrystal nanocomposites: efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polymer 65:9–17CrossRef Spinella S, Re GL, Liu B et al (2015) Polylactide/cellulose nanocrystal nanocomposites: efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polymer 65:9–17CrossRef
Zurück zum Zitat Tang ZH, Wu XH, Guo BC et al (2012) Preparation of butadiene–styrene–vinyl pyridine rubber–graphene oxide hybrids through co-coagulation process and in situ interface tailoring. J Mater Chem 22:7492–7501CrossRef Tang ZH, Wu XH, Guo BC et al (2012) Preparation of butadiene–styrene–vinyl pyridine rubber–graphene oxide hybrids through co-coagulation process and in situ interface tailoring. J Mater Chem 22:7492–7501CrossRef
Zurück zum Zitat Tian M, Zhen XC, Wang ZF et al (2016) Bioderived rubber-cellulose nanocrystal composites with tunable water-responsive adaptive mechanical behavior. ACS Appl Mater Interfaces 9:6482–6487CrossRef Tian M, Zhen XC, Wang ZF et al (2016) Bioderived rubber-cellulose nanocrystal composites with tunable water-responsive adaptive mechanical behavior. ACS Appl Mater Interfaces 9:6482–6487CrossRef
Zurück zum Zitat Wolff S, Wang MJ, Tan EH (1993) Filler-elastomer interactions. Part VII. Study on bound rubber. Rubber Chem Technol 66:163–177CrossRef Wolff S, Wang MJ, Tan EH (1993) Filler-elastomer interactions. Part VII. Study on bound rubber. Rubber Chem Technol 66:163–177CrossRef
Zurück zum Zitat Xu TW, Jia ZX, Luo YF et al (2015) Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites. Appl Surf Sci 328:306–313CrossRef Xu TW, Jia ZX, Luo YF et al (2015) Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites. Appl Surf Sci 328:306–313CrossRef
Zurück zum Zitat Xu CH, Cao LM, Lin BF et al (2016) Design of self-healing supramolecular rubbers by introducing ionic cross-links into natural rubber via a controlled vulcanization. ACS Appl Mater Interfaces 8:17728–17737CrossRefPubMed Xu CH, Cao LM, Lin BF et al (2016) Design of self-healing supramolecular rubbers by introducing ionic cross-links into natural rubber via a controlled vulcanization. ACS Appl Mater Interfaces 8:17728–17737CrossRefPubMed
Zurück zum Zitat Xu CH, Cao LM, Huang XH et al (2017) Self-healing natural rubber with tailorable mechanical properties based on ionic supramolecular hybrid network. ACS Appl Mater Interfaces 9:29363–29373CrossRefPubMed Xu CH, Cao LM, Huang XH et al (2017) Self-healing natural rubber with tailorable mechanical properties based on ionic supramolecular hybrid network. ACS Appl Mater Interfaces 9:29363–29373CrossRefPubMed
Zurück zum Zitat Xu CH, Zhan W, Tang XZ et al (2018) Self-healing chitosan/vanillin hydrogels based on Schiff-base bond/hydrogen bond hybrid linkages. Polym Test 66:155–163CrossRef Xu CH, Zhan W, Tang XZ et al (2018) Self-healing chitosan/vanillin hydrogels based on Schiff-base bond/hydrogen bond hybrid linkages. Polym Test 66:155–163CrossRef
Zurück zum Zitat Yan HQ, Chen XQ, Song HW et al (2017) Synthesis of bacterial cellulose and bacterial cellulose nanocrystals for their applications in the stabilization of olive oil pickering emulsion. Food Hydrocoll 72:127–135CrossRef Yan HQ, Chen XQ, Song HW et al (2017) Synthesis of bacterial cellulose and bacterial cellulose nanocrystals for their applications in the stabilization of olive oil pickering emulsion. Food Hydrocoll 72:127–135CrossRef
Zurück zum Zitat Ye YS, Zeng HX, Wu J et al (2016) Biocompatible reduced graphene oxide sheets with superior water dispersibility stabilized by cellulose nanocrystals and their polyethylene oxide composites. Green Chem 18:1674–1683CrossRef Ye YS, Zeng HX, Wu J et al (2016) Biocompatible reduced graphene oxide sheets with superior water dispersibility stabilized by cellulose nanocrystals and their polyethylene oxide composites. Green Chem 18:1674–1683CrossRef
Zurück zum Zitat Yu HP, Zeng ZQ, Lu G et al (2008) Processing characteristics and thermal stabilities of gel and sol of epoxidized natural rubber. Eur Polym J 44:453–464CrossRef Yu HP, Zeng ZQ, Lu G et al (2008) Processing characteristics and thermal stabilities of gel and sol of epoxidized natural rubber. Eur Polym J 44:453–464CrossRef
Zurück zum Zitat Yu J, Wang CP, Wang JF et al (2016) In situ development of self-reinforced cellulose nanocrystals based thermoplastic elastomers by atom transfer radical polymerization. Carbohyd Polym 141:143–150CrossRef Yu J, Wang CP, Wang JF et al (2016) In situ development of self-reinforced cellulose nanocrystals based thermoplastic elastomers by atom transfer radical polymerization. Carbohyd Polym 141:143–150CrossRef
Zurück zum Zitat Zhang SD, Liu F, Peng HQ et al (2015) Preparation of novel c–6 position carboxyl corn starch by a green method and its application in flame retardance of epoxy resin. Ind Eng Chem Res 54:11944–11952CrossRef Zhang SD, Liu F, Peng HQ et al (2015) Preparation of novel c–6 position carboxyl corn starch by a green method and its application in flame retardance of epoxy resin. Ind Eng Chem Res 54:11944–11952CrossRef
Zurück zum Zitat Zhao YD, Li JB (2014) Excellent chemical and material cellulose from tunicates: diversity in cellulose production yield and chemical and morphological structures from different tunicate species. Cellulose 21:3427–3441CrossRef Zhao YD, Li JB (2014) Excellent chemical and material cellulose from tunicates: diversity in cellulose production yield and chemical and morphological structures from different tunicate species. Cellulose 21:3427–3441CrossRef
Zurück zum Zitat Zhao YD, Zhang YJ, Lindstrom ME et al (2015) Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohyd Polym 117:286–296CrossRef Zhao YD, Zhang YJ, Lindstrom ME et al (2015) Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohyd Polym 117:286–296CrossRef
Metadaten
Titel
Green method to reinforce natural rubber with tunicate cellulose nanocrystals via one-pot reaction
verfasst von
Liming Cao
Daosheng Yuan
Xingfeng Fu
Yukun Chen
Publikationsdatum
02.06.2018
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 8/2018
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-1877-1

Weitere Artikel der Ausgabe 8/2018

Cellulose 8/2018 Zur Ausgabe