Skip to main content
Erschienen in: Cellulose 1/2019

11.01.2019 | Review Paper

Probing cellulose structures with vibrational spectroscopy

verfasst von: Mohamadamin Makarem, Christopher M. Lee, Kabindra Kafle, Shixin Huang, Inseok Chae, Hui Yang, James D. Kubicki, Seong H. Kim

Erschienen in: Cellulose | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper reviews principles, data interpretations, and applications of vibrational spectroscopic methods used for analysis of cellulose in the isolated state and in plant cell walls or lignocellulose biomass. The paper begins with reviewing the crystalline structures of crystalline cellulose polymorphs and the principles of three different vibrational spectroscopy methods—infrared (IR), Raman, and sum frequency generation (SFG)—complemented with density functional theory calculations. Then, it discusses the vibrational modes of crystalline celluloses, how the chain orientation in crystalline domain is analyzed in each method, and how the concentration and spatial distribution of crystalline cellulose domains interspersed in amorphous matrices are manifested or analyzed differently in these three methods. Lastly, the paper discusses examples of analyzing crystalline cellulose in plant cell walls or lignocellulose biomass with IR, Raman, and SFG including spectroscopic imaging. One review cannot cover all vibrational spectroscopy literatures on cellulose; this review aims at providing tutorial information, using selected literatures and experimental data, needed to interpret nano-, meso-, and micro-scale structures of cellulose in plant cell walls and lignocellulose biomass.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abidi N, Manike M (2017) X-ray diffraction and FTIR investigations of cellulose deposition during cotton fiber development. Text Res J 88:719–730CrossRef Abidi N, Manike M (2017) X-ray diffraction and FTIR investigations of cellulose deposition during cotton fiber development. Text Res J 88:719–730CrossRef
Zurück zum Zitat Abidi N, Hequet E, Cabrales L, Gannaway J, Wilkins T, Wells LW (2008) Evaluating cell wall structure and composition of developing cotton fibers using Fourier transform infrared spectroscopy and thermogravimetric analysis. J Appl Polym Sci 107:476–486CrossRef Abidi N, Hequet E, Cabrales L, Gannaway J, Wilkins T, Wells LW (2008) Evaluating cell wall structure and composition of developing cotton fibers using Fourier transform infrared spectroscopy and thermogravimetric analysis. J Appl Polym Sci 107:476–486CrossRef
Zurück zum Zitat Agarwal UP (2006) Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 224:1141CrossRefPubMed Agarwal UP (2006) Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 224:1141CrossRefPubMed
Zurück zum Zitat Agarwal UP, Ralph SA (1997) FT-Raman spectroscopy of wood: identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana). Appl Spectrosc 51:1648–1655CrossRef Agarwal UP, Ralph SA (1997) FT-Raman spectroscopy of wood: identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana). Appl Spectrosc 51:1648–1655CrossRef
Zurück zum Zitat Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733CrossRef Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733CrossRef
Zurück zum Zitat Agarwal UP, Ralph SA, Reiner RS, Baez C (2016) Probing crystallinity of never-dried wood cellulose with Raman spectroscopy. Cellulose 23:125–144CrossRef Agarwal UP, Ralph SA, Reiner RS, Baez C (2016) Probing crystallinity of never-dried wood cellulose with Raman spectroscopy. Cellulose 23:125–144CrossRef
Zurück zum Zitat Agarwal UP, Ralph SA, Reiner RS, Baez C (2018) New cellulose crystallinity estimation method that differentiates between organized and crystalline phases. Carbohydr Polym 190:262–270CrossRefPubMed Agarwal UP, Ralph SA, Reiner RS, Baez C (2018) New cellulose crystallinity estimation method that differentiates between organized and crystalline phases. Carbohydr Polym 190:262–270CrossRefPubMed
Zurück zum Zitat Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2010) Plant cell walls. Garland Science, Taylor & Francise Group, New YorkCrossRef Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2010) Plant cell walls. Garland Science, Taylor & Francise Group, New YorkCrossRef
Zurück zum Zitat Anderson CT, Carroll A, Akhmetova L, Somerville C (2010) Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol 152:787–796CrossRefPubMedPubMedCentral Anderson CT, Carroll A, Akhmetova L, Somerville C (2010) Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol 152:787–796CrossRefPubMedPubMedCentral
Zurück zum Zitat Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRefPubMed Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRefPubMed
Zurück zum Zitat Atalla R, Vanderhart DL (1987) Studies on the structure of cellulose using Raman spectroscopy and solid state 13C NMR. IPC technical paper series international symposium on wood and pulping chemistry in Paris Atalla R, Vanderhart DL (1987) Studies on the structure of cellulose using Raman spectroscopy and solid state 13C NMR. IPC technical paper series international symposium on wood and pulping chemistry in Paris
Zurück zum Zitat Atalla RH, Whitmore RE, Heimbach CJ (1980) Raman spectral evidence for molecular orientation in native cellulosic fibers. Macromolecules 13:1717–1719CrossRef Atalla RH, Whitmore RE, Heimbach CJ (1980) Raman spectral evidence for molecular orientation in native cellulosic fibers. Macromolecules 13:1717–1719CrossRef
Zurück zum Zitat Banwell CN (1983) Fundamentals of molecular spectroscopy. Tata McGraw Hill Publishing Company, London Banwell CN (1983) Fundamentals of molecular spectroscopy. Tata McGraw Hill Publishing Company, London
Zurück zum Zitat Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79:461–472CrossRefPubMed Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79:461–472CrossRefPubMed
Zurück zum Zitat Barnette AL et al (2011) Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromol 12:2434–2439CrossRef Barnette AL et al (2011) Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromol 12:2434–2439CrossRef
Zurück zum Zitat Barnette AL et al (2012) Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Carbohydr Polym 89:802–809CrossRefPubMed Barnette AL et al (2012) Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Carbohydr Polym 89:802–809CrossRefPubMed
Zurück zum Zitat Baudrier-Raybaut M, Haïdar R, Kupecek P, Lemasson P, Rosencher E (2004) Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials. Nature 432:374CrossRefPubMed Baudrier-Raybaut M, Haïdar R, Kupecek P, Lemasson P, Rosencher E (2004) Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials. Nature 432:374CrossRefPubMed
Zurück zum Zitat Bishop DM, Kirtman B, Bt Champagne (1997) Differences between the exact sum-over-states and the canonical approximation for the calculation of static and dynamic hyperpolarizabilities. J Chem Phys 107:5780–5787CrossRef Bishop DM, Kirtman B, Bt Champagne (1997) Differences between the exact sum-over-states and the canonical approximation for the calculation of static and dynamic hyperpolarizabilities. J Chem Phys 107:5780–5787CrossRef
Zurück zum Zitat Blackwell J (1977) Infrared and Raman spectroscopy of cellulose. Cellul Chem Technol 48:206–218CrossRef Blackwell J (1977) Infrared and Raman spectroscopy of cellulose. Cellul Chem Technol 48:206–218CrossRef
Zurück zum Zitat Blackwell J, Vasko P, Koenig J (1970) Infrared and Raman spectra of the cellulose from the cell wall of Valonia ventricosa. J Appl Phys 41:4375–4379CrossRef Blackwell J, Vasko P, Koenig J (1970) Infrared and Raman spectra of the cellulose from the cell wall of Valonia ventricosa. J Appl Phys 41:4375–4379CrossRef
Zurück zum Zitat Börjesson M, Westman G (2015) Crystalline nanocellulose—preparation, modification, and properties. In: Cellulose-fundamental aspects and current trends. InTech, pp 159–191 Börjesson M, Westman G (2015) Crystalline nanocellulose—preparation, modification, and properties. In: Cellulose-fundamental aspects and current trends. InTech, pp 159–191
Zurück zum Zitat Bourmaud A, Morvan C, Bouali A, Placet V, Perre P, Baley C (2013) Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers. Ind Crops Prod 44:343–351CrossRef Bourmaud A, Morvan C, Bouali A, Placet V, Perre P, Baley C (2013) Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers. Ind Crops Prod 44:343–351CrossRef
Zurück zum Zitat Boyd RW (1999) Order-of-magnitude estimates of the nonlinear optical susceptibility. J Mod Opt 46:367–378CrossRef Boyd RW (1999) Order-of-magnitude estimates of the nonlinear optical susceptibility. J Mod Opt 46:367–378CrossRef
Zurück zum Zitat Boyd RW (2008) Nonlinear optics. Academic Press, Burlington Boyd RW (2008) Nonlinear optics. Academic Press, Burlington
Zurück zum Zitat Butler HJ, McAinsh MR, Adams S, Martin FL (2015) Application of vibrational spectroscopy techniques to non-destructively monitor plant health and development. Anal Methods 7:4059–4070CrossRef Butler HJ, McAinsh MR, Adams S, Martin FL (2015) Application of vibrational spectroscopy techniques to non-destructively monitor plant health and development. Anal Methods 7:4059–4070CrossRef
Zurück zum Zitat Cael J, Gardner K, Koenig J, Blackwell J (1975) Infrared and Raman spectroscopy of carbohydrates. Paper V. Normal coordinate analysis of cellulose I. J Chem Phys 62:1145–1153CrossRef Cael J, Gardner K, Koenig J, Blackwell J (1975) Infrared and Raman spectroscopy of carbohydrates. Paper V. Normal coordinate analysis of cellulose I. J Chem Phys 62:1145–1153CrossRef
Zurück zum Zitat Cammarata RC (1994) Surface and interface stress effects in thin films. Prog Surf Sci 46:1–38CrossRef Cammarata RC (1994) Surface and interface stress effects in thin films. Prog Surf Sci 46:1–38CrossRef
Zurück zum Zitat Cammarata R, Eby R (1991) Effects and measurement of internal surface stresses in materials with ultrafine microstructures. J Mater Res 6:888–890CrossRef Cammarata R, Eby R (1991) Effects and measurement of internal surface stresses in materials with ultrafine microstructures. J Mater Res 6:888–890CrossRef
Zurück zum Zitat Chen L, Wilson RH, McCann MC (1997) Investigation of macromolecule orientation in dry and hydrated walls of single onion epidermal cells by FTIR microspectroscopy. J Mol Struct 408:257–260CrossRef Chen L, Wilson RH, McCann MC (1997) Investigation of macromolecule orientation in dry and hydrated walls of single onion epidermal cells by FTIR microspectroscopy. J Mol Struct 408:257–260CrossRef
Zurück zum Zitat Chen H, Ferrari C, Angiuli M, Yao J, Raspi C, Bramanti E (2010) Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydr Polym 82:772–778CrossRef Chen H, Ferrari C, Angiuli M, Yao J, Raspi C, Bramanti E (2010) Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydr Polym 82:772–778CrossRef
Zurück zum Zitat Chen X, Lee CM, Wang H-F, Jensen L, Kim SH (2017) Experimental and theoretical study of azimuth angle and polarization dependences of sum-frequency-generation vibrational spectral features of uniaxially aligned cellulose crystals. J Phys Chem C 121:18876–18886CrossRef Chen X, Lee CM, Wang H-F, Jensen L, Kim SH (2017) Experimental and theoretical study of azimuth angle and polarization dependences of sum-frequency-generation vibrational spectral features of uniaxially aligned cellulose crystals. J Phys Chem C 121:18876–18886CrossRef
Zurück zum Zitat Cho SH et al (2015) In vitro synthesis of cellulose microfibrils by membrane protein from protoplasts of the non-vascular plant Physcomitrella patens. Biochem J 470:195–205CrossRefPubMed Cho SH et al (2015) In vitro synthesis of cellulose microfibrils by membrane protein from protoplasts of the non-vascular plant Physcomitrella patens. Biochem J 470:195–205CrossRefPubMed
Zurück zum Zitat Cintrón MS, Hinchliffe DJ (2015) FT-IR examination of the development of secondary cell wall in cotton fibers. Fibers 3:30–40CrossRef Cintrón MS, Hinchliffe DJ (2015) FT-IR examination of the development of secondary cell wall in cotton fibers. Fibers 3:30–40CrossRef
Zurück zum Zitat Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, New York Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, New York
Zurück zum Zitat de Beer AG, Roke S (2007) Sum frequency generation scattering from the interface of an isotropic particle: geometrical and chiral effects. Phys Rev B 75:245438CrossRef de Beer AG, Roke S (2007) Sum frequency generation scattering from the interface of an isotropic particle: geometrical and chiral effects. Phys Rev B 75:245438CrossRef
Zurück zum Zitat de Beer AG, Roke S (2009) Nonlinear Mie theory for second-harmonic and sum-frequency scattering. Phys Rev B 79:155420CrossRef de Beer AG, Roke S (2009) Nonlinear Mie theory for second-harmonic and sum-frequency scattering. Phys Rev B 79:155420CrossRef
Zurück zum Zitat de Beer AG, Campen RK, Roke S (2010) Separating surface structure and surface charge with second-harmonic and sum-frequency scattering. Phys Rev B 82:235431CrossRef de Beer AG, Campen RK, Roke S (2010) Separating surface structure and surface charge with second-harmonic and sum-frequency scattering. Phys Rev B 82:235431CrossRef
Zurück zum Zitat de Beer AG, Roke S, Dadap JI (2011) Theory of optical second-harmonic and sum-frequency scattering from arbitrarily shaped particles. J Opt Soc Am B 28:1374–1384CrossRef de Beer AG, Roke S, Dadap JI (2011) Theory of optical second-harmonic and sum-frequency scattering from arbitrarily shaped particles. J Opt Soc Am B 28:1374–1384CrossRef
Zurück zum Zitat Déjardin A, Laurans F, Arnaud D, Breton C, Pilate G, Leplé J-C (2010) Wood formation in Angiosperms. C R Biol 333:325–334CrossRefPubMed Déjardin A, Laurans F, Arnaud D, Breton C, Pilate G, Leplé J-C (2010) Wood formation in Angiosperms. C R Biol 333:325–334CrossRefPubMed
Zurück zum Zitat Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92:246401CrossRefPubMed Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92:246401CrossRefPubMed
Zurück zum Zitat Donaldson L, Xu P (2005) Microfibril orientation across the secondary cell wall of Radiata pine tracheids. Trees 19:644CrossRef Donaldson L, Xu P (2005) Microfibril orientation across the secondary cell wall of Radiata pine tracheids. Trees 19:644CrossRef
Zurück zum Zitat Fagard M et al (2000) PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12:2409–2423CrossRefPubMedPubMedCentral Fagard M et al (2000) PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12:2409–2423CrossRefPubMedPubMedCentral
Zurück zum Zitat Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. In: Salih SM (ed) Fourier transform-materials analysis. InTech, Rijeka, pp 45–68 Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. In: Salih SM (ed) Fourier transform-materials analysis. InTech, Rijeka, pp 45–68
Zurück zum Zitat Fernandes AN et al (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci 108:E1195–E1203CrossRefPubMed Fernandes AN et al (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci 108:E1195–E1203CrossRefPubMed
Zurück zum Zitat Frisch M et al (2010) Gaussian 09, revision b. 01, Gaussian Inc, Wallingford, CT 6492 Frisch M et al (2010) Gaussian 09, revision b. 01, Gaussian Inc, Wallingford, CT 6492
Zurück zum Zitat Frisch MJ, Yamaguchi Y, Gaw JF, Schaefer HF III, Binkley JS (1986) Analytic Raman intensities from molecular electronic wave functions. J Chem Phys 84:531–532CrossRef Frisch MJ, Yamaguchi Y, Gaw JF, Schaefer HF III, Binkley JS (1986) Analytic Raman intensities from molecular electronic wave functions. J Chem Phys 84:531–532CrossRef
Zurück zum Zitat Fujita M, Wasteneys GO (2014) A survey of cellulose microfibril patterns in dividing, expanding, and differentiating cells of Arabidopsis thaliana. Protoplasma 251:687–698CrossRefPubMed Fujita M, Wasteneys GO (2014) A survey of cellulose microfibril patterns in dividing, expanding, and differentiating cells of Arabidopsis thaliana. Protoplasma 251:687–698CrossRefPubMed
Zurück zum Zitat Fujita M et al (2013) The any1 D604N mutation in the Arabidopsis thaliana cellulose synthase 1 catalytic domain reduces cell wall crystallinity and the velocity of cellulose synthase complexes. Plant Physiol 162:74–85CrossRefPubMedPubMedCentral Fujita M et al (2013) The any1 D604N mutation in the Arabidopsis thaliana cellulose synthase 1 catalytic domain reduces cell wall crystallinity and the velocity of cellulose synthase complexes. Plant Physiol 162:74–85CrossRefPubMedPubMedCentral
Zurück zum Zitat Gierlinger N (2018) New insights into plant cell walls by vibrational microspectroscopy. Appl Spectrosc Rev 53:517–551CrossRefPubMed Gierlinger N (2018) New insights into plant cell walls by vibrational microspectroscopy. Appl Spectrosc Rev 53:517–551CrossRefPubMed
Zurück zum Zitat Glasser WG, Northey RA, Schultz TP (1999) Lignin: historical, biological, and materials perspectives. American Chemical Society, WashingtonCrossRef Glasser WG, Northey RA, Schultz TP (1999) Lignin: historical, biological, and materials perspectives. American Chemical Society, WashingtonCrossRef
Zurück zum Zitat Goda K, Sreekala M, Gomes A, Kaji T, Ohgi J (2006) Improvement of plant based natural fibers for toughening green composites—effect of load application during mercerization of ramie fibers. Compos A 37:2213–2220CrossRef Goda K, Sreekala M, Gomes A, Kaji T, Ohgi J (2006) Improvement of plant based natural fibers for toughening green composites—effect of load application during mercerization of ramie fibers. Compos A 37:2213–2220CrossRef
Zurück zum Zitat Goodell B et al (2017) Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi. Biotechnol Biofuels 10:179CrossRefPubMedPubMedCentral Goodell B et al (2017) Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi. Biotechnol Biofuels 10:179CrossRefPubMedPubMedCentral
Zurück zum Zitat Gorman M (1957) The evidence from infrared spectroscopy for hydrogen bonding: a case history of the correlation and interpretation of data. J Chem Educ 34:304CrossRef Gorman M (1957) The evidence from infrared spectroscopy for hydrogen bonding: a case history of the correlation and interpretation of data. J Chem Educ 34:304CrossRef
Zurück zum Zitat Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRefPubMed Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRefPubMed
Zurück zum Zitat Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104CrossRefPubMed Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104CrossRefPubMed
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRefPubMed Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRefPubMed
Zurück zum Zitat Handakumbura PP et al (2013) Perturbation of Brachypodium distachyon CELLULOSE SYNTHASE A4 or 7 results in abnormal cell walls. BMC Plant Biol 13:131CrossRefPubMedPubMedCentral Handakumbura PP et al (2013) Perturbation of Brachypodium distachyon CELLULOSE SYNTHASE A4 or 7 results in abnormal cell walls. BMC Plant Biol 13:131CrossRefPubMedPubMedCentral
Zurück zum Zitat Hieu HC, Tuan NA, Li H, Miyauchi Y, Mizutani G (2011) Sum frequency generation microscopy study of cellulose. Fibers Appl Spectrosc 65:1254–1259CrossRefPubMed Hieu HC, Tuan NA, Li H, Miyauchi Y, Mizutani G (2011) Sum frequency generation microscopy study of cellulose. Fibers Appl Spectrosc 65:1254–1259CrossRefPubMed
Zurück zum Zitat Hill JL, Hammudi MB, Tien M (2014) The Arabidopsis cellulose synthase complex: a proposed hexamer of CESA trimers in an equimolar stoichiometry. Plant Cell 26:4834–4842CrossRefPubMedPubMedCentral Hill JL, Hammudi MB, Tien M (2014) The Arabidopsis cellulose synthase complex: a proposed hexamer of CESA trimers in an equimolar stoichiometry. Plant Cell 26:4834–4842CrossRefPubMedPubMedCentral
Zurück zum Zitat Hofstetter K, Hinterstoisser B, Salmén L (2006) Moisture uptake in native cellulose—the roles of different hydrogen bonds: a dynamic FT-IR study using deuterium exchange. Cellulose 13:131–145CrossRef Hofstetter K, Hinterstoisser B, Salmén L (2006) Moisture uptake in native cellulose—the roles of different hydrogen bonds: a dynamic FT-IR study using deuterium exchange. Cellulose 13:131–145CrossRef
Zurück zum Zitat Hohm T et al (2014) Plasma membrane H+-ATPase regulation is required for auxin gradient formation preceding phototropic growth. Mol Syst Biol 10:751CrossRefPubMedPubMedCentral Hohm T et al (2014) Plasma membrane H+-ATPase regulation is required for auxin gradient formation preceding phototropic growth. Mol Syst Biol 10:751CrossRefPubMedPubMedCentral
Zurück zum Zitat Horii F, Hirai A, Kitamaru R (1983) Solid-state 13 C-NMR study of conformations of oligosaccharides and cellulose. Polym Bull 10:357–361CrossRef Horii F, Hirai A, Kitamaru R (1983) Solid-state 13 C-NMR study of conformations of oligosaccharides and cellulose. Polym Bull 10:357–361CrossRef
Zurück zum Zitat Huang S, Makarem M, Kiemle SN, Hamedi H, Sau M, Cosgrove DJ, Kim SH (2018a) Inhomogeneity of cellulose microfibril assembly in plant cell walls revealed with sum frequency generation microscopy. J Phys Chem B 122:5006–5019CrossRefPubMed Huang S, Makarem M, Kiemle SN, Hamedi H, Sau M, Cosgrove DJ, Kim SH (2018a) Inhomogeneity of cellulose microfibril assembly in plant cell walls revealed with sum frequency generation microscopy. J Phys Chem B 122:5006–5019CrossRefPubMed
Zurück zum Zitat Huang S et al (2018b) Dehydration-induced physical strains of cellulose microfibrils in plant cell walls. Carbohydr Polym 197:337–348CrossRefPubMed Huang S et al (2018b) Dehydration-induced physical strains of cellulose microfibrils in plant cell walls. Carbohydr Polym 197:337–348CrossRefPubMed
Zurück zum Zitat Imai T, Sugiyama J, Itoh T, Horii F (1999) Almost pure Iα cellulose in the cell wall of Glaucocystis. J Struct Biol 127:248–257CrossRefPubMed Imai T, Sugiyama J, Itoh T, Horii F (1999) Almost pure Iα cellulose in the cell wall of Glaucocystis. J Struct Biol 127:248–257CrossRefPubMed
Zurück zum Zitat Jarvis MC (1984) Structure and properties of pectin gels in plant cell walls. Plant, Cell Environ 7:153–164 Jarvis MC (1984) Structure and properties of pectin gels in plant cell walls. Plant, Cell Environ 7:153–164
Zurück zum Zitat Jarvis M (1992) Control of thickness of collenchyma cell walls by pectins. Planta 187:218–220CrossRefPubMed Jarvis M (1992) Control of thickness of collenchyma cell walls by pectins. Planta 187:218–220CrossRefPubMed
Zurück zum Zitat Johnson RD III, Irikura KK, Kacker RN, Kessel Rd (2010) Scaling factors and uncertainties for ab initio anharmonic vibrational frequencies. J Chem Theory Comput 6:2822–2828CrossRefPubMed Johnson RD III, Irikura KK, Kacker RN, Kessel Rd (2010) Scaling factors and uncertainties for ab initio anharmonic vibrational frequencies. J Chem Theory Comput 6:2822–2828CrossRefPubMed
Zurück zum Zitat Kacurakova M, Capek P, Sasinkova V, Wellner N, Ebringerova A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43:195–203CrossRef Kacurakova M, Capek P, Sasinkova V, Wellner N, Ebringerova A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43:195–203CrossRef
Zurück zum Zitat Kafle K, Greeson K, Lee C, Kim SH (2014a) Cellulose polymorphs and physical properties of cotton fabrics processed with commercial textile mills for mercerization and liquid ammonia treatments. Text Res J 84:1692–1699CrossRef Kafle K, Greeson K, Lee C, Kim SH (2014a) Cellulose polymorphs and physical properties of cotton fabrics processed with commercial textile mills for mercerization and liquid ammonia treatments. Text Res J 84:1692–1699CrossRef
Zurück zum Zitat Kafle K et al (2014b) Vibrational sum-frequency-generation (SFG) spectroscopy study of the structural assembly of cellulose microfibrils in reaction woods. Cellulose 21:2219–2231CrossRef Kafle K et al (2014b) Vibrational sum-frequency-generation (SFG) spectroscopy study of the structural assembly of cellulose microfibrils in reaction woods. Cellulose 21:2219–2231CrossRef
Zurück zum Zitat Kafle K, Xi X, Lee CM, Tittmann BR, Cosgrove DJ, Park YB, Kim SH (2014c) Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy. Cellulose 21:1075–1086CrossRef Kafle K, Xi X, Lee CM, Tittmann BR, Cosgrove DJ, Park YB, Kim SH (2014c) Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy. Cellulose 21:1075–1086CrossRef
Zurück zum Zitat Kafle K, Lee CM, Shin H, Zoppe J, Johnson DK, Kim SH, Park S (2015a) Effects of delignification on crystalline cellulose in lignocellulose biomass characterized by vibrational sum frequency generation spectroscopy and X-ray diffraction. BioEnergy Res 8:1750–1758CrossRef Kafle K, Lee CM, Shin H, Zoppe J, Johnson DK, Kim SH, Park S (2015a) Effects of delignification on crystalline cellulose in lignocellulose biomass characterized by vibrational sum frequency generation spectroscopy and X-ray diffraction. BioEnergy Res 8:1750–1758CrossRef
Zurück zum Zitat Kafle K, Shin H, Lee CM, Park S, Kim SH (2015b) Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis. Sci Rep 5:15102CrossRefPubMedPubMedCentral Kafle K, Shin H, Lee CM, Park S, Kim SH (2015b) Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis. Sci Rep 5:15102CrossRefPubMedPubMedCentral
Zurück zum Zitat Kafle K, Park YB, Lee CM, Stapleton JJ, Kiemle SN, Cosgrove DJ, Kim SH (2017) Effects of mechanical stretching on average orientation of cellulose and pectin in onion epidermis cell wall: a polarized FT-IR study. Cellulose 24:3145–3154CrossRef Kafle K, Park YB, Lee CM, Stapleton JJ, Kiemle SN, Cosgrove DJ, Kim SH (2017) Effects of mechanical stretching on average orientation of cellulose and pectin in onion epidermis cell wall: a polarized FT-IR study. Cellulose 24:3145–3154CrossRef
Zurück zum Zitat Karimi K, Taherzadeh MJ (2016) A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour Technol 200:1008–1018CrossRefPubMed Karimi K, Taherzadeh MJ (2016) A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour Technol 200:1008–1018CrossRefPubMed
Zurück zum Zitat Kim N-H, Imai T, Wada M, Sugiyama J (2006) Molecular directionality in cellulose polymorphs. Biomacromol 7:274–280CrossRef Kim N-H, Imai T, Wada M, Sugiyama J (2006) Molecular directionality in cellulose polymorphs. Biomacromol 7:274–280CrossRef
Zurück zum Zitat Kim HJ et al (2017) Comparative physical and chemical analyses of cotton fibers from two near isogenic upland lines differing in fiber wall thickness. Cellulose 24:2385–2401CrossRef Kim HJ et al (2017) Comparative physical and chemical analyses of cotton fibers from two near isogenic upland lines differing in fiber wall thickness. Cellulose 24:2385–2401CrossRef
Zurück zum Zitat Kim HJ, Liu Y, French AD, Lee CM, Kim SH (2018) Comparison and validation of Fourier transform infrared spectroscopic methods for monitoring secondary cell wall cellulose from cotton fibers. Cellulose 25:49–64CrossRef Kim HJ, Liu Y, French AD, Lee CM, Kim SH (2018) Comparison and validation of Fourier transform infrared spectroscopic methods for monitoring secondary cell wall cellulose from cotton fibers. Cellulose 25:49–64CrossRef
Zurück zum Zitat Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory, 2nd edn. John Wiley-VCH, New YorkCrossRef Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory, 2nd edn. John Wiley-VCH, New YorkCrossRef
Zurück zum Zitat Kong L, Lee C, Kim SH, Ziegler GR (2014) Characterization of starch polymorphic structures using vibrational sum frequency generation spectroscopy. J Phys Chem B 118:1775–1783CrossRefPubMed Kong L, Lee C, Kim SH, Ziegler GR (2014) Characterization of starch polymorphic structures using vibrational sum frequency generation spectroscopy. J Phys Chem B 118:1775–1783CrossRefPubMed
Zurück zum Zitat Kouyama W, Ogawa A, Li H, Miyauchi Y, Mizutani G, Sano H (2014) Sum frequency generation confocal microscopy observation of a fish scale. e-J Surf Sci Nanotechnol 12:259–262CrossRef Kouyama W, Ogawa A, Li H, Miyauchi Y, Mizutani G, Sano H (2014) Sum frequency generation confocal microscopy observation of a fish scale. e-J Surf Sci Nanotechnol 12:259–262CrossRef
Zurück zum Zitat Kubicki JD, Mohamed MN-A, Watts HD (2013) Quantum mechanical modeling of the structures, energetics and spectral properties of Iα and Iβ cellulose. Cellulose 20:9–23CrossRef Kubicki JD, Mohamed MN-A, Watts HD (2013) Quantum mechanical modeling of the structures, energetics and spectral properties of Iα and Iβ cellulose. Cellulose 20:9–23CrossRef
Zurück zum Zitat Kumar M, Campbell L, Turner S (2015) Secondary cell walls: biosynthesis and manipulation. J Exp Bot 67:515–531CrossRefPubMed Kumar M, Campbell L, Turner S (2015) Secondary cell walls: biosynthesis and manipulation. J Exp Bot 67:515–531CrossRefPubMed
Zurück zum Zitat Lambert AG, Davies PB, Neivandt DJ (2005) Implementing the theory of sum frequency generation vibrational spectroscopy: a tutorial review. Appl Spectrosc Rev 40:103–145CrossRef Lambert AG, Davies PB, Neivandt DJ (2005) Implementing the theory of sum frequency generation vibrational spectroscopy: a tutorial review. Appl Spectrosc Rev 40:103–145CrossRef
Zurück zum Zitat Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromol 2:410–416CrossRef Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromol 2:410–416CrossRef
Zurück zum Zitat Lasch P, Naumann D (2006) Spatial resolution in infrared microspectroscopic imaging of tissues. Biochim Biophys Acta Biomembr 1758:814–829CrossRef Lasch P, Naumann D (2006) Spatial resolution in infrared microspectroscopic imaging of tissues. Biochim Biophys Acta Biomembr 1758:814–829CrossRef
Zurück zum Zitat Laury ML, Carlson MJ, Wilson AK (2012) Vibrational frequency scale factors for density functional theory and the polarization consistent basis sets. J Comput Chem 33:2380–2387CrossRefPubMed Laury ML, Carlson MJ, Wilson AK (2012) Vibrational frequency scale factors for density functional theory and the polarization consistent basis sets. J Comput Chem 33:2380–2387CrossRefPubMed
Zurück zum Zitat Lee CM et al (2013a) Cellulose polymorphism study with sum-frequency-generation (SFG) vibration spectroscopy: identification of exocyclic CH2OH conformation and chain orientation. Cellulose 20:991–1000CrossRef Lee CM et al (2013a) Cellulose polymorphism study with sum-frequency-generation (SFG) vibration spectroscopy: identification of exocyclic CH2OH conformation and chain orientation. Cellulose 20:991–1000CrossRef
Zurück zum Zitat Lee CM, Mohamed NMA, Watts HD, Kubicki JD, Kim SH (2013b) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J Phys Chem B 117:6681–6692CrossRefPubMed Lee CM, Mohamed NMA, Watts HD, Kubicki JD, Kim SH (2013b) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J Phys Chem B 117:6681–6692CrossRefPubMed
Zurück zum Zitat Lee CM, Kafle K, Park YB, Kim SH (2014) Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy. Phys Chem Chem Phys 16:10844–10853CrossRefPubMed Lee CM, Kafle K, Park YB, Kim SH (2014) Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy. Phys Chem Chem Phys 16:10844–10853CrossRefPubMed
Zurück zum Zitat Lee CM, Gu J, Kafle K, Catchmark J, Kim SH (2015a) Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: pellicle formation, post-synthesis aggregation and fiber density. Carbohydr Polym 133:270–276CrossRefPubMed Lee CM, Gu J, Kafle K, Catchmark J, Kim SH (2015a) Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: pellicle formation, post-synthesis aggregation and fiber density. Carbohydr Polym 133:270–276CrossRefPubMed
Zurück zum Zitat Lee CM, Kafle K, Belias DW, Park YB, Glick RE, Haigler CH, Kim SH (2015b) Comprehensive analysis of cellulose content, crystallinity, and lateral packing in Gossypium hirsutum and Gossypium barbadense cotton fibers using sum frequency generation, infrared and Raman spectroscopy, and X-ray diffraction. Cellulose 22:971–989CrossRef Lee CM, Kafle K, Belias DW, Park YB, Glick RE, Haigler CH, Kim SH (2015b) Comprehensive analysis of cellulose content, crystallinity, and lateral packing in Gossypium hirsutum and Gossypium barbadense cotton fibers using sum frequency generation, infrared and Raman spectroscopy, and X-ray diffraction. Cellulose 22:971–989CrossRef
Zurück zum Zitat Lee CM, Kubicki JD, Fan B, Zhong L, Jarvis MC, Kim SH (2015c) Hydrogen-bonding network and OH stretch vibration of cellulose: comparison of computational modeling with polarized IR and SFG spectra. J Phys Chem B 119:15138–15149CrossRefPubMed Lee CM, Kubicki JD, Fan B, Zhong L, Jarvis MC, Kim SH (2015c) Hydrogen-bonding network and OH stretch vibration of cellulose: comparison of computational modeling with polarized IR and SFG spectra. J Phys Chem B 119:15138–15149CrossRefPubMed
Zurück zum Zitat Lee C, Dazen K, Kafle K, Moore A, Johnson DK, Park S, Kim SH (2016a) Correlations of apparent cellulose crystallinity determined by XRD, NMR, IR, Raman, and SFG methods. In: Rojas OJ (ed) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Springer, Cham, pp 115–131 Lee C, Dazen K, Kafle K, Moore A, Johnson DK, Park S, Kim SH (2016a) Correlations of apparent cellulose crystallinity determined by XRD, NMR, IR, Raman, and SFG methods. In: Rojas OJ (ed) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Springer, Cham, pp 115–131
Zurück zum Zitat Lee CM, Kafle K, Huang S, Kim SH (2016b) Multimodal broadband vibrational sum frequency generation (MM-BB-V-SFG) spectrometer and microscope. J Phys Chem B 120:102–116CrossRefPubMed Lee CM, Kafle K, Huang S, Kim SH (2016b) Multimodal broadband vibrational sum frequency generation (MM-BB-V-SFG) spectrometer and microscope. J Phys Chem B 120:102–116CrossRefPubMed
Zurück zum Zitat Lei L et al (2014) The jiaoyao1 mutant is an allele of korrigan1 that abolishes endoglucanase activity and affects the organization of both cellulose microfibrils and microtubules in Arabidopsis. Plant Cell 26:2601–2616CrossRefPubMedPubMedCentral Lei L et al (2014) The jiaoyao1 mutant is an allele of korrigan1 that abolishes endoglucanase activity and affects the organization of both cellulose microfibrils and microtubules in Arabidopsis. Plant Cell 26:2601–2616CrossRefPubMedPubMedCentral
Zurück zum Zitat Li Y, Lin M, Davenport JW (2011) Ab initio studies of cellulose I: crystal structure, intermolecular forces, and interactions with water. J Phys Chem C 115:11533–11539CrossRef Li Y, Lin M, Davenport JW (2011) Ab initio studies of cellulose I: crystal structure, intermolecular forces, and interactions with water. J Phys Chem C 115:11533–11539CrossRef
Zurück zum Zitat Li S et al (2016) Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants. Proc Natl Acad Sci 40:11348–11353CrossRef Li S et al (2016) Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants. Proc Natl Acad Sci 40:11348–11353CrossRef
Zurück zum Zitat Li Y-H, Chen D-N, Niu H-B (2017) A method for achieving super resolution vibrational sum-frequency generation microscopy by structured illumination. IEEE Photonics J 9:1–8 Li Y-H, Chen D-N, Niu H-B (2017) A method for achieving super resolution vibrational sum-frequency generation microscopy by structured illumination. IEEE Photonics J 9:1–8
Zurück zum Zitat Libowitzky E (1999) Correlation of O–H stretching frequencies and O–H…O hydrogen bond lengths in minerals. Monatsh Chem 130:1047–1059 Libowitzky E (1999) Correlation of O–H stretching frequencies and O–H…O hydrogen bond lengths in minerals. Monatsh Chem 130:1047–1059
Zurück zum Zitat Liu Y (2013) Recent progress in fourier transform infrared (FTIR) spectroscopy study of compositional, structural and physical attributes of developmental cotton fibers. Materials 6:299–313CrossRefPubMedPubMedCentral Liu Y (2013) Recent progress in fourier transform infrared (FTIR) spectroscopy study of compositional, structural and physical attributes of developmental cotton fibers. Materials 6:299–313CrossRefPubMedPubMedCentral
Zurück zum Zitat Liu Y, Thibodeaux D, Gamble G, Bauer P, VanDerveer D (2012) Comparative investigation of fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity. Appl Spectrosc 66:983–986CrossRefPubMed Liu Y, Thibodeaux D, Gamble G, Bauer P, VanDerveer D (2012) Comparative investigation of fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity. Appl Spectrosc 66:983–986CrossRefPubMed
Zurück zum Zitat Ma D, Lee CM, Chen Y, Mehta N, Kim SH, Liu Z (2017) Vibrational sum frequency generation digital holography. Appl Phys Lett 110:251601CrossRef Ma D, Lee CM, Chen Y, Mehta N, Kim SH, Liu Z (2017) Vibrational sum frequency generation digital holography. Appl Phys Lett 110:251601CrossRef
Zurück zum Zitat Makarem M et al (2017) Dependence of sum frequency generation (SFG) spectral features on the mesoscale arrangement of SFG-active crystalline domains interspersed in SFG-inactive matrix: a case study with cellulose in uniaxially aligned control samples and alkali-treated secondary cell walls of plants. J Phys Chem C 121:10249–10257CrossRef Makarem M et al (2017) Dependence of sum frequency generation (SFG) spectral features on the mesoscale arrangement of SFG-active crystalline domains interspersed in SFG-inactive matrix: a case study with cellulose in uniaxially aligned control samples and alkali-treated secondary cell walls of plants. J Phys Chem C 121:10249–10257CrossRef
Zurück zum Zitat Makarem M, Lee CM, Sawada D, O’Neill HM, Kim SH (2018) Distinguishing surface versus bulk hydroxyl groups of cellulose nanocrystals using vibrational sum frequency generation spectroscopy. J Phys Chem Lett 9:70–75CrossRefPubMed Makarem M, Lee CM, Sawada D, O’Neill HM, Kim SH (2018) Distinguishing surface versus bulk hydroxyl groups of cellulose nanocrystals using vibrational sum frequency generation spectroscopy. J Phys Chem Lett 9:70–75CrossRefPubMed
Zurück zum Zitat Maréchal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196CrossRef Maréchal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196CrossRef
Zurück zum Zitat Marques MA, Gross EK (2004) Time-dependent density functional theory. Annu Rev Phys Chem 55:427–455CrossRefPubMed Marques MA, Gross EK (2004) Time-dependent density functional theory. Annu Rev Phys Chem 55:427–455CrossRefPubMed
Zurück zum Zitat Matthäus C, Bird B, Miljković M, Chernenko T, Romeo M, Diem M (2008) Infrared and Raman microscopy in cell biology. Methods Cell Biol 89:275–308CrossRefPubMedPubMedCentral Matthäus C, Bird B, Miljković M, Chernenko T, Romeo M, Diem M (2008) Infrared and Raman microscopy in cell biology. Methods Cell Biol 89:275–308CrossRefPubMedPubMedCentral
Zurück zum Zitat McCann M, Wells B, Roberts K (1990) Direct visualization of cross-links in the primary plant cell wall. J Cell Sci 96:323–334 McCann M, Wells B, Roberts K (1990) Direct visualization of cross-links in the primary plant cell wall. J Cell Sci 96:323–334
Zurück zum Zitat McCann MC, Hammouri M, Wilson R, Belton P, Roberts K (1992) Fourier transform infrared microspectroscopy is a new way to look at plant cell walls. Plant Physiol 100:1940–1947CrossRefPubMedPubMedCentral McCann MC, Hammouri M, Wilson R, Belton P, Roberts K (1992) Fourier transform infrared microspectroscopy is a new way to look at plant cell walls. Plant Physiol 100:1940–1947CrossRefPubMedPubMedCentral
Zurück zum Zitat Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefPubMed Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefPubMed
Zurück zum Zitat Newman RH, Hill SJ, Harris PJ (2013) Wide-angle X-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol 163:1558–1567CrossRefPubMedPubMedCentral Newman RH, Hill SJ, Harris PJ (2013) Wide-angle X-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol 163:1558–1567CrossRefPubMedPubMedCentral
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefPubMed Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefPubMed
Zurück zum Zitat Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRefPubMed Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRefPubMed
Zurück zum Zitat Nixon BT et al (2016) Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex. Sci Rep 6:28696CrossRefPubMedPubMedCentral Nixon BT et al (2016) Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex. Sci Rep 6:28696CrossRefPubMedPubMedCentral
Zurück zum Zitat Norris JH et al (2017) Functional specialization of cellulose synthase isoforms in a moss shows parallels with seed plants. Plant Physiol 175:210–222CrossRefPubMedPubMedCentral Norris JH et al (2017) Functional specialization of cellulose synthase isoforms in a moss shows parallels with seed plants. Plant Physiol 175:210–222CrossRefPubMedPubMedCentral
Zurück zum Zitat Novak A (1974) Hydrogen bonding in solids correlation of spectroscopic and crystallographic data. Struct Bond (Berlin) 18:177–216CrossRef Novak A (1974) Hydrogen bonding in solids correlation of spectroscopic and crystallographic data. Struct Bond (Berlin) 18:177–216CrossRef
Zurück zum Zitat Oehme DP, Yang H, Kubicki JD (2018) An evaluation of the structures of cellulose generated by the CHARMM force field: comparisons to in planta cellulose. Cellulose 25:3755–3777CrossRef Oehme DP, Yang H, Kubicki JD (2018) An evaluation of the structures of cellulose generated by the CHARMM force field: comparisons to in planta cellulose. Cellulose 25:3755–3777CrossRef
Zurück zum Zitat Ogawa Y, Lee CM, Nishiyama Y, Kim SH (2016) Absence of sum frequency generation in support of orthorhombic symmetry of α-Chitin. Macromolecules 49:7025–7031CrossRef Ogawa Y, Lee CM, Nishiyama Y, Kim SH (2016) Absence of sum frequency generation in support of orthorhombic symmetry of α-Chitin. Macromolecules 49:7025–7031CrossRef
Zurück zum Zitat Oh SY et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391CrossRefPubMed Oh SY et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391CrossRefPubMed
Zurück zum Zitat Park YB, Cosgrove DJ (2012) A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol 158:1933–1943CrossRefPubMedPubMedCentral Park YB, Cosgrove DJ (2012) A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol 158:1933–1943CrossRefPubMedPubMedCentral
Zurück zum Zitat Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10CrossRefPubMedPubMedCentral Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10CrossRefPubMedPubMedCentral
Zurück zum Zitat Park YB, Lee CM, Koo BW, Park S, Cosgrove DJ, Kim SH (2013) Monitoring meso-scale ordering of cellulose in intact plant cell walls using sum frequency generation spectroscopy. Plant Physiol 163:907–913CrossRefPubMedPubMedCentral Park YB, Lee CM, Koo BW, Park S, Cosgrove DJ, Kim SH (2013) Monitoring meso-scale ordering of cellulose in intact plant cell walls using sum frequency generation spectroscopy. Plant Physiol 163:907–913CrossRefPubMedPubMedCentral
Zurück zum Zitat Park YB, Lee CM, Kafle K, Park S, Cosgrove DJ, Kim SH (2014) Effects of plant cell wall matrix polysaccharides on bacterial cellulose structure studied with vibrational sum frequency generation spectroscopy and X-ray diffraction. Biomacromol 15:2718–2724CrossRef Park YB, Lee CM, Kafle K, Park S, Cosgrove DJ, Kim SH (2014) Effects of plant cell wall matrix polysaccharides on bacterial cellulose structure studied with vibrational sum frequency generation spectroscopy and X-ray diffraction. Biomacromol 15:2718–2724CrossRef
Zurück zum Zitat Park YB, Kafle K, Lee CM, Cosgrove DJ, Kim SH (2015) Does cellulose II exist in native alga cell walls? Cellulose structure of Derbesia cell walls studied with SFG, IR and XRD. Cellulose 22:3531–3540CrossRef Park YB, Kafle K, Lee CM, Cosgrove DJ, Kim SH (2015) Does cellulose II exist in native alga cell walls? Cellulose structure of Derbesia cell walls studied with SFG, IR and XRD. Cellulose 22:3531–3540CrossRef
Zurück zum Zitat Popescu C-M, Popescu M-C, Singurel G, Vasile C, Argyropoulos DS, Willfor S (2007) Spectral characterization of eucalyptus wood. Appl Spectrosc 61:1168–1177CrossRefPubMed Popescu C-M, Popescu M-C, Singurel G, Vasile C, Argyropoulos DS, Willfor S (2007) Spectral characterization of eucalyptus wood. Appl Spectrosc 61:1168–1177CrossRefPubMed
Zurück zum Zitat Raghunathan V, Han Y, Korth O, Ge N-H, Potma EO (2011) Rapid vibrational imaging with sum frequency generation microscopy. Opt Lett 36:3891–3893CrossRefPubMedPubMedCentral Raghunathan V, Han Y, Korth O, Ge N-H, Potma EO (2011) Rapid vibrational imaging with sum frequency generation microscopy. Opt Lett 36:3891–3893CrossRefPubMedPubMedCentral
Zurück zum Zitat Reiher M, Neugebauer J, Hess BA (2003) Quantum chemical calculation of Raman intensities for large molecules: The photoisomerization of [{Fe ‘S4’(PR3)} 2 (N2H2)](‘S4’2 − = 1, 2-bis (2-mercaptophenylthio)-ethane (2 −)). Z Phys Chem 217:91–103CrossRef Reiher M, Neugebauer J, Hess BA (2003) Quantum chemical calculation of Raman intensities for large molecules: The photoisomerization of [{Fe ‘S4’(PR3)} 2 (N2H2)](‘S4’2 − = 1, 2-bis (2-mercaptophenylthio)-ethane (2 −)). Z Phys Chem 217:91–103CrossRef
Zurück zum Zitat Rivnay J, Noriega R, Kline RJ, Salleo A, Toney MF (2011) Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films. Phys Rev B 84:045203CrossRef Rivnay J, Noriega R, Kline RJ, Salleo A, Toney MF (2011) Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films. Phys Rev B 84:045203CrossRef
Zurück zum Zitat Robinson JW (1996) Atomic spectroscopy. Marcel Dekker Inc, New York Robinson JW (1996) Atomic spectroscopy. Marcel Dekker Inc, New York
Zurück zum Zitat Roke S, Roeterdink WG, Wijnhoven JE, Petukhov AV, Kleyn AW, Bonn M (2003) Vibrational sum frequency scattering from a submicron suspension. Phys Rev Lett 91:258302CrossRefPubMed Roke S, Roeterdink WG, Wijnhoven JE, Petukhov AV, Kleyn AW, Bonn M (2003) Vibrational sum frequency scattering from a submicron suspension. Phys Rev Lett 91:258302CrossRefPubMed
Zurück zum Zitat Roke S, Bonn M, Petukhov AV (2004) Nonlinear optical scattering: the concept of effective susceptibility. Phys Rev B 70:115106CrossRef Roke S, Bonn M, Petukhov AV (2004) Nonlinear optical scattering: the concept of effective susceptibility. Phys Rev B 70:115106CrossRef
Zurück zum Zitat Ruppin R, Englman R (1970) Optical phonons of small crystals. Rep Prog Phys 33:149CrossRef Ruppin R, Englman R (1970) Optical phonons of small crystals. Rep Prog Phys 33:149CrossRef
Zurück zum Zitat Sacui IA et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138CrossRefPubMed Sacui IA et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138CrossRefPubMed
Zurück zum Zitat Saxe F, Eder M, Benecke G, Aichmayer B, Fratzl P, Burgert I, Rüggeberg M (2014) Measuring the distribution of cellulose microfibril angles in primary cell walls by small angle X-ray scattering. Plant Methods 10:25CrossRefPubMedPubMedCentral Saxe F, Eder M, Benecke G, Aichmayer B, Fratzl P, Burgert I, Rüggeberg M (2014) Measuring the distribution of cellulose microfibril angles in primary cell walls by small angle X-ray scattering. Plant Methods 10:25CrossRefPubMedPubMedCentral
Zurück zum Zitat Schwanninger M, Rodrigues J, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40CrossRef Schwanninger M, Rodrigues J, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40CrossRef
Zurück zum Zitat Sene CF, McCann MC, Wilson RH, Grinter R (1994) Fourier-transform Raman and Fourier-transform infrared spectroscopy (an investigation of five higher plant cell walls and their components). Plant Physiol 106:1623–1631CrossRefPubMedPubMedCentral Sene CF, McCann MC, Wilson RH, Grinter R (1994) Fourier-transform Raman and Fourier-transform infrared spectroscopy (an investigation of five higher plant cell walls and their components). Plant Physiol 106:1623–1631CrossRefPubMedPubMedCentral
Zurück zum Zitat Shen Y-R (1984) The principles of nonlinear optics. Wiley, New York Shen Y-R (1984) The principles of nonlinear optics. Wiley, New York
Zurück zum Zitat Shen Q, Zhong L, Hu J-F (2004) Characterization of the surface properties of xylan by FT-Raman spectroscopy and wicking technique. Colloids Surf B 39:195–198CrossRef Shen Q, Zhong L, Hu J-F (2004) Characterization of the surface properties of xylan by FT-Raman spectroscopy and wicking technique. Colloids Surf B 39:195–198CrossRef
Zurück zum Zitat Siesler HW, Ozaki Y, Kawata S, Heise HM (2008) Near infrared spectroscopy: principles, instruments, applications. Wiley, Weinheim Siesler HW, Ozaki Y, Kawata S, Heise HM (2008) Near infrared spectroscopy: principles, instruments, applications. Wiley, Weinheim
Zurück zum Zitat Sugiyama J, Okano T, Yamamoto H, Horii F (1990) Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 23:3196–3198CrossRef Sugiyama J, Okano T, Yamamoto H, Horii F (1990) Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 23:3196–3198CrossRef
Zurück zum Zitat Suslov D, Verbelen J (2006) Cellulose orientation determines mechanical anisotropy in onion epidermis cell walls. J Exp Bot 57:2183–2192CrossRefPubMed Suslov D, Verbelen J (2006) Cellulose orientation determines mechanical anisotropy in onion epidermis cell walls. J Exp Bot 57:2183–2192CrossRefPubMed
Zurück zum Zitat Suslov D, Verbelen JP, Vissenberg K (2009) Onion epidermis as a new model to study the control of growth anisotropy in higher plants. J Exp Bot 60:4175–4187CrossRefPubMed Suslov D, Verbelen JP, Vissenberg K (2009) Onion epidermis as a new model to study the control of growth anisotropy in higher plants. J Exp Bot 60:4175–4187CrossRefPubMed
Zurück zum Zitat Synytsya A, Čopíková J, Matějka P, Machovič V (2003) Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr Polym 54:97–106CrossRef Synytsya A, Čopíková J, Matějka P, Machovič V (2003) Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr Polym 54:97–106CrossRef
Zurück zum Zitat Szymanska-Chargot M, Zdunek A (2013) Use of FT-IR spectra and PCA to the bulk characterization of cell wall residues of fruits and vegetables along a fraction process. Food Biophys 8:29–42CrossRefPubMed Szymanska-Chargot M, Zdunek A (2013) Use of FT-IR spectra and PCA to the bulk characterization of cell wall residues of fruits and vegetables along a fraction process. Food Biophys 8:29–42CrossRefPubMed
Zurück zum Zitat Terashima N, Awano T, Takabe K, Yoshida M (2004) Formation of macromolecular lignin in ginkgo xylem cell walls as observed by field emission scanning electron microscopy. C R Biol 327:903–910CrossRefPubMed Terashima N, Awano T, Takabe K, Yoshida M (2004) Formation of macromolecular lignin in ginkgo xylem cell walls as observed by field emission scanning electron microscopy. C R Biol 327:903–910CrossRefPubMed
Zurück zum Zitat Ts Bučko, Tunega D, Ángyán JG, Jr Hafner (2011) Ab initio study of structure and interconversion of native cellulose phases. J Phys Chem A 115:10097–10105CrossRef Ts Bučko, Tunega D, Ángyán JG, Jr Hafner (2011) Ab initio study of structure and interconversion of native cellulose phases. J Phys Chem A 115:10097–10105CrossRef
Zurück zum Zitat Tsuboi M (1957) Infrared spectrum and crystal structure of cellulose. J Polym Sci 25:159–171CrossRef Tsuboi M (1957) Infrared spectrum and crystal structure of cellulose. J Polym Sci 25:159–171CrossRef
Zurück zum Zitat Vandavasi VG et al (2016) A structural study of CESA1 catalytic domain of Arabidopsis thaliana cellulose synthesis complex: evidence for CESA trimers. Plant Physiol 170:123–135CrossRefPubMed Vandavasi VG et al (2016) A structural study of CESA1 catalytic domain of Arabidopsis thaliana cellulose synthesis complex: evidence for CESA trimers. Plant Physiol 170:123–135CrossRefPubMed
Zurück zum Zitat Velarde L, Wang H-F (2013) Capturing inhomogeneous broadening of the –CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS). J Chem Phys 139:084204CrossRefPubMed Velarde L, Wang H-F (2013) Capturing inhomogeneous broadening of the –CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS). J Chem Phys 139:084204CrossRefPubMed
Zurück zum Zitat Wada M, Kondo T, Okano T (2003) Thermally induced crystal transformation from cellulose I α to I β. Polym J 35:155CrossRef Wada M, Kondo T, Okano T (2003) Thermally induced crystal transformation from cellulose I α to I β. Polym J 35:155CrossRef
Zurück zum Zitat Wada M, Heux L, Sugiyama J (2004) Polymorphism of cellulose I family: reinvestigation of cellulose IVI. Biomacromol 5:1385–1391CrossRef Wada M, Heux L, Sugiyama J (2004) Polymorphism of cellulose I family: reinvestigation of cellulose IVI. Biomacromol 5:1385–1391CrossRef
Zurück zum Zitat Wang T, Hong M (2015) Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J Exp Bot 67:503–514CrossRefPubMedPubMedCentral Wang T, Hong M (2015) Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J Exp Bot 67:503–514CrossRefPubMedPubMedCentral
Zurück zum Zitat Wang HF, Gan W, Lu R, Rao Y, Wu BH (2005) Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS). Int Rev Phys Chem 24:191–256CrossRef Wang HF, Gan W, Lu R, Rao Y, Wu BH (2005) Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS). Int Rev Phys Chem 24:191–256CrossRef
Zurück zum Zitat Wang T, Zabotina O, Hong M (2012) Pectin–cellulose interactions in the Arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state nuclear magnetic resonance. Biochemistry 51:9846–9856CrossRefPubMed Wang T, Zabotina O, Hong M (2012) Pectin–cellulose interactions in the Arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state nuclear magnetic resonance. Biochemistry 51:9846–9856CrossRefPubMed
Zurück zum Zitat Wang H-W et al (2014a) Vibrational density of states of strongly H-bonded interfacial water: insights from inelastic neutron scattering and theory. J Phys Chem C 118:10805–10813CrossRef Wang H-W et al (2014a) Vibrational density of states of strongly H-bonded interfacial water: insights from inelastic neutron scattering and theory. J Phys Chem C 118:10805–10813CrossRef
Zurück zum Zitat Wang W et al (2014b) Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover Part 1: chemical and physical substrate analysis. Biotechnol Biofuels 7:57CrossRefPubMedPubMedCentral Wang W et al (2014b) Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover Part 1: chemical and physical substrate analysis. Biotechnol Biofuels 7:57CrossRefPubMedPubMedCentral
Zurück zum Zitat Wang T, Park YB, Daniel JC, Hong M (2015) Cellulose-pectin spatial contacts are inherent to never-dried Arabidopsis thaliana primary cell walls: evidence from solid-state NMR. Plant Physiol 168:871–884CrossRefPubMedPubMedCentral Wang T, Park YB, Daniel JC, Hong M (2015) Cellulose-pectin spatial contacts are inherent to never-dried Arabidopsis thaliana primary cell walls: evidence from solid-state NMR. Plant Physiol 168:871–884CrossRefPubMedPubMedCentral
Zurück zum Zitat Ward I (1985) Determination of molecular orientation by spectroscopic techniques. In: Kaush HH, Zachman HG (eds) Characterization of polymers in the solid state I: Part A: NMR and other spectroscopic methods Part B: mechanical methods. Advances in polymer science, vol 66. Springer, Berlin, pp 81–115 Ward I (1985) Determination of molecular orientation by spectroscopic techniques. In: Kaush HH, Zachman HG (eds) Characterization of polymers in the solid state I: Part A: NMR and other spectroscopic methods Part B: mechanical methods. Advances in polymer science, vol 66. Springer, Berlin, pp 81–115
Zurück zum Zitat Watanabe A, Morita S, Ozaki Y (2007) Temperature-dependent changes in hydrogen bonds in cellulose Iα studied by infrared spectroscopy in combination with perturbation-correlation moving-window two-dimensional correlation spectroscopy: comparison with cellulose Iβ. Biomacromol 8:2969–2975CrossRef Watanabe A, Morita S, Ozaki Y (2007) Temperature-dependent changes in hydrogen bonds in cellulose Iα studied by infrared spectroscopy in combination with perturbation-correlation moving-window two-dimensional correlation spectroscopy: comparison with cellulose Iβ. Biomacromol 8:2969–2975CrossRef
Zurück zum Zitat Wickholm K, Hult E-L, Larsson PT, Iversen T, Lennholm H (2001) Quantification of cellulose forms in complex cellulose materials: a chemometric model. Cellulose 8:139–148CrossRef Wickholm K, Hult E-L, Larsson PT, Iversen T, Lennholm H (2001) Quantification of cellulose forms in complex cellulose materials: a chemometric model. Cellulose 8:139–148CrossRef
Zurück zum Zitat Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129CrossRef Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129CrossRef
Zurück zum Zitat Wilkes GL (1971) The measurement of molecular orientation in polymeric solids. In: Fortschritte der Hochpolymeren-Forschung. Springer, Berlin, Heidelberg, pp 91–136 Wilkes GL (1971) The measurement of molecular orientation in polymeric solids. In: Fortschritte der Hochpolymeren-Forschung. Springer, Berlin, Heidelberg, pp 91–136
Zurück zum Zitat Williamson G, Hall W (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31CrossRef Williamson G, Hall W (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31CrossRef
Zurück zum Zitat Wilson EB (1955) Molecular vibrations: the theory of infrared and raman vibrational spectra. McGraw-Hill, New York Wilson EB (1955) Molecular vibrations: the theory of infrared and raman vibrational spectra. McGraw-Hill, New York
Zurück zum Zitat Wilson RH, Smith AC, Kačuráková M, Saunders PK, Wellner N, Waldron KW (2000) The mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier-transform infrared spectroscopy. Plant Physiol 124:397–406CrossRefPubMedPubMedCentral Wilson RH, Smith AC, Kačuráková M, Saunders PK, Wellner N, Waldron KW (2000) The mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier-transform infrared spectroscopy. Plant Physiol 124:397–406CrossRefPubMedPubMedCentral
Zurück zum Zitat Withana-Gamage TS, Hegedus DD, Qiu X, Yu P, May T, Lydiate D, Wanasundara JP (2013) Characterization of Arabidopsis thaliana lines with altered seed storage protein profiles using synchrotron-powered FT-IR spectromicroscopy. J Agric Food Chem 61:901–912CrossRefPubMed Withana-Gamage TS, Hegedus DD, Qiu X, Yu P, May T, Lydiate D, Wanasundara JP (2013) Characterization of Arabidopsis thaliana lines with altered seed storage protein profiles using synchrotron-powered FT-IR spectromicroscopy. J Agric Food Chem 61:901–912CrossRefPubMed
Zurück zum Zitat Yamaguchi Y, Frisch M, Gaw J, Schaefer HF III, Binkley JS (1986) Analytic evaluation and basis set dependence of intensities of infrared spectra. J Chem Phys 84:2262–2278CrossRef Yamaguchi Y, Frisch M, Gaw J, Schaefer HF III, Binkley JS (1986) Analytic evaluation and basis set dependence of intensities of infrared spectra. J Chem Phys 84:2262–2278CrossRef
Zurück zum Zitat Yongliang L, Thibodeaux D, Gamble G (2011) Development of Fourier transform infrared spectroscopy in direct, non-destructive, and rapid determination of cotton fiber maturity. Text Res J 81:1559–1567CrossRef Yongliang L, Thibodeaux D, Gamble G (2011) Development of Fourier transform infrared spectroscopy in direct, non-destructive, and rapid determination of cotton fiber maturity. Text Res J 81:1559–1567CrossRef
Zurück zum Zitat Zeng Y, Yarbrough JM, Mittal A, Tucker MP, Vinzant TB, Decker SR, Himmel ME (2016) In situ label-free imaging of hemicellulose in plant cell walls using stimulated Raman scattering microscopy. Biotechnol Biofuels 9:256CrossRefPubMedPubMedCentral Zeng Y, Yarbrough JM, Mittal A, Tucker MP, Vinzant TB, Decker SR, Himmel ME (2016) In situ label-free imaging of hemicellulose in plant cell walls using stimulated Raman scattering microscopy. Biotechnol Biofuels 9:256CrossRefPubMedPubMedCentral
Zurück zum Zitat Zhang T, Mahgsoudy-Louyeh S, Tittmann B, Cosgrove DJ (2013) Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis. Cellulose 21:853–862CrossRef Zhang T, Mahgsoudy-Louyeh S, Tittmann B, Cosgrove DJ (2013) Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis. Cellulose 21:853–862CrossRef
Zurück zum Zitat Zhang T, Zheng Y, Cosgrove DJ (2016) Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy. Plant J 85:179–192CrossRefPubMed Zhang T, Zheng Y, Cosgrove DJ (2016) Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy. Plant J 85:179–192CrossRefPubMed
Zurück zum Zitat Zheng Y, Cosgrove DJ, Ning G (2017) High-resolution field emission scanning electron microscopy (FESEM) imaging of cellulose microfibril organization in plant primary cell walls. Microsc Microanal 23:1048–1054CrossRefPubMed Zheng Y, Cosgrove DJ, Ning G (2017) High-resolution field emission scanning electron microscopy (FESEM) imaging of cellulose microfibril organization in plant primary cell walls. Microsc Microanal 23:1048–1054CrossRefPubMed
Zurück zum Zitat Zhong R, Burk DH, Morrison WH, Ye Z-H (2002) A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell 14:3101–3117CrossRefPubMedPubMedCentral Zhong R, Burk DH, Morrison WH, Ye Z-H (2002) A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell 14:3101–3117CrossRefPubMedPubMedCentral
Zurück zum Zitat Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:1341–1417CrossRef Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:1341–1417CrossRef
Metadaten
Titel
Probing cellulose structures with vibrational spectroscopy
verfasst von
Mohamadamin Makarem
Christopher M. Lee
Kabindra Kafle
Shixin Huang
Inseok Chae
Hui Yang
James D. Kubicki
Seong H. Kim
Publikationsdatum
11.01.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 1/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-2199-z

Weitere Artikel der Ausgabe 1/2019

Cellulose 1/2019 Zur Ausgabe